1
|
Gallwitz M, Lindqvist I, Mulder J, Rasmusson AJ, Larsson A, Husén E, Borin J, van der Spek PJ, Sabbagh N, Widgren A, Bergquist J, Cervenka S, Burman J, Cunningham JL. Three cases with chronic obsessive compulsive disorder report gains in wellbeing and function following rituximab treatment. Mol Psychiatry 2024:10.1038/s41380-024-02750-y. [PMID: 39304742 DOI: 10.1038/s41380-024-02750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Immunological aetiology is supported for a subgroup with obsessive compulsive disorder (OCD) and conceptualized as autoimmune OCD. The longitudinal clinical course is detailed for three severely ill cases with OCD and indications of immunological involvement with off-label rituximab treatment every six months. All cases showed clear and sustained gains regarding symptom burden and function for over 2.5 years. Brief Psychiatric Rating Scale and Yale-Brown Obsessive-Compulsive Inventory Scale scores decreased 67-100% and 44-92%, respectively. These complex cases, prior to rituximab, had very low functioning and disease duration has been eight, nine and 16 years respectively. All three patients had been unsuccessfully treated with at least two antidepressants or anxiolytics, one neuroleptic and cognitive behavioural therapy. Clinical phenotypes and findings were suggestive of possible autoimmune OCD. Indirect immunohistochemistry detected cerebral spinal fluid (CSF) antibodies in all three cases including a novel anti-neuronal staining pattern against mouse thalamic cells. Exploratory analyses of CSF markers and proteomics identified elevated levels of sCD27 and markers indicative of complement pathway activation when compared to CSF from healthy controls. Multidisciplinary collaboration, advanced clinical investigations and rituximab treatment are feasible in a psychiatric setting. The case histories provide a proof of principle for the newly proposed criteria for autoimmune OCD. The findings suggest that clinical red flags and biological measures may predict rituximab response in chronic treatment-resistant OCD. The report provides orientation that may inform the hypotheses and design of future treatment trials.
Collapse
Affiliation(s)
- Maike Gallwitz
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Isa Lindqvist
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Annica J Rasmusson
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Evelina Husén
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jesper Borin
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Nour Sabbagh
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Anna Widgren
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Simon Cervenka
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Joachim Burman
- Department of Medical Sciences, Translational Neurology, Uppsala University, Uppsala, Sweden
| | - Janet L Cunningham
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Saha S, Mukherjee S, Guha G, Mukhopadhyay D. Dynamics of AQP4 upon exposure to seropositive patient serum before and after Rituximab therapy in Neuromyelitis Optica: A cell-based study. J Neuroimmunol 2021; 361:577752. [PMID: 34715591 DOI: 10.1016/j.jneuroim.2021.577752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Neuromyelitis Optica (NMO) is an autoimmune inflammatory disease that affects the optic nerves and spinal cord. The autoantibody is generated against the abundant water channel protein of the brain, Aquaporin 4 (AQP4). Of the two isoforms of AQP4, the shorter one (M23) often exists as a supramolecular assembly known as an orthogonal array of particles (OAPs). There have been debates about the fate of these AQP4 clusters upon binding to the antibody, the exact mechanism of its turnover, and the proteins associated with the process. Recently several clinical cases of NMO were reported delineating the effect of Rituximab (RTX) therapy. Extending these reports at the cell signaling level, we developed a glioma based cellular model that mimicked antibody binding and helped us track the subsequent events including a variation of AQP4 levels, alterations in cellular morphology, and the changes in downstream signaling cascades. Our results revealed the extent of perturbations in the signaling pathways related to stress involving ERK, JNK, and AKT1 together with markers for cell death. We could also decipher the possible routes of degradation of AQP4, post-exposure to antibody. We further investigated the effect of autoantibody on AQP4 transcriptional level and involvement of FOXO3a and miRNA-145 in the regulation of transcription. This study highlights the differential outcome at the cellular level when treated with the serum of the same patient pre and post RTX therapy and for the first time mechanistically describes the effect of RTX.
