1
|
Lauvås AJ, Lislien M, Holme JA, Dirven H, Paulsen RE, Alm IM, Andersen JM, Skarpen E, Sørensen V, Macko P, Pistollato F, Duale N, Myhre O. Developmental neurotoxicity of acrylamide and its metabolite glycidamide in a human mixed culture of neurons and astrocytes undergoing differentiation in concentrations relevant for human exposure. Neurotoxicology 2022; 92:33-48. [PMID: 35835329 DOI: 10.1016/j.neuro.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022]
Abstract
Neural stem cells (NSCs) derived from human induced pluripotent stem cells were used to investigate effects of exposure to the food contaminant acrylamide (AA) and its main metabolite glycidamide (GA) on key neurodevelopmental processes. Diet is an important source of human AA exposure for pregnant women, and AA is known to pass the placenta and the newborn may also be exposed through breast feeding after birth. The NSCs were exposed to AA and GA (1 ×10-8 - 3 ×10-3 M) under 7 days of proliferation and up to 28 days of differentiation towards a mixed culture of neurons and astrocytes. Effects on cell viability was measured using Alamar Blue™ cell viability assay, alterations in gene expression were assessed using real time PCR and RNA sequencing, and protein levels were quantified using immunocytochemistry and high content imaging. Effects of AA and GA on neurodevelopmental processes were evaluated using endpoints linked to common key events identified in the existing developmental neurotoxicity adverse outcome pathways (AOPs). Our results suggest that AA and GA at low concentrations (1 ×10-7 - 1 ×10-8 M) increased cell viability and markers of proliferation both in proliferating NSCs (7 days) and in maturing neurons after 14-28 days of differentiation. IC50 for cell death of AA and GA was 5.2 × 10-3 M and 5.8 × 10-4 M, respectively, showing about ten times higher potency for GA. Increased expression of brain derived neurotrophic factor (BDNF) concomitant with decreased synaptogenesis were observed for GA exposure (10-7 M) only at later differentiation stages, and an increased number of astrocytes (up to 3-fold) at 14 and 21 days of differentiation. Also, AA exposure gave tendency towards decreased differentiation (increased percent Nestin positive cells). After 28 days, neurite branch points and number of neurites per neuron measured by microtubule-associated protein 2 (Map2) staining decreased, while the same neurite features measured by βIII-Tubulin increased, indicating perturbation of neuronal differentiation and maturation.
Collapse
Affiliation(s)
- Anna Jacobsen Lauvås
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Malene Lislien
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Jørn Andreas Holme
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Hubert Dirven
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Inger Margit Alm
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Jill Mari Andersen
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Ellen Skarpen
- Core Facility for Advanced Light Microscopy, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Vigdis Sørensen
- Core Facility for Advanced Light Microscopy, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Peter Macko
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Nur Duale
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Oddvar Myhre
- Department of Chemical Toxicology, Norwegian Institute of Public Health (NIPH), Oslo, Norway.
| |
Collapse
|
2
|
Wang Y, Duan L, Zhang X, Jiao Y, Liu Y, Dai L, Yan H. Effect of long-term exposure to acrylamide on endoplasmic reticulum stress and autophagy in rat cerebellum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112691. [PMID: 34450424 DOI: 10.1016/j.ecoenv.2021.112691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Acrylamide (ACR) is a widely used chemical compound that has neurotoxicity in human, but whether ACR could impair the cerebellum and the related mechanism were still unknown. This study aimed to observe the changes in behavioral performance and cerebellar morphology caused by chronic ACR exposure, and to evaluate its influence on apoptosis, endoplasmic reticulum stress (ERS) and autophagy. Rats were treated with 0, 0.5 and 5 mg/kg ACR by drinking water for 12 months. Results showed that 5 mg/kg ACR treatment damaged the gait, balance ability, hindlimb muscle strength and motor coordination ability of rats. The results of hematoxylin and eosin and Nissl staining indicated that ACR impaired the structures of all three layers of the cerebellum, especially the Purkinje cell layer, showing abnormal morphology with nucleus condensation and pyknosis. Accumulation of autophagosomes, dilated endoplasmic reticulum and swollen mitochondria were observed in neurons under transmission electron microscopy. The enhanced apoptotic rates and the increased Bax expression indicated the elevated level of apoptosis. The results of Western blot showed that ACR treatment elevated protein levels of Beclin1, LC3-II/LC3-I, p-PERK/t-PERK, ATF4 and CHOP, indicating the initiation of autophagy, the activation of PERK pathway in ERS. This work helps to demonstrate the ACR neurotoxicity on cerebellum under chronic treatment and its underlying mechanism.
Collapse
Affiliation(s)
- Yiqi Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Lian Duan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Xing Zhang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Yang Jiao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Ying Liu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China
| | - Lingling Dai
- Experimental Teaching Center of Preventive Medicine School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan 430030, China.
| |
Collapse
|
3
|
Lindeman B, Johansson Y, Andreassen M, Husøy T, Dirven H, Hofer T, Knutsen HK, Caspersen IH, Vejrup K, Paulsen RE, Alexander J, Forsby A, Myhre O. Does the food processing contaminant acrylamide cause developmental neurotoxicity? A review and identification of knowledge gaps. Reprod Toxicol 2021; 101:93-114. [PMID: 33617935 DOI: 10.1016/j.reprotox.2021.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022]
Abstract
There is a worldwide concern on adverse health effects of dietary exposure to acrylamide (AA) due to its presence in commonly consumed foods. AA is formed when carbohydrate rich foods containing asparagine and reducing sugars are prepared at high temperatures and low moisture conditions. Upon oral intake, AA is rapidly absorbed and distributed to all organs. AA is a known human neurotoxicant that can reach the developing foetus via placental transfer and breast milk. Although adverse neurodevelopmental effects have been observed after prenatal AA exposure in rodents, adverse effects of AA on the developing brain has so far not been studied in humans. However, epidemiological studies indicate that gestational exposure to AA impair foetal growth and AA exposure has been associated with reduced head circumference of the neonate. Thus, there is an urgent need for further research to elucidate whether pre- and perinatal AA exposure in humans might impair neurodevelopment and adversely affect neuronal function postnatally. Here, we review the literature with emphasis on the identification of critical knowledge gaps in relation to neurodevelopmental toxicity of AA and its mode of action and we suggest research strategies to close these gaps to better protect the unborn child.
