1
|
Wang Y, Zuo J, Duan C, Peng H, Huang J, Zhao L, Zhang L, Dong Z. Large language models assisted multi-effect variants mining on cerebral cavernous malformation familial whole genome sequencing. Comput Struct Biotechnol J 2024; 23:843-858. [PMID: 38352937 PMCID: PMC10861960 DOI: 10.1016/j.csbj.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Cerebral cavernous malformation (CCM) is a polygenic disease with intricate genetic interactions contributing to quantitative pathogenesis across multiple factors. The principal pathogenic genes of CCM, specifically KRIT1, CCM2, and PDCD10, have been reported, accompanied by a growing wealth of genetic data related to mutations. Furthermore, numerous other molecules associated with CCM have been unearthed. However, tackling such massive volumes of unstructured data remains challenging until the advent of advanced large language models. In this study, we developed an automated analytical pipeline specialized in single nucleotide variants (SNVs) related biomedical text analysis called BRLM. To facilitate this, BioBERT was employed to vectorize the rich information of SNVs, while a deep residue network was used to discriminate the classes of the SNVs. BRLM was initially constructed on mutations from 12 different types of TCGA cancers, achieving an accuracy exceeding 99%. It was further examined for CCM mutations in familial sequencing data analysis, highlighting an upstream master regulator gene fibroblast growth factor 1 (FGF1). With multi-omics characterization and validation in biological function, FGF1 demonstrated to play a significant role in the development of CCMs, which proved the effectiveness of our model. The BRLM web server is available at http://1.117.230.196.
Collapse
Affiliation(s)
- Yiqi Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan 430070, Hubei, China
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Shiyan 442000, Hubei, China
| | - Jinmei Zuo
- Physical Examination Center, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Shiyan 442000, Hubei, China
| | - Chao Duan
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan 430070, Hubei, China
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
| | - Hao Peng
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
| | - Jia Huang
- The Second Clinical Medical College, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730030, Gansu, China
| | - Liang Zhao
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Shiyan 442000, Hubei, China
| | - Li Zhang
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan 430070, Hubei, China
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
| |
Collapse
|
2
|
Ghosh R, León-Ruiz M, Roy D, Benito-León J. Familial cerebral cavernous malformation presenting with cerebellopontine angle syndrome in a patient with autosomal dominant polycystic kidney disease. NEUROLOGY PERSPECTIVES 2024; 4:100137. [PMID: 38130939 PMCID: PMC10732253 DOI: 10.1016/j.neurop.2023.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College and Hospital, Burdwan, West Bengal, India
| | - Moisés León-Ruiz
- Section of Clinical Neurophysiology, Department of Neurology, University Hospital “La Paz”, Madrid, Spain
| | - Dipayan Roy
- All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
- Indian Institute of Technology (IIT), Madras, Tamil Nadu, India
- School of Humanities, Indira Gandhi National Open University, New Delhi, India
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
3
|
Sandoval Ramírez CJ, Salazar Ramírez ZE, Abdo Toro MA, García López R, González Zavala PA, Estrada Estrada EM, Cruz Rosales JL, Rodríguez Florido MA. Case series of giant Cavernomas: Clinical presentation and management recommendations. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
4
|
Vázquez-Osorio I, García-González N, Viejo-Díaz M, Gonzalvo-Rodríguez P, Rodríguez-Díaz E. Cerebral Cavernous Malformations: The Importance of Cutaneous Manifestations. Indian J Dermatol 2021; 66:93-95. [PMID: 33911302 PMCID: PMC8061482 DOI: 10.4103/ijd.ijd_594_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Igor Vázquez-Osorio
- Servicio de Dermatología, Hospital Clínico Universitario de Santiago de Compostela, Spain
| | | | - Mónica Viejo-Díaz
- Unidad de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Eloy Rodríguez-Díaz
- Servicio de Dermatología, Hospital Universitario de Cabueñes, Gijón. E-mail:
| |
Collapse
|
5
|
Sun Y, Zhao Z, Zhang H, Li J, Chen J, Luan X, Min W, He Y. The interaction of lead exposure and CCM3 defect plays an important role in regulating angiogenesis through eNOS/NO pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103407. [PMID: 32512318 DOI: 10.1016/j.etap.2020.103407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/14/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
In this study, we aimed to explore the role of nitric oxide (NO) in regulating angiogenesis in cerebral cavernous malformations 3 gene (CCM3)-deficient mice exposed to lead during vascular development; further, we aimed to identify and study the potential mechanism involved as well. Angiogenesis was detected by whole mount immunofluorescent staining of retinal vessels in WT and CCM3+/- mice. Brain microvascular endothelial cells (BMECs) isolated from WT and CCM3+/- mice, primary HUVECs, and immortalized HUVECs (imHUVECs) (CCM3+/+ and CCM3-/-) were used and treated with lead acetate (PbAc). RT-PCR and Western blotting were used to detect the mRNA and protein expression of iNOS, eNOS, and VEGF genes. The results showed that both lead exposure and CCM3 gene deficiency adversely affected endothelial cell function, causing abnormal angiogenesis and vascular remodeling. The mRNA expression of eNOS and iNOS was significantly different in WT and CCM3+/- BMECs (0.04 ± 0.001 vs. 0.016 ± 0.002; 0.26 ± 0.002 vs. 0.306 ± 0.002, respectively), and the expression of eNOS and iNOS in imHUVECs (CCM3+/+ and CCM3-/-) also increased after PbAc exposure. In conclusion, CCM3 gene-deficient mice were more susceptible to abnormal vascular development after low-level lead exposure, probably due to the release of NO.
Collapse
Affiliation(s)
- Yi Sun
- Department of Health Toxicology, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong, 510080, China; Department of Environmental Health and Occupational Medicine, Guilin Medical University School of Public Health, Guilin, Guangxi, 541004, China
| | - Zhiqiang Zhao
- Department of Health Toxicology, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong, 510080, China
| | - Haifeng Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jiong Li
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jingli Chen
- Department of Health Toxicology, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong, 510080, China
| | - Xiaoyi Luan
- Department of Environmental Health and Occupational Medicine, Guilin Medical University School of Public Health, Guilin, Guangxi, 541004, China
| | - Wang Min
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yun He
- Department of Health Toxicology, Sun Yat-sen University School of Public Health, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
6
|
Wang K, Wu D, Zhang B, Zhao G. Novel KRIT1/CCM1 and MGC4607/CCM2 Gene Variants in Chinese Families With Cerebral Cavernous Malformations. Front Neurol 2018; 9:1128. [PMID: 30622508 PMCID: PMC6308150 DOI: 10.3389/fneur.2018.01128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/10/2018] [Indexed: 02/03/2023] Open
Abstract
Familial cerebral cavernous malformations (CCMs) are autosomal dominant disorders characterized by hemorrhagic strokes, recurrent headache, epilepsy, and focal neurological deficits. Genetic variants in KRIT1/CCM1, MGC4607/CCM2, and PDCD10/CCM3 genes contribute to CCMs. The clinical information of two Chinese families with CCMs was collected. MRI and video-electroencephalography were performed. Genetic variants of CCM1, CCM2, and CCM3 genes were investigated by exome sequencing. The patients were presented with recurrent epilepsy or headache. Susceptibility-weighted images of brains showed many dark dots, while video-electroencephalography revealed many spikes from multiple brain regions of patients. Exome sequencing revealed a novel CCM1 genetic variant (c.1599_1601TGAdel, p.Asp533del) and a novel CCM2 genetic variant (c.773delA, p.K258fsX34) in Family one and Family two, respectively; cosegregation existed in these two families. The two family members presented typical CCMs symptoms. These two novel genetic variants in CCM1 and CCM2 genes were the causation of CCM in the two Chinese families, and our data enriched the genetic variant spectrum of CCM genes.
Collapse
Affiliation(s)
- Kang Wang
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dengchang Wu
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guohua Zhao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
7
|
Abstract
The disease known as cerebral cavernous malformations mostly occurs in the central nervous system, and their typical histological presentations are multiple lumen formation and vascular leakage at the brain capillary level, resulting in disruption of the blood-brain barrier. These abnormalities result in severe neurological symptoms such as seizures, focal neurological deficits and hemorrhagic strokes. CCM research has identified ‘loss of function’ mutations of three ccm genes responsible for the disease and also complex regulation of multiple signaling pathways including the WNT/β-catenin pathway, TGF-β and Notch signaling by the ccm genes. Although CCM research is a relatively new and small scientific field, as CCM research has the potential to regulate systemic blood vessel permeability and angiogenesis including that of the blood-brain barrier, this field is growing rapidly. In this review, I will provide a brief overview of CCM pathogenesis and function of ccm genes based on recent progress in CCM research. [BMB Reports 2016; 49(5): 255-262]
Collapse
Affiliation(s)
- Jaehong Kim
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 21936; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Incheon 21999, Korea
| |
Collapse
|