Collapse
Affiliation(s)
- Suparna Saha
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI.Sector - 1, Block - AF Bidhannagar, Kolkata 700064, India.
| | - Soumava Mukherjee
- Department of Neurology, Nil Ratan Sircar Medical College and Hospital, West Bengal University of Health Sciences, Kolkata, West Bengal, India
| | - Gautam Guha
- Department of Neurology, Nil Ratan Sircar Medical College and Hospital, West Bengal University of Health Sciences, Kolkata, West Bengal, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI.Sector - 1, Block - AF Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
3
|
Etemadifar M, Salari M, Mirmosayyeb O, Serati M, Nikkhah R, Askari M, Fayyazi E. Efficacy and safety of rituximab in neuromyelitis optica: Review of evidence. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:18. [PMID: 28458709 PMCID: PMC5367207 DOI: 10.4103/1735-1995.200275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/01/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune inflammatory disease of the central nervous system with preferential involvement in the optic nerve and spinal cord with a widespread spectrum of clinical features; multiple therapeutic agents have been used with different results. Recent evidence points to B-cell-mediated humoral immunity in the pathogenesis of NMO. Rituximab targets the CD20 antigen on B-cells. Treatment leads to profound B-cell depletion, principally over an antibody-dependent cell cytotoxicity mechanism. The aim of our study was to review clinical trials to elucidate the impact of rituximab on the relapse rate, Expanded Disability Status Scale (EDSS), and progression of disability in NMO. We performed a comprehensive review of all studies that evaluated clinical and paraclinical effects of rituximab on NMO. MEDLINE-PubMed, Web of Sciences, EMBASE, and Cochrane databases up to June 2016 included in our searches. In addition, reference lists from articles identified by search as well as a key review article to identify additional articles included in the study. Rituximab targets the CD20 antigen on B-cells and decreases attack frequency and severity in patients with NMO; however, it does not remove attacks, even when modifying treatment to achieve B-cell depletion. Most of the investigations revealed that EDSS significantly in all patients with rituximab treatment will be decreased after treatment with rituximab. No new or enlarged lesions or pathological gadolinium enhancement was observed in serial brain and spinal cord magnetic resonance imaging, except for those observed concomitantly with clinical relapses and the median length of spinal cord lesions was significantly reduced after therapy. Rituximab targets the CD20 antigen and decreases attack frequency and severity in patients with NMO.
Collapse
Affiliation(s)
- Masoud Etemadifar
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Research Committee of Multiple Sclerosis, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehri Salari
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Mirmosayyeb
- Isfahan Research Committee of Multiple Sclerosis, Isfahan University of Medical Sciences, Isfahan, Iran.,Medical Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Serati
- Isfahan Research Committee of Multiple Sclerosis, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roham Nikkhah
- Isfahan Research Committee of Multiple Sclerosis, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mozhde Askari
- Isfahan Research Committee of Multiple Sclerosis, Isfahan University of Medical Sciences, Isfahan, Iran.,Medical Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Emad Fayyazi
- Isfahan Research Committee of Multiple Sclerosis, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Th17 Cells Pathways in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders: Pathophysiological and Therapeutic Implications. Mediators Inflamm 2016; 2016:5314541. [PMID: 26941483 PMCID: PMC4749822 DOI: 10.1155/2016/5314541] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/23/2022] Open
Abstract
Several animal and human studies have implicated CD4+ T helper 17 (Th17) cells and their downstream pathways in the pathogenesis of central nervous system (CNS) autoimmunity in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), challenging the traditional Th1-Th2 paradigm. Th17 cells can efficiently cross the blood-brain barrier using alternate ways from Th1 cells, promote its disruption, and induce the activation of other inflammatory cells in the CNS. A number of environmental factors modulate the activity of Th17 pathways, so changes in the diet, exposure to infections, and other environmental factors can potentially change the risk of development of autoimmunity. Currently, new drugs targeting specific points of the Th17 pathways are already being tested in clinical trials and provide basis for the development of biomarkers to monitor disease activity. Herein, we review the key findings supporting the relevance of the Th17 pathways in the pathogenesis of MS and NMOSD, as well as their potential role as therapeutic targets in the treatment of immune-mediated CNS disorders.
Collapse
|