Collapse
Affiliation(s)
- Birgitte Lindeman
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mathilda Andreassen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Trine Husøy
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hubert Dirven
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tim Hofer
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Helle K Knutsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ida H Caspersen
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine Vejrup
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild E Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Jan Alexander
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Oddvar Myhre
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
4
|
Allam AA. Drinking desalinated seawater for a long time induces anomalies in the development of new-born albino rats. Saudi J Biol Sci 2017; 24:1306-1321. [PMID: 28855826 PMCID: PMC5562477 DOI: 10.1016/j.sjbs.2016.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/01/2016] [Accepted: 08/19/2016] [Indexed: 12/31/2022] Open
Abstract
The present study aimed to elucidate the abnormalities in the development of rat brains, livers, kidney and behaviours after drinking desalinated seawater prenatally. Three types of drinking water were employed as an experimental probe (bottled water, filtered desalinated seawater and tap desalinated seawater) to investigate neurobehavioral and morphological changes in the development of pup rats. Female rats from each group were administered water from their birth until gestation and lactation. The 1st and 2nd generation pups were divided into three groups: Group C, mothers and pups administered with bottled drinking water (the control group); Group F, mothers and pups administered with filtered drinking water; Group T, mothers and pups administered with unfiltered desalinated seawater (tap water). Morphological changes (CNS aberration) and neurobehavioral changes were studied. The aberrations recorded in the tissues (brain, liver, kidney and spinal cord) of rats from groups T and F may be due to oxidative stress in these tissues such as reduced glutathione, lipid peroxidation, peroxidase and super oxide dismutase. In conclusion, drinking desalinated seawater for a long time may cause teratogenic effects in the development of New-born rats.
Collapse
Affiliation(s)
- Ahmed A Allam
- King Saud University, College of Science, Zoology Department, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Lai SM, Gu ZT, Zhao MM, Li XX, Ma YX, Luo L, Liu J. Toxic effect of acrylamide on the development of hippocampal neurons of weaning rats. Neural Regen Res 2017; 12:1648-1654. [PMID: 29171430 PMCID: PMC5696846 DOI: 10.4103/1673-5374.217345] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although numerous studies have examined the neurotoxicity of acrylamide in adult animals, the effects on neuronal development in the embryonic and lactational periods are largely unknown. Thus, we examined the toxicity of acrylamide on neuronal development in the hippocampus of fetal rats during pregnancy. Sprague-Dawley rats were mated with male rats at a 1:1 ratio. Rats were administered 0, 5, 10 or 20 mg/kg acrylamide intragastrically from embryonic days 6–21. The gait scores were examined in pregnant rats in each group to analyze maternal toxicity. Eight weaning rats from each group were also euthanized on postnatal day 21 for follow-up studies. Nissl staining was used to observe histological change in the hippocampus. Immunohistochemistry was conducted to observe the condition of neurites, including dendrites and axons. Western blot assay was used to measure the expression levels of the specific nerve axon membrane protein, growth associated protein 43, and the presynaptic vesicle membrane specific protein, synaptophysin. The gait scores of gravid rats significantly increased, suggesting that acrylamide induced maternal motor dysfunction. The number of neurons, as well as expression of growth associated protein 43 and synaptophysin, was reduced with increasing acrylamide dose in postnatal day 21 weaning rats. These data suggest that acrylamide exerts dose-dependent toxic effects on the growth and development of hippocampal neurons of weaning rats.
Collapse
Affiliation(s)
- Sheng-Min Lai
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Zi-Ting Gu
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Meng-Meng Zhao
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Xi-Xia Li
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yu-Xin Ma
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Li Luo
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Jing Liu
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Ingber SZ, Pohl HR. Windows of sensitivity to toxic chemicals in the motor effects development. Regul Toxicol Pharmacol 2016; 74:93-104. [PMID: 26686904 PMCID: PMC5599107 DOI: 10.1016/j.yrtph.2015.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022]
Abstract
Many chemicals currently used are known to elicit nervous system effects. In addition, approximately 2000 new chemicals introduced annually have not yet undergone neurotoxicity testing. This review concentrated on motor development effects associated with exposure to environmental neurotoxicants to help identify critical windows of exposure and begin to assess data needs based on a subset of chemicals thoroughly reviewed by the Agency for Toxic Substances and Disease Registry (ATSDR) in Toxicological Profiles and Addenda. Multiple windows of sensitivity were identified that differed based on the maturity level of the neurological system at the time of exposure, as well as dose and exposure duration. Similar but distinct windows were found for both motor activity (GD 8-17 [rats], GD 12-14 and PND 3-10 [mice]) and motor function performance (insufficient data for rats, GD 12-17 [mice]). Identifying specific windows of sensitivity in animal studies was hampered by study designs oriented towards detection of neurotoxicity that occurred at any time throughout the developmental process. In conclusion, while this investigation identified some critical exposure windows for motor development effects, it demonstrates a need for more acute duration exposure studies based on neurodevelopmental windows, particularly during the exposure periods identified in this review.
Collapse
Affiliation(s)
- Susan Z Ingber
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, USA
| | - Hana R Pohl
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, USA.
| |
Collapse
|
7
|
Basha CD, Reddy RG. Long-term changes in brain cholinergic system and behavior in rats following gestational exposure to lead: protective effect of calcium supplement. Interdiscip Toxicol 2015; 8:159-68. [PMID: 27486377 PMCID: PMC4961914 DOI: 10.1515/intox-2015-0025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/12/2015] [Accepted: 12/17/2015] [Indexed: 11/15/2022] Open
Abstract
Our earlier studies showed that lactational exposure to lead (Pb) caused irreversible neurochemical alterations in rats. The present study was carried out to examine whether gestational exposure to Pb can cause long-term changes in the brain cholinergic system and behavior of rats. The protective effect of calcium (Ca) supplementation against Pb toxicity was also examined. Pregnant rats were exposed to 0.2% Pb (Pb acetate in drinking water) from gestational day (GD) 6 to GD 21. The results showed decrease in body weight gain (GD 6-21) of dams, whereas no changes were observed in offspring body weight at different postnatal days following Pb exposure. Male offspring treated with Pb showed marginal alterations in developmental landmarks such as unfolding of pinnae, lower and upper incisor eruption, fur development, eye slit formation and eye opening on postnatal day (PND) 1, whereas significant alterations were found in the righting reflex (PNDs 4-7), slant board behavior (PNDs 8-10) and forelimb hang performance (PNDs 12-16). Biochemical analysis showed decrease in synaptosomal acetylcholinesterase (AChE) activity and an increase in acetylcholine (ACh) levels in the cortex, cerebellum and hippocampus on PND 14, PND 21, PND 28 and in the four-month age group of rats following Pb exposure. Significant deficits were also observed in total locomotor activity, exploratory behavior and open field behavior in selected age groups of Pb-exposed rats. These alterations were found to be maximal on PND 28, corresponding with the greater blood lead levels observed on PND 28. Addition of 0.02% Ca to Pb reversed the Pb-induced impairments in the cholinergic system as well as in behavioral parameters of rats. In conclusion, these data suggest that gestational exposure to Pb is able to induce long-term changes in neurological functions of offspring. Maternal Ca administration reversed these neurological effects of Pb later in life, suggesting a protective effect of calcium in Pb-exposed animals.
Collapse
Affiliation(s)
- Chand D Basha
- Department of Zoology, Sri Venkateswara University, Tirupati - 517502, India
| | - Rajarami G Reddy
- Department of Zoology, Sri Venkateswara University, Tirupati - 517502, India
| |
Collapse
|
8
|
Mundy WR, Padilla S, Breier JM, Crofton KM, Gilbert ME, Herr DW, Jensen KF, Radio NM, Raffaele KC, Schumacher K, Shafer TJ, Cowden J. Expanding the test set: Chemicals with potential to disrupt mammalian brain development. Neurotoxicol Teratol 2015; 52:25-35. [PMID: 26476195 DOI: 10.1016/j.ntt.2015.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 11/15/2022]
Abstract
High-throughput test methods including molecular, cellular, and alternative species-based assays that examine critical events of normal brain development are being developed for detection of developmental neurotoxicants. As new assays are developed, a "training set" of chemicals is used to evaluate the relevance of individual assays for specific endpoints. Different training sets are necessary for each assay that would comprise a developmental neurotoxicity test battery. In contrast, evaluation of the predictive ability of a comprehensive test battery requires a set of chemicals that have been shown to alter brain development after in vivo exposure ("test set"). Because only a small number of substances have been well documented to alter human neurodevelopment, we have proposed an expanded test set that includes chemicals demonstrated to adversely affect neurodevelopment in animals. To compile a list of potential developmental neurotoxicants, a literature review of compounds that have been examined for effects on the developing nervous system was conducted. The search was limited to mammalian studies published in the peer-reviewed literature and regulatory studies submitted to the U.S. EPA. The definition of developmental neurotoxicity encompassed changes in behavior, brain morphology, and neurochemistry after gestational or lactational exposure. Reports that indicated developmental neurotoxicity was observed only at doses that resulted in significant maternal toxicity or were lethal to the fetus or offspring were not considered. As a basic indication of reproducibility, we only included a chemical if data on its developmental neurotoxicity were available from more than one laboratory (defined as studies originating from laboratories with a different senior investigator). Evidence from human studies was included when available. Approximately 100 developmental neurotoxicity test set chemicals were identified, with 22% having evidence in humans.
Collapse
Affiliation(s)
- William R Mundy
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Stephanie Padilla
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Joseph M Breier
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kevin M Crofton
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mary E Gilbert
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David W Herr
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Karl F Jensen
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nicholas M Radio
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kathleen C Raffaele
- Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC, USA
| | | | - Timothy J Shafer
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - John Cowden
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
9
|
|
10
|
Chen JH, Lee DC, Chen MS, Ko YC, Chiu IM. Inhibition of Neurosphere Formation in Neural Stem/Progenitor Cells by Acrylamide. Cell Transplant 2015; 24:779-96. [DOI: 10.3727/096368913x676925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous studies showed that transplantation of cultured neural stem/progenitor cells (NSPCs) could improve functional recovery for various neurological diseases. This study aims to develop a stem cell-based model for predictive toxicology of development in the neurological system after acrylamide exposure. Treatment of mouse (KT98/F1B-GFP) and human (U-1240 MG/F1B-GFP) NSPCs with 0.5 mM acrylamide resulted in the inhibition of neurosphere formation (definition of self-renewal ability in NSPCs), but not inhibition of cell proliferation. Apoptosis and differentiation of KT98 (a precursor of KT98/F1B-GFP) and KT98/F1B-GFP are not observed in acrylamide-treated neurospheres. Analysis of secondary neurosphere formation and differentiation of neurons and glia illustrated that acrylamide-treated KT98 and KT98/F1B-GFP neurospheres retain the NSPC properties, such as self-renewal and differentiation capacity. Correlation of acrylamide-inhibited neurosphere formation with cell-cell adhesion was observed in mouse NSPCs by live cell image analysis and the presence of acrylamide. Protein expression levels of cell adhesion molecules [neural cell adhesion molecule (NCAM) and N-cadherin] and extracellular signal-regulated kinases (ERK) in acrylamide-treated KT98/F1B-GFP and U-1240 MG/F1B-GFP neurospheres demonstrated that NCAM decreased and phospho-ERK (pERK) increased, whereas expression of N-cadherin remained unchanged. Analysis of AKT (protein kinase B, PKB)/β-catenin pathway showed decrease in phospho-AKT (p-AKT) and cyclin D1 expression in acrylamide-treated neurospheres of KT98/F1B-GFP. Furthermore, PD98059, an ERK phosphorylation inhibitor, attenuated acrylamide-induced ERK phosphorylation, indicating that pERK contributed to the cell proliferation, but not in neurosphere formation in mouse NSPCs. Coimmunoprecipitation results of KT98/F1B-GFP cell lysates showed that the complex of NCAM and fibroblast growth factor receptor 1 (FGFR1) is present in the neurosphere, and the amount of this complex decreases after acrylamide treatment. Our results reveal that acrylamide inhibits neurosphere formation through the disruption of the neurosphere architecture in NSPCs. The downregulation of cell-cell adhesion resulted from decreasing the levels of NCAM as well as the formation of NCAM/ FGFR complex.
Collapse
Affiliation(s)
- Jong-Hang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Don-Ching Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Shu Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Centre, China Medical University Hospital, Taichung, Taiwan
| | - Ing-Ming Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Hazardous effects of fried potato chips on the development of retina in albino rats. Asian Pac J Trop Biomed 2015; 1:253-60. [PMID: 23569770 DOI: 10.1016/s2221-1691(11)60038-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/20/2011] [Accepted: 04/10/2011] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To evaluate the hazardous effects of fried potato chips upon the retina of two developmental stages of the albino rats aged 7 and 14 days from parturition. METHODS PREGNANT RATS WERE ARRANGED INTO TWO GROUPS: control pregnant rats and consequently their delivered newborns until reaching 7 and 14 days old from parturition and fried potato chips group in which pregnant rats at the 6th day of gestation maintained on diet formed of fried potato chips supplied from the market mixed with standard diet at a concentration of 50% per each till 7 and 14 post-partum. Three fold integrated approaches were adopted, namely, histological, ultrastructural and proteomic analysis. RESULTS Histological examination of the retina of the experimental offsprings revealed many histopathological changes, including massive degeneration, vacuolization and cell loss in the ganglion cell layer, as well as general reduction in retinal size. At the ultrastructural level, the retina of experimental offsprings exhibited number of deformities, including ill differentiated and degenerated nuclear layer, malformed and vacuolated pigment epithelium with vesiculated and fragmented rough endoplasmic reticulum, degenerated outer segment of photoreceptors, as well as swollen choriocapillaris and loss of neuronal cells. Proteomic analysis of retina of the two experimental developmental stages showed variations in the expressed proteins as a result of intoxication which illustrated the adverse toxic effects of fried potato chips upon the retina. CONCLUSIONS It can be concluded that the effect of fried potato chips on the development of retina in rats may be due to the presence of acrylamide or its metabolite.
Collapse
|
12
|
Chen JH, Lee DC, Chiu IM. Cytotoxic effects of acrylamide in nerve growth factor or fibroblast growth factor 1-induced neurite outgrowth in PC12 cells. Arch Toxicol 2013; 88:769-80. [PMID: 24318646 DOI: 10.1007/s00204-013-1174-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/20/2013] [Indexed: 12/26/2022]
Abstract
Acrylamide is a neurological and reproductive toxicant in humans and laboratory animals; however, the neuron developmental toxicity of acrylamide remains unclear. The aims of this study are to investigate the cytotoxicity and neurite outgrowth inhibition of acrylamide in nerve growth factor (NGF)- or fibroblast growth factor 1 (FGF1)-mediated neural development of PC12 cells. MTS assay showed that acrylamide treatment suppresses NGF- or FGF1-induced PC12 cell proliferation in a time- and dose-dependent manner. Quantification of neurite outgrowth demonstrated that 0.5 mM acrylamide treatment resulted in significant decrease in differentiation of NGF- or FGF1-stimulated PC12 cells. This decrease is accompanied with the reduced expression of growth-associated protein-43, a neuronal marker. Moreover, relative levels of pERK, pAKT, pSTAT3 and pCREB were increased within 5-10 min when PC12 cells were treated with NGF or FGF1. Acrylamide (0.5 mM) decreases the NGF-induced activation of AKT-CREB but not ERK-STAT3 within 20 min. Similarly, acrylamide (0.5 mM) decreases the FGF1-induced activation of AKT-CREB within 20 min. In contrast to the NGF treatment, the ERK-STAT3 activation that was induced by FGF1 was slightly reduced by 0.5 mM acrylamide. We further showed that PI3K inhibitor (LY294002), but not MEK inhibitor (U0126), could synergize with acrylamide (0.5 mM) to reduce the cell viability and neurite outgrowth in NGF- or FGF1-stimulated PC12 cells. Moreover, acrylamide (0.5 mM) increased reactive oxygen species (ROS) activities in NGF- or FGF1-stimulated PC12 cells. This increase was reversed by Trolox (an ROS scavenging agent) co-treatment. Together, our findings reveal that NGF- or FGF1-stimulation of the neuronal differentiation of PC12 cells is attenuated by acrylamide through the inhibition of PI3K-AKT-CREB signaling, along with the production of ROS.
Collapse
Affiliation(s)
- Jong-Hang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, 35, Keyan Rd, Miaoli, 350, Taiwan
| | | | | |
Collapse
|
13
|
El-Bakry AM, Abdul-Hamid M, Allam A. Prenatal and perinatal exposure of acrylamide disrupts the development of spinal cord in rats. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/wjns.2013.31003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Allam AA, Abo-Eleneen RE. The development of sensorimotor reflexes in albino mice; albino rats and black-hooded rats. Int J Dev Neurosci 2012; 30:545-53. [PMID: 22926001 DOI: 10.1016/j.ijdevneu.2012.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 08/12/2012] [Accepted: 08/12/2012] [Indexed: 12/13/2022] Open
Abstract
The present investigation aimed to show the differences in the development of sensorimotor reflexes and their relationship to the structural changes in spinal cord, cerebellum and cerebral cortex in three rodent species. The three species are albino rats (A-Rats), black-hooded rats (B-Rats) and albino mice. The development of selected reflexes was examined from day (D1) to D21. The structural changes were investigated at D7, D14, and D21. The following reflexes were analyzed: fore-limb/hind-limb grasp, surface body righting, fore-limb hopping, chin tactile placing, visual placing and body righting in the air. The developmental pattern of the reflexes was different in three rodent species. Although the black-hooded rats and albino rats belong to the same species, they are different in their appearance and developmental pattern. The development of external features and sensorimotor reflexes appeared earlier in mice than in A-Rats and B-Rats. At D7, differentiation of neurons was observed in the spinal cord while in cerebellum and cerebrum the neurons were found to be undifferentiated. At D14 and D21, the differentiated neurons were observed in spinal cord, cerebellum and cerebrum. Our data indicate that the developmental pattern of the reflexes in rodents may not be species specific but may be related to the animal strain.
Collapse
Affiliation(s)
- Ahmed A Allam
- King Saud University, College of Science, Zoology Department, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | | |
Collapse
|
15
|
Structural and ultrastructural evidence of neurotoxic effects of fried potato chips on rat postnatal development. Nutrition 2012; 27:1066-75. [PMID: 21907898 DOI: 10.1016/j.nut.2011.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Acrylamide (ACR), a proved rodent carcinogen and neurotoxic agent, is present in significant quantities in commonly consumed foods such as fried potato chips (FPC) and French fries, raising a health concern worldwide. We investigated and compared the neurotoxic effects of ACR and FPC on postnatal development. METHODS Female rats were treated with ACR (30 mg/kg of body weight), fed a diet containing approximately 30% of FPC during pregnancy, or fed a standard diet (control) and their offspring were examined. RESULTS Female rats treated with ACR or fed a diet containing FPC during pregnancy gave birth to litters with delayed growth and decreased body and brain weights. Light microscopic studies of the cerebellar cortex of treated animals revealed drastic decreases in Purkinje cells and internal granular layers. Different patterns of cell death were detected in Purkinje cells and neurons in the brains of pups born to treated mothers. Ultrastructural analysis of Purkinje cells revealed changes in the endoplasmic reticulum, loss of the normal arrangement of polyribosomes, swollen mitochondria with abnormally differentiated cristae, and an abnormal Golgi apparatus. The gastrocnemius muscle in the ACR and FPC groups showed extensive degeneration of myofibrils as evidenced by poorly differentiated A, H, and Z bands. CONCLUSION The present study reveals for the first time that rat fetal exposure to ACR, as a pure compound or from a maternal diet of FPC, causes cerebellar cortical defects and myodegeneration of the gastrocnemius muscle during the postnatal development of pups. These results warrant a systematic study of the health effects of the consumption of FPC and French fries in the general population.
Collapse
|
16
|
Seale SM, Feng Q, Agarwal AK, El-Alfy AT. Neurobehavioral and transcriptional effects of acrylamide in juvenile rats. Pharmacol Biochem Behav 2011; 101:77-84. [PMID: 22197712 DOI: 10.1016/j.pbb.2011.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/30/2011] [Accepted: 12/10/2011] [Indexed: 01/10/2023]
Abstract
Acrylamide is a type-2 alkene monomer with established human neurotoxic effects. While the primary source of human exposure to acrylamide is occupational, other exposure sources include food, drinking water, and smoking. In this study, neurobehavioral assays coupled with transcriptional profiling analysis were conducted to assess both behavioral and gene expression effects induced by acrylamide neurotoxicity in juvenile rats. Acrylamide administration in rat pups induced significant characteristic neurotoxic symptoms including increased heel splay, decrease in grip strength, and decrease in locomotor activity. Transcriptome analysis with the Affymetrix Rat Genome 230 2.0 array indicated that acrylamide treatment caused a significant alteration in the expression of a few genes that are involved in muscle contraction, pain, and dopaminergic neuronal pathways. First, expression of the Mylpf gene involved in muscle contraction was downregulated in the spinal cord in response to acrylamide. Second, in sciatic nerves, acrylamide repressed the expression of the opioid receptor gene Oprk1 that is known to play a role in neuropathic pain regulation. Finally, in the cerebellum, acrylamide treatment caused a decrease in the expression of the nuclear receptor gene Nr4a2 that is required for development of dopaminergic neurons. Thus, our work examining the effect of acrylamide at the whole-genome level on a developmental mammalian model has identified a few genes previously not implicated in acrylamide neurotoxicity that might be further developed into biomarkers for assessing the risk of adverse health effects induced by acrylamide exposure.
Collapse
Affiliation(s)
- Suzanne M Seale
- Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | | | | |
Collapse
|
17
|
Hirvonen T, Jestoi M, Tapanainen H, Valsta L, Virtanen SM, Sinkko H, Kronberg-Kippilä C, Kontto J, Virtamo J, Simell O, Peltonen K. Dietary acrylamide exposure among Finnish adults and children: the potential effect of reduction measures. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:1483-91. [PMID: 21762033 DOI: 10.1080/19440049.2011.593559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A deterministic exposure assessment using the Nusser method that adjusts for within-subject variation and for nuisance effects among Finnish children and adults was carried out. The food consumption data covered 2038 adults (25-74 years old) and 1514 children of 1, 3 and 6 years of age, with the data on foods' acrylamide content obtained from published Finnish studies. We found that acrylamide exposure was highest among the 3-year-old children (median = 1.01 µg kg(-1) bw day(-1), 97.5th percentile = 1.95 µg kg(-1) bw day(-1)) and lowest among 65-74-year-old women (median = 0.31 µg kg(-1) bw day(-1), 97.5th percentile = 0.69 µg kg(-1) bw day(-1)). Among adults, the most important source of acrylamide exposure was coffee, followed by casseroles rich in starch, then rye bread. Among children, the most important sources were casseroles rich in starch and then biscuits and, finally, chips and other fried potatoes. Replacing lightly roasted coffee with dark-roasted, swapping sweet wheat buns for biscuits, and decreasing the acrylamide content of starch-based casseroles and rye bread by 50% would result in a 50% decrease in acrylamide exposure in adults. Among children, substituting boiled potatoes for chips and other friend potatoes and replacing biscuits with sweet wheat buns while lowering the acrylamide content of starch-based casseroles by 50% would lead to acrylamide exposure that is only half of the original exposure. In conclusions, dietary modifications could have a large impact in decreasing acrylamide exposure.
Collapse
Affiliation(s)
- T Hirvonen
- Finnish Food Safety Authority, Risk Assessment Unit, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Takami S, Imai T, Cho YM, Ogawa K, Hirose M, Nishikawa A. Juvenile rats do not exhibit elevated sensitivity to acrylamide toxicity after oral administration for 12 weeks. J Appl Toxicol 2011; 32:959-67. [DOI: 10.1002/jat.1686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Shigeaki Takami
- Division of Pathology; National Institute of Health Sciences; 1-18-1 Kamiyoga, Setagaya-ku; Tokyo; 158-8501; Japan
| | | | - Young-Man Cho
- Division of Pathology; National Institute of Health Sciences; 1-18-1 Kamiyoga, Setagaya-ku; Tokyo; 158-8501; Japan
| | - Kumiko Ogawa
- Division of Pathology; National Institute of Health Sciences; 1-18-1 Kamiyoga, Setagaya-ku; Tokyo; 158-8501; Japan
| | - Masao Hirose
- Division of Pathology; National Institute of Health Sciences; 1-18-1 Kamiyoga, Setagaya-ku; Tokyo; 158-8501; Japan
| | - Akiyoshi Nishikawa
- Division of Pathology; National Institute of Health Sciences; 1-18-1 Kamiyoga, Setagaya-ku; Tokyo; 158-8501; Japan
| |
Collapse
|
19
|
Zhang MA, Chen FH, Huang ZY, Zhang XC. Elaidic acid enhanced the simultaneous neurotoxicity attributable to the cerebral pathological lesion resulted from oxidative damages induced by acrylamide and benzo(a)pyrene. Toxicol Ind Health 2011; 27:661-72. [PMID: 21511896 DOI: 10.1177/0748233710393399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Acrylamide (ACR), benzopyrene [B(a)P] and trans-fatty acids (TFA) could be found to co-exist in many foods processed by high temperature. Our study investigated the effects of elaidic acid (ELA), a predominant TFA, on neuropathology induced by simultaneous exposure of ACR and B(a)P to mice. Results showed ELA enhanced the decrease of weight gains induced by simultaneous exposure of ACR and B(a)P (AB). Moreover, ELA enhanced ACR-induced increase of gait abnormality, B(a)P-induced damage to learning and memory, and AB-induced both of the damage above. Meanwhile, ELA enhanced B(a)Pinduced axonal degeneration in hippocamp, ACR- and AB-induced up-regulating of abnormal cerebellar Purkinje cells. ELA enhanced ACR-induced up-regulating of MDA in cerebrum and 8-OHdG in cerebrum and cerebellum; ELA enhanced B(a)P-induced up-regulating of MDA in cerebrum, PCO in cerebellum and 8-OHdG in cerebrum and cerebellum. Meanwhile, the enhancing role of ELA, on ACR-induced reduction of SOD activity in cerebrum and cerebellum, on B(a)P-induced reduction of GPx activity in cerebrum were found. Results suggested that ELA play a enhancing role on ACR-induced and B(a)P-induced oxidative damage, which attributable to the cerebral pathological lesion, and subsequent effect on gait abnormality and deficit on learning and memory in mice.
Collapse
Affiliation(s)
- M A Zhang
- Bio-tech Engineering College, Jimei University, Xiamen, Fujian, China
| | | | | | | |
Collapse
|
20
|
Allam A, El-Ghareeb AA, Abdul-Hamid M, Baikry A, Sabri MI. Prenatal and perinatal acrylamide disrupts the development of cerebellum in rat: Biochemical and morphological studies. Toxicol Ind Health 2011; 27:291-306. [DOI: 10.1177/0748233710386412] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acrylamide is known to cause neurotoxicity in the experimental animals and humans. The literature on its neurotoxic effect in the adult animals is huge, but the effect of acrylamide on the embryonic and postnatal development is relatively less understood. The present study examined its effects on the development of external features and cerebellum in albino rats. Acrylamide was orally administered to non-anesthetized pregnant females by gastric intubation 10 mg/kg/day. The animals were divided into three groups as follows. (1) Group A, newborn from control animals; (2) Group B; newborns from mothers treated with acrylamide from day 7 (D7) of gestation till birth (prenatal intoxicated group); (3) Group C; newborns from mothers treated with acrylamide from D7 of gestation till D28 after birth (perinatally intoxicated group). Acrylamide administered either prenatally or perinatally has been shown to induce significant retardation in the newborns’ body weights development, increase of thiobarbituric acid-reactive substances (TBARS) and oxidative stress (significant reductions in glutathione reduced [GSH], total thiols, superoxide dismutase [SOD] and peroxidase activities) in the developing cerebellum. Acrylamide treatment delayed the proliferation in the granular layer and delayed both cell migration and differentiation. Purkinje cell loss was also seen in acrylamide-treated animals. Ultrastructural studies of Purkinje cells in the perinatal group showed microvacuolations and cell loss. The results of this study show that prenatal and perinatal acrylamide or its metabolites disrupts the biochemical machinery, cause oxidative stress and induce structural changes in the developing rat cerebellum.
Collapse
Affiliation(s)
- A. Allam
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt,
| | - AA El-Ghareeb
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - M. Abdul-Hamid
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A. Baikry
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - MI Sabri
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland Oregon, USA
| |
Collapse
|
21
|
Preweaning behaviors, developmental landmarks, and acrylamide and glycidamide levels after pre- and postnatal acrylamide treatment in rats. Neurotoxicol Teratol 2010; 32:373-82. [PMID: 20117204 DOI: 10.1016/j.ntt.2010.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/12/2010] [Accepted: 01/24/2010] [Indexed: 01/17/2023]
Abstract
At high levels of exposure, acrylamide monomer (AA) is a known neurotoxicant (LoPachin, 2004 [23]). The effects of lower levels of exposure, such as those experienced via a typical human diet, have not been widely investigated. Data at these levels are particularly relevant given the widespread human exposure through carbohydrate-containing foods cooked at high temperatures. Additionally, daily AA intake is estimated to be higher for infants and children. Earlier, we described behavioral alterations in preweaning rats resulting from developmental AA treatment (0.5-10.0mg/kg/day) (Garey et al., 2005 [14]). In the present study, the effects of lower doses were measured as well as serum AA and glycidimide (GA) levels in dams, fetuses, and young pups. Pregnant Fischer 344 dams (n=48-58/treatment group) were gavaged with 0.0, 0.1, 0.3, 1.0, or 5.0mg AA/kg/day beginning on gestational day 6 and ending on the day of parturition. Beginning on postnatal day 1 (PND 1) and continuing through PND 21, all pups/litter were gavaged with the same dose as their dam. There were no AA treatment effects on offspring fur development, pinnae detachment, or eye opening. Offspring body weight was somewhat decreased by 5.0mg/kg/day, particularly in males. However, righting reflex (PNDs 4-7), slant board (i.e., negative geotaxis) (PNDs 8-10), forelimb hang (PNDs 12-16), and rotarod behavior (PNDs 21-22) were not significantly altered by AA treatment. Male and female offspring of the 5.0mg/kg/day group were 30-49% less active in the open field at PNDs 19-20 (p<0.05). Serum AA levels of GD20 dams and their fetuses were comparable, indicating the ability of AA to cross the placental barrier. AA levels of pups were not affected by age (PND 1 and 22) or sex. In all rats, serum AA and GA levels exhibited a dose-response relationship. These data extend those of our previous study (Garey et al., 2005 [14]) and demonstrate that overt preweaning neurobehavioral effects are apparent in rats exposed to acrylamide pre- and postnatally, but only at the highest doses tested.
Collapse
|
22
|
Chen JH, Wu KY, Chiu IM, Tsou TC, Chou CC. Acrylamide-induced astrogliotic and apoptotic responses in human astrocytoma cells. Toxicol In Vitro 2009; 23:855-61. [DOI: 10.1016/j.tiv.2009.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 04/09/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
|
23
|
Lee HM, Greeley GH, Englander EW. Sustained hypoxia modulates mitochondrial DNA content in the neonatal rat brain. Free Radic Biol Med 2008; 44:807-14. [PMID: 18078825 PMCID: PMC2730834 DOI: 10.1016/j.freeradbiomed.2007.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 10/18/2007] [Accepted: 11/05/2007] [Indexed: 12/13/2022]
Abstract
The effects of placental insufficiency and preterm birth on neurodevelopment can be modeled in experimental settings of neonatal hypoxia in rodents. Here, rat pups were reared in reduced oxygen (9.5%) for 11 days, starting on postnatal day 3 (P3). This led to a significant reduction in brain and body weight gain in hypoxic pups compared to age-matched normoxia-reared controls, plausibly reflecting an inability to fulfill the energetic needs of normal growth and development. Adaptive processes designed to augment energetic capacity in eukaryotes include stimulation of mitochondrial biogenesis. We show that after 11 days of sustained hypoxia, the levels of nuclear respiratory factor-1 and mitochondrial transcription factor A are elevated and the content of mitochondrial DNA (mtDNA) is greater in the hypoxic P14 pup brain compared to normoxic conditions. Corresponding immunohistochemical analyses reveal increased density of mtDNA in large cortical neurons. In contrast, no changes in mtDNA content are observed in the brain of pups reared for 24 h (P3-P4) under hypoxic conditions. Together, these data suggest that prolonged inadequate oxygenation may trigger a compensatory increase in neuronal mitochondrial DNA content to partially mitigate compromised energy homeostasis and reduced energetic capacity in the developing hypoxic brain.
Collapse
Affiliation(s)
- Heung M Lee
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Shriners Hospitals for Children, Galveston, Texas
| | - George H Greeley
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Ella W Englander
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Shriners Hospitals for Children, Galveston, Texas
| |
Collapse
|
24
|
Takahashi M, Shibutani M, Inoue K, Fujimoto H, Hirose M, Nishikawa A. Pathological assessment of the nervous and male reproductive systems of rat offspring exposed maternally to acrylamide during the gestation and lactation periods - a preliminary study. J Toxicol Sci 2008; 33:11-24. [DOI: 10.2131/jts.33.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Miwa Takahashi
- Division of Pathology, National Institute of Health Sciences
| | - Makoto Shibutani
- Division of Pathology, National Institute of Health Sciences
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Kaoru Inoue
- Division of Pathology, National Institute of Health Sciences
| | | | - Masao Hirose
- Division of Pathology, National Institute of Health Sciences
- Food Safety Commission
| | | |
Collapse
|
25
|
Garey J, Paule MG. Effects of chronic low-dose acrylamide exposure on progressive ratio performance in adolescent rats. Neurotoxicology 2007; 28:998-1002. [PMID: 17720246 DOI: 10.1016/j.neuro.2007.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 07/12/2007] [Accepted: 07/17/2007] [Indexed: 11/18/2022]
Abstract
Acrylamide (ACR) is a neurotoxicant known to produce peripheral neuropathy in rats and humans, but little is known of its potential for producing cognitive or motivational alterations. Chronic exposure to low doses of ACR as a food contaminant is known to occur widely in humans. This research evaluated the effects of daily ACR exposure on food-motivated behavior, with exposures beginning prenatally on gestation day 6 and continuing through approximately postnatal day (PND) 85. Plug-positive Fischer 344 dams (9-10 per dose) were gavaged daily with 0, 0.1, 0.3, 1.0 or 5.0mg/kg/day ACR. On PNDs 1-22, pups were gavaged with the same dose their dam had received. On PND 22, pups were weaned and pair-housed with a same-sex littermate and ACR exposure continued at 0, 1, 3, 10 and 50ppm via drinking water. One male and one female pup per litter were tested in an operant chamber under a progressive ratio (PR) schedule of food reinforcement from approximately 6 to 12 weeks of age. Results over 6 weeks of testing indicated a significant treatment effect of ACR on number of reinforcers earned, with Tukey HSD post hoc tests revealing significantly fewer reinforcers earned in the 5.0mg/kg/day dose group than in controls. A significant effect of ACR on response rate was also observed, with the Tukey HSD post hoc tests revealing a significantly lower response rate in the 5.0mg/kg/day group than in controls. No effects of ACR were observed on post-reinforcement pause. These data suggest that daily ACR exposure at 5.0mg/kg/day can produce measurable decrements on aspects of food-motivated behavior.
Collapse
Affiliation(s)
- Joan Garey
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, 3900 NCTR Road, HFT-132, Jefferson, AR 72079, USA.
| | | |
Collapse
|
26
|
Crofton KM, Foss JA, Hass U, Jensen KF, Levin ED, Parker SP. Undertaking positive control studies as part of developmental neurotoxicity testing: a report from the ILSI Research Foundation/Risk Science Institute expert working group on neurodevelopmental endpoints. Neurotoxicol Teratol 2007; 30:266-87. [PMID: 17681747 DOI: 10.1016/j.ntt.2007.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 04/26/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
Developmental neurotoxicity testing involves functional and neurohistological assessments in offspring during and following maternal and/or neonatal exposure. Data from positive control studies are an integral component in developmental neurotoxicity risk assessments. Positive control data are crucial for evaluating a laboratory's capability to detect chemical-induced changes in measured endpoints. Positive control data are also valuable in a weight-of-evidence approach to help determine the biological significance of results and provide confidence in negative results from developmental neurotoxicity (DNT) studies. This review is a practical guide for the selection and use of positive control agents in developmental neurotoxicology. The advantages and disadvantages of various positive control agents are discussed for the endpoints in developmental neurotoxicity studies. Design issues specific to positive control studies in developmental neurotoxicity are considered and recommendations on how to interpret and report positive control data are made. Positive control studies should be conducted as an integral component of the incorporation and use of developmental neurotoxicity testing methods in laboratories that generate data used in risk decisions.
Collapse
Affiliation(s)
- Kevin M Crofton
- Neurotoxicology Division, NHEERL, ORD, US EPA, Research Triangle Park, NC, USA.
| | | | | | | | | | | |
Collapse
|