1
|
Yan R, Dai W, Mao Y, Yu G, Li W, Shu M, Xu B. Melittin inhibits tumor cell migration and enhances cisplatin sensitivity by suppressing IL-17 signaling pathway gene LCN2 in castration-resistant prostate cancer. Prostate 2023; 83:1430-1445. [PMID: 37517867 DOI: 10.1002/pros.24605] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Melittin is a small molecule polypeptide extracted from the abdominal cavity of bees, which is used to treat inflammatory diseases and relieve pain. However, the antitumor effect of melittin and its mechanisms remain unclear, especially in castration-resistant prostate cancer (CRPC). METHODS Through CCK-8 assay, colony formation assay, wound healing assay and Transwell migration assay, we explored the effect of melittin on CRPC cell lines. In addition, with microarray analysis, gene ontology analysis and kyoto encyclopedia of genes and genomes analysis, this study identified key genes and signaling pathways that influence the growth of PC-3 cells. Meanwhile, the effect of melittin on CRPC was also verified through subcutaneous tumor formation experiments. Finally, we also tested the relevant indicators of human prostate cancer (PCa) specimens through immunohistochemistry and H&E stating. RESULTS Here, melittin was verified to inhibit the cell proliferation and migration of CPRC. Moreover, RNA-sequence analysis demonstrated that Interleukin-17 (IL-17) signaling pathway gene Lipocalin-2 (LCN2) was downregulated by melittin treatment in CRPC. Further investigation revealed that overexpression of LCN2 was able to rescue tumor suppression and cisplatin sensitivity which melittin mediated. Interestingly, the expression of LCN2 is highly related to metastasis in PCa. CONCLUSIONS In brief, our study indicates that LCN2 plays an oncogenic role in CRPC and melittin may be selected as an attractive candidate for CRPC therapy.
Collapse
Affiliation(s)
- Rucheng Yan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Weiwei Dai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yuanshen Mao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Wenfeng Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
2
|
Trevino-Garrison I, DeMent J, Ahmed FS, Haines-Lieber P, Langer T, Ménager H, Neff J, van der Merwe D, Carney E. Human illnesses and animal deaths associated with freshwater harmful algal blooms-Kansas. Toxins (Basel) 2015; 7:353-66. [PMID: 25647780 PMCID: PMC4344628 DOI: 10.3390/toxins7020353] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/21/2015] [Indexed: 11/16/2022] Open
Abstract
Freshwater harmful algal bloom (FHAB) toxins can cause morbidity and mortality in both humans and animals, and the incidence of FHABs in the United States and Kansas has increased. In 2010, the Kansas Department of Health and Environment (KDHE) developed a FHAB policy and response plan. We describe the epidemiology of FHAB-associated morbidity and mortality in humans and animals in Kansas. Healthcare providers and veterinarians voluntarily reported FHAB-associated cases to KDHE. An investigation was initiated for each report to determine the source of exposure and to initiate public health mitigation actions. There were 38 water bodies with a confirmed FHAB in 2011. There were 34 reports of human and animal FHAB-associated health events in 2011, which included five dog deaths and hospitalization of two human case patients. Five confirmed human illnesses, two dog illnesses and five dog deaths were associated with one lake. Four human and seven dog cases were exposed to the lake after a public health alert was issued. Public health officials and FHAB partners must ensure continued awareness of the risks to the public, educate healthcare providers and veterinarians on FHAB-related health events and encourage timely reporting to public health authorities.
Collapse
Affiliation(s)
- Ingrid Trevino-Garrison
- Kansas Department of Health and Environment, 1000 SW Jackson Street, Suite 075, Topeka, KS 66612, USA.
| | - Jamie DeMent
- Florida Department of Health, 4052 Bald Cypress Way, Tallahassee, FL 32399, USA.
| | - Farah S Ahmed
- Kansas Department of Health and Environment, 1000 SW Jackson Street, Suite 075, Topeka, KS 66612, USA.
| | - Patricia Haines-Lieber
- Kansas Department of Health and Environment, 1000 SW Jackson Street, Suite 075, Topeka, KS 66612, USA.
| | - Thomas Langer
- Kansas Department of Health and Environment, 1000 SW Jackson Street, Suite 075, Topeka, KS 66612, USA.
| | - Henri Ménager
- Kansas Department of Health and Environment, 1000 SW Jackson Street, Suite 075, Topeka, KS 66612, USA.
| | - Janet Neff
- Kansas Department of Health and Environment, 1000 SW Jackson Street, Suite 075, Topeka, KS 66612, USA.
| | - Deon van der Merwe
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Edward Carney
- Kansas Department of Health and Environment, 1000 SW Jackson Street, Suite 075, Topeka, KS 66612, USA.
| |
Collapse
|
3
|
Hudnell HK. The state of U.S. freshwater harmful algal blooms assessments, policy and legislation. Toxicon 2010; 55:1024-34. [PMID: 19646465 DOI: 10.1016/j.toxicon.2009.07.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 07/08/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
|
4
|
Abstract
There is compelling evidence that various chemical agents are important determinants of myriad health afflictions--several xenobiotics have the potential to disrupt reproductive, developmental, and neurological processes and some agents in common use have carcinogenic, epigenetic, endocrine-disrupting, and immune-altering action. Some toxicants appear to have biological effect at miniscule levels and certain chemical compounds are persistent and bioaccumulative within the human body. Despite escalating public health measures to preclude further exposures, many people throughout the world have already accrued a significant body burden of toxicants, placing them at potential health risk. As a result, increasing discussion is underway about possible interventions to facilitate elimination of persistent toxicants from the human organism in order to obviate health affliction and to potentially ameliorate chronic degenerative illness. An overview of the clinical aspects of detoxification is presented with discussion of established and emerging interventions for the elimination of persistent xenobiotics. Potential therapies to circumvent enterohepatic recirculation and a case report highlighting a clinical outcome associated with detoxification are also presented for consideration.
Collapse
Affiliation(s)
- Stephen J Genuis
- University of Alberta, 2935-66 Street, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Hudnell HK, Dortch Q, Zenick H. An overview of the interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB): advancing the scientific understanding of freshwater harmful algal blooms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 619:1-16. [PMID: 18461763 DOI: 10.1007/978-0-387-75865-7_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is growing evidence that the spatial and temporal incidence of harmful algal blooms is increasing, posing potential risks to human health and ecosystem sustainability. Currently there are no US Federal guidelines, Water Quality Criteria and Standards, or regulations concerning the management of harmful algal blooms. Algal blooms in freshwater are predominantly cyanobacteria, some of which produce highly potent cyanotoxins. The US Congress mandated a Scientific Assessment of Freshwater Harmful Algal Blooms in the 2004 reauthorization of the Harmful Algal Blooms and Hypoxia Research and Control Act. To further the scientific understanding of freshwater harmful algal blooms, the US Environmental Protection Agency (EPA) established an interagency committee to organize the Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB). A theoretical framework to define scientific issues and a systems approach to implement the assessment and management of cyanobacterial harmful algal blooms were developed as organizing themes for the symposium. Seven major topic areas and 23 subtopics were addressed in Workgroups and platform sessions during the symposium. The primary charge given to platform presenters was to describe the state of the science in the subtopic areas, whereas the Workgroups were charged with identifying research that could be accomplished in the short- and long-term to reduce scientific uncertainties. The proceedings of the symposium, published in this monograph, are intended to inform policy determinations and the mandated Scientific Assessment by describing the scientific knowledge and areas of uncertainty concerning freshwater harmful algal blooms.
Collapse
Affiliation(s)
- H Kenneth Hudnell
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711, USA.
| | | | | |
Collapse
|
6
|
Shoemaker RC, Lawson W. Pfiesteria in estuarine waters: the question of health risks. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:A126-7. [PMID: 17431460 PMCID: PMC1849899 DOI: 10.1289/ehp.115-1849899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
|
7
|
Sick building syndrome (SBS) and exposure to water-damaged buildings: time series study, clinical trial and mechanisms. Neurotoxicol Teratol 2006; 28:573-88. [PMID: 17010568 DOI: 10.1016/j.ntt.2006.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/27/2006] [Accepted: 07/31/2006] [Indexed: 10/24/2022]
Abstract
Occupants of water-damaged buildings (WDBs) with evidence of microbial amplification often describe a syndrome involving multiple organ systems, commonly referred to as "sick building syndrome" (SBS), following chronic exposure to the indoor air. Studies have demonstrated that the indoor air of WDBs often contains a complex mixture of fungi, mycotoxins, bacteria, endotoxins, antigens, lipopolysaccharides, and biologically produced volatile compounds. A case-series study with medical assessments at five time points was conducted to characterize the syndrome after a double-blinded, placebo-controlled clinical trial conducted among a group of study participants investigated the efficacy of cholestyramine (CSM) therapy. The general hypothesis of the time series study was that chronic exposure to the indoor air of WDBs is associated with SBS. Consecutive clinical patients were screened for diagnosis of SBS using criteria of exposure potential, symptoms involving at least five organ systems, and the absence of confounding factors. Twenty-eight cases signed voluntary consent forms for participation in the time-series study and provided samples of microbial contaminants from water-damaged areas in the buildings they occupied. Twenty-six participants with a group-mean duration of illness of 11 months completed examinations at all five study time points. Thirteen of those participants also agreed to complete a double-blinded, placebo-controlled clinical trial. Data from Time Point 1 indicated a group-mean of 23 out of 37 symptoms evaluated; and visual contrast sensitivity (VCS), an indicator of neurological function, was abnormally low in all participants. Measurements of matrix metalloproteinase 9 (MMP9), leptin, alpha melanocyte stimulating hormone (MSH), vascular endothelial growth factor (VEGF), immunoglobulin E (IgE), and pulmonary function were abnormal in 22, 13, 25, 14, 1, and 7 participants, respectively. Following 2 weeks of CSM therapy to enhance toxin elimination rates, measurements at Time Point 2 indicated group-means of 4 symptoms with 65% improvement in VCS at mid-spatial frequency-both statistically significant improvements relative to Time Point 1. Moderate improvements were seen in MMP9, leptin, and VEGF serum levels. The improvements in health status were maintained at Time Point 3 following a 2-week period during which CSM therapy was suspended and the participants avoid re-exposure to the WDBs. Participants reoccupied the respective WDBs for 3 days without CSM therapy, and all participants reported relapse at Time Point 4. The group-mean number of symptoms increased from 4 at Time Point 2 to 15 and VCS at mid-spatial frequency declined by 42%, both statistically significant differences relative to Time Point 2. Statistically significant differences in the group-mean levels of MMP9 and leptin relative to Time Point 2 were also observed. CSM therapy was reinstated for 2 weeks prior to assessments at Time Point 5. Measurements at Time Point 5 indicated group-means of 3 symptoms and a 69% increase in VCS, both results statistically different from those at Time Points 1 and 4. Optically corrected Snellen Distance Equivalent visual acuity scores did not vary significantly over the course of the study. Group-mean levels of MMP9 and leptin showed statistically significant improvement at Time Point 5 relative to Time Points 1 and 4, and the proportion of participants with abnormal VEGF levels was significantly lower at Time Point 5 than at Time Point 1. The number of participants at Time Point 5 with abnormal levels of MMP9, leptin, VEGF, and pulmonary function were 10, 10, 9, and 7, respectively. The level of IgE was not re-measured because of the low incidence of abnormality at Time Point 1, and MSH was not re-measured because previously published data indicated a long time course for MSH improvement. The results from the time series study supported the general study hypothesis that exposure to the indoor air of WDBs is associated with SBS. High levels of MMP9 indicated that exposure to the complex mixture of substances in the indoor air of the WDBs triggered a pro-inflammatory cytokine response. A model describing modes of action along a pathway leading to biotoxin-associated illness is presented to organize current knowledge into testable hypotheses. The model links an inflammatory response with tissue hypoxia, as indicated by abnormal levels of VEGF, and disruption of the proopiomelanocortin pathway in the hypothalamus, as evidenced by abnormalities in leptin and MSH levels. Results from the clinical trial on CSM efficacy indicated highly significant improvement in group-mean number of symptoms and VCS scores relative to baseline in the 7 participants randomly assigned to receive 2 weeks of CSM therapy, but no improvement in the 6 participants assigned placebo therapy during that time interval. However, those 6 participants also showed a highly significant improvement in group-mean number of symptoms and VCS scores relative to baseline following a subsequent 2-week period of CSM therapy. Because the only known benefit of CSM therapy is to enhance the elimination rates of substances that accumulate in bile by preventing re-absorption during enterohepatic re-circulation, results from the clinical trial also supported the general study hypothesis that SBS is associated with exposure to WDBs because the only relevant function of CSM is to bind and remove toxigenic compounds. Only research that focuses on the signs, symptoms, and biochemical markers of patients with persistent illness following acute and/or chronic exposure to WDBs can further the development of the model describing modes of action in the biotoxin-associated pathway and guide the development of innovative and efficacious therapeutic interventions.
Collapse
|
8
|
Camargo JA, Alonso A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. ENVIRONMENT INTERNATIONAL 2006; 32:831-49. [PMID: 16781774 DOI: 10.1016/j.envint.2006.05.002] [Citation(s) in RCA: 754] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 04/05/2006] [Accepted: 05/01/2006] [Indexed: 05/10/2023]
Abstract
We provide a global assessment, with detailed multi-scale data, of the ecological and toxicological effects generated by inorganic nitrogen pollution in aquatic ecosystems. Our synthesis of the published scientific literature shows three major environmental problems: (1) it can increase the concentration of hydrogen ions in freshwater ecosystems without much acid-neutralizing capacity, resulting in acidification of those systems; (2) it can stimulate or enhance the development, maintenance and proliferation of primary producers, resulting in eutrophication of aquatic ecosystems; (3) it can reach toxic levels that impair the ability of aquatic animals to survive, grow and reproduce. Inorganic nitrogen pollution of ground and surface waters can also induce adverse effects on human health and economy. Because reductions in SO2 emissions have reduced the atmospheric deposition of H2SO4 across large portions of North America and Europe, while emissions of NOx have gone unchecked, HNO3 is now playing an increasing role in the acidification of freshwater ecosystems. This acidification process has caused several adverse effects on primary and secondary producers, with significant biotic impoverishments, particularly concerning invertebrates and fishes, in many atmospherically acidified lakes and streams. The cultural eutrophication of freshwater, estuarine, and coastal marine ecosystems can cause ecological and toxicological effects that are either directly or indirectly related to the proliferation of primary producers. Extensive kills of both invertebrates and fishes are probably the most dramatic manifestation of hypoxia (or anoxia) in eutrophic and hypereutrophic aquatic ecosystems with low water turnover rates. The decline in dissolved oxygen concentrations can also promote the formation of reduced compounds, such as hydrogen sulphide, resulting in higher adverse (toxic) effects on aquatic animals. Additionally, the occurrence of toxic algae can significantly contribute to the extensive kills of aquatic animals. Cyanobacteria, dinoflagellates and diatoms appear to be major responsible that may be stimulated by inorganic nitrogen pollution. Among the different inorganic nitrogenous compounds (NH4+, NH3, NO2-, HNO2NO3-) that aquatic animals can take up directly from the ambient water, unionized ammonia is the most toxic, while ammonium and nitrate ions are the least toxic. In general, seawater animals seem to be more tolerant to the toxicity of inorganic nitrogenous compounds than freshwater animals, probably because of the ameliorating effect of water salinity (sodium, chloride, calcium and other ions) on the tolerance of aquatic animals. Ingested nitrites and nitrates from polluted drinking waters can induce methemoglobinemia in humans, particularly in young infants, by blocking the oxygen-carrying capacity of hemoglobin. Ingested nitrites and nitrates also have a potential role in developing cancers of the digestive tract through their contribution to the formation of nitrosamines. In addition, some scientific evidences suggest that ingested nitrites and nitrates might result in mutagenicity, teratogenicity and birth defects, contribute to the risks of non-Hodgkin's lymphoma and bladder and ovarian cancers, play a role in the etiology of insulin-dependent diabetes mellitus and in the development of thyroid hypertrophy, or cause spontaneous abortions and respiratory tract infections. Indirect health hazards can occur as a consequence of algal toxins, causing nausea, vomiting, diarrhoea, pneumonia, gastroenteritis, hepatoenteritis, muscular cramps, and several poisoning syndromes (paralytic shellfish poisoning, neurotoxic shellfish poisoning, amnesic shellfish poisoning). Other indirect health hazards can also come from the potential relationship between inorganic nitrogen pollution and human infectious diseases (malaria, cholera). Human sickness and death, extensive kills of aquatic animals, and other