1
|
Espinosa Reyes TM, Cordero Martín D, Ángel Álvarez M, Falhammar H. Memory in female adolescents with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocrine 2024; 85:1379-1386. [PMID: 38727867 DOI: 10.1007/s12020-024-03806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 08/11/2024]
Abstract
INTRODUCTION In females with congenital adrenal hyperplasia (CAH), the influence of hyperandrogenism and glucocorticoid supplementation on neurocognition is controversial. OBJECTIVES To identify possible differences in visual working memory and verbal memory in adolescent girls with CAH due to 21-hydroxylase deficiency and matched controls. Moreover, to study if any relationship between variables associated with CAH and the scores of the selected memory tests was present. MATERIAL AND METHODS In total 39 individuals were studied, female adolescents with CAH and age and pubertal stage matched healthy male and female controls (13 in each group). Sociodemographic, clinical, hormonal, and neurocognitive variables were explored. In female adolescents with CAH, variables related to the disease (age at diagnosis, clinical form, time since diagnosis, and glucocorticoid doses) were correlated with the scores obtained for neurocognitive variables. RESULTS The mean age was 13.9 ± 3.3 years. In female adolescents with CAH the results were worse compared to controls in Free Recall (p = 0.039) and in Visual Memory Span score (p = 0.016). Age at diagnosis was negatively correlated to number of hits (p = 0.04), number recalled backward (p = 0.03), Visual Memory Span test score (p = 0.04) and Total Free Recall (p = 0.04), i.e., memory was worse with later diagnosis. CONCLUSIONS Female adolescents with CAH had worse visual working memory compared to matched controls, but not in verbal memory. Age at diagnosis was negatively associated with the memory tests.
Collapse
Affiliation(s)
- Tania M Espinosa Reyes
- National Institute of Endocrinology, Havana, Cuba.
- University of Medical Sciences of Havana, Havana, Cuba.
| | - Dainy Cordero Martín
- National Institute of Endocrinology, Havana, Cuba
- University of Medical Sciences of Havana, Havana, Cuba
| | - Miguel Ángel Álvarez
- University of Medical Sciences of Havana, Havana, Cuba
- Institute of Neurology and Neurosurgery, Havana, Cuba
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Agarwal D, Kumari R, Ilyas A, Tyagi S, Kumar R, Poddar NK. Crosstalk between epigenetics and mTOR as a gateway to new insights in pathophysiology and treatment of Alzheimer's disease. Int J Biol Macromol 2021; 192:895-903. [PMID: 34662652 DOI: 10.1016/j.ijbiomac.2021.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Epigenetics in the current times has become a gateway to acquire answers to questions that were left unanswered by classical and modern genetics, be it resolving the complex mystery behind neurodegenerative disorders or understanding the complexity behind life-threatening cancers. It has presented to the world an entirely new dimension and has added a dynamic angle to an otherwise static field of genetics. Alzheimer's disease is one of the most prevalent neurodegenerative disorders is largely found to be a result of alterations in epigenetic pathways. These changes majorly comprise an imbalance in DNA methylation levels and altered acetylation and methylation of histones. They are often seen to cross-link with metabolic regulatory pathways such as that of mTOR, contributing significantly to the pathophysiology of AD. This review focusses on the study of the interplay of the mTOR regulatory pathway with that of epigenetic machinery that may elevate the rate of early diagnosis and prove to be a gateway to the development of an efficient and novel therapeutic strategy for the treatment of Alzheimer's disease at an early stage.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ruchika Kumari
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ashal Ilyas
- Department of Biotechnology, Invertis University, Bareilly 243 123, India
| | - Shweta Tyagi
- HNo-88, Ranjit Avenue, Bela Chowk, Kota Nihang, Punjab 140001, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh. India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
3
|
Huerta-Cervantes M, Peña-Montes DJ, López-Vázquez MÁ, Montoya-Pérez R, Cortés-Rojo C, Olvera-Cortés ME, Saavedra-Molina A. Effects of Gestational Diabetes in Cognitive Behavior, Oxidative Stress and Metabolism on the Second-Generation Off-Spring of Rats. Nutrients 2021; 13:nu13051575. [PMID: 34066827 PMCID: PMC8150291 DOI: 10.3390/nu13051575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Gestational diabetes (GD) has a negative impact on neurodevelopment, resulting in cognitive and neurological deficiencies. Oxidative stress (OS) has been reported in the brain of the first-generation offspring of GD rats. OS has been strongly associated with neurodegenerative diseases. In this work, we determined the effect of GD on the cognitive behavior, oxidative stress and metabolism of second-generation offspring. GD was induced with streptozotocin (STZ) in pregnant rats to obtain first-generation offspring (F1), next female F1 rats were mated with control males to obtain second-generation offspring (F2). Two and six-month-old F2 males and females were employed. Anxious-type behavior, spatial learning and spatial working memory were evaluated. In cerebral cortex and hippocampus, the oxidative stress and serum biochemical parameters were measured. Male F2 GD offspring presented the highest level of anxiety-type behavior, whilst females had the lowest level of anxiety-type behavior at juvenile age. In short-term memory, adult females presented deficiencies. The offspring F2 GD females presented modifications in oxidative stress biomarkers in the cerebral cortex as lipid-peroxidation, oxidized glutathione and catalase activity. We also observed metabolic disturbances, particularly in the lipid and insulin levels of male and female F2 GD offspring. Our results suggest a transgenerational effect of GD on metabolism, anxiety-like behavior, and spatial working memory.
Collapse
Affiliation(s)
- Maribel Huerta-Cervantes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
| | - Miguel Ángel López-Vázquez
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Michoacán, Mexico;
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
| | - María Esther Olvera-Cortés
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Michoacán, Mexico;
- Correspondence: (M.E.O.-C.); (A.S.-M.); Tel.: +52-443-322-2600 (M.E.O.-C.); +52-443-326-5790 (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
- Correspondence: (M.E.O.-C.); (A.S.-M.); Tel.: +52-443-322-2600 (M.E.O.-C.); +52-443-326-5790 (A.S.-M.)
| |
Collapse
|
4
|
Landires I, Núñez-Samudio V. Epigenética, memoria y herencia. Neurologia 2019; 34:138-139. [DOI: 10.1016/j.nrl.2017.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 11/26/2022] Open
|
5
|
Epigenetics, memory, and inheritance. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2017.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Langille JJ, Brown RE. The Synaptic Theory of Memory: A Historical Survey and Reconciliation of Recent Opposition. Front Syst Neurosci 2018; 12:52. [PMID: 30416432 PMCID: PMC6212519 DOI: 10.3389/fnsys.2018.00052] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/28/2018] [Indexed: 01/12/2023] Open
Abstract
Trettenbrein (2016) has argued that the concept of the synapse as the locus of memory is outdated and has made six critiques of this concept. In this article, we examine these six critiques and suggest that the current theories of the neurobiology of memory and the empirical data indicate that synaptic activation is the first step in a chain of cellular and biochemical events that lead to memories formed in cell assemblies and neural networks that rely on synaptic modification for their formation. These neural networks and their modified synaptic connections can account for the cognitive basis of learning and memory and for memory deterioration in neurological disorders. We first discuss Hebb's (1949) theory that synaptic change and the formation of cell assemblies and phase sequences can link neurophysiology to cognitive processes. We then examine each of Trettenbrein's (2016) critiques of the synaptic theory in light of Hebb's theories and recent empirical data. We examine the biochemical basis of memory formation and the necessity of synaptic modification to form the neural networks underlying learning and memory. We then examine the use of Hebb's theories of synaptic change and cell assemblies for integrating neurophysiological and cognitive conceptions of learning and memory. We conclude with an examination of the applications of the Hebb synapse and cell assembly theories to the study of the neuroscience of learning and memory, the development of computational models of memory and the construction of "intelligent" robots. We conclude that the synaptic theory of memory has not met its demise, but is essential to our understanding of the neural basis of memory, which has two components: synaptic plasticity and intrinsic plasticity.
Collapse
Affiliation(s)
| | - Richard E. Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Inhibition of DNA Methylation Impairs Synaptic Plasticity during an Early Time Window in Rats. Neural Plast 2016; 2016:4783836. [PMID: 27493805 PMCID: PMC4963592 DOI: 10.1155/2016/4783836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 01/23/2023] Open
Abstract
Although the importance of DNA methylation-dependent gene expression to neuronal plasticity is well established, the dynamics of methylation and demethylation during the induction and expression of synaptic plasticity have not been explored. Here, we combined electrophysiological, pharmacological, molecular, and immunohistochemical approaches to examine the contribution of DNA methylation and the phosphorylation of Methyl-CpG-binding protein 2 (MeCP2) to synaptic plasticity. We found that, at twenty minutes after theta burst stimulation (TBS), the DNA methylation inhibitor 5-aza-2-deoxycytidine (5AZA) impaired hippocampal long-term potentiation (LTP). Surprisingly, after two hours of TBS, when LTP had become a transcription-dependent process, 5AZA treatment had no effect. By comparing these results to those in naive slices, we found that, at two hours after TBS, an intergenic region of the RLN gene was hypomethylated and that the phosphorylation of residue S80 of MeCP2 was decreased, while the phosphorylation of residue S421 was increased. As expected, 5AZA affected only the methylation of the RLN gene and exerted no effect on MeCP2 phosphorylation patterns. In summary, our data suggest that tetanic stimulation induces critical changes in synaptic plasticity that affects both DNA methylation and the phosphorylation of MeCP2. These data also suggest that early alterations in DNA methylation are sufficient to impair the full expression of LTP.
Collapse
|
8
|
Melka MG, Castellani CA, O'Reilly R, Singh SM. Insights into the origin of DNA methylation differences between monozygotic twins discordant for schizophrenia. J Mol Psychiatry 2015; 3:7. [PMID: 26137221 PMCID: PMC4487197 DOI: 10.1186/s40303-015-0013-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation differences between monozygotic twins discordant for schizophrenia have been previously reported. However, the origin of methylation differences between monozygotic twins discordant for schizophrenia is not clear. The findings here argue that all DNA methylation differences may not necessarily represent the cause of the disease; rather some may result from the effect of antipsychotics. Methods Methylation differences in rat brain regions and also in two pairs of unrelated monozygotic twins discordant for schizophrenia have been studied using genome-wide DNA methylation arrays at Arraystar Inc. (Rockville, Maryland, USA). The identified gene promoters showing significant alterations to DNA methylation were then further characterized using ingenuity pathway analysis (Ingenuity System Inc, CA, USA). Results Pathway analysis of the most significant gene promoter hyper/hypomethylation revealed a significant enrichment of DNA methylation changes in biological networks and pathways directly relevant to neural development and psychiatric disorders. These included HIPPO signaling (p = 3.93E-03) and MAPK signaling (p = 4.27E-03) pathways involving hypermethylated genes in schizophrenia-affected patients as compared to their unaffected co-twins. Also, a number of significant pathways and networks involving genes with hypomethylated gene promoters have been identified. These included CREB signaling in neurons (p = 1.53E-02), Dopamine-DARPP32 feedback in cAMP signaling (p = 7.43E-03) and Ephrin receptors (p = 1.13E-02). Further, there was significant enrichment for pathways involved in nervous system development and function (p = 1.71E-03-4.28E-02). Conclusion The findings highlight the significance of antipsychotic drugs on DNA methylation in schizophrenia patients. The unique pathways affected by DNA methylation in the two pairs of monozygotic twins suggest that patient-specific pathways are responsible for the disease; suggesting that patient-specific treatment strategies may be necessary in treating the disorder. The study reflects the need for developing personalized medicine approaches that take into consideration epigenetic variations between patients. Electronic supplementary material The online version of this article (doi:10.1186/s40303-015-0013-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melkaye G Melka
- Molecular Genetics Unit, Western Science Centre, Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7 Canada
| | - Christina A Castellani
- Molecular Genetics Unit, Western Science Centre, Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7 Canada
| | - Richard O'Reilly
- Department of Psychiatry, The University of Western Ontario, London, Ontario N6A 5B7 Canada
| | - Shiva M Singh
- Molecular Genetics Unit, Western Science Centre, Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7 Canada
| |
Collapse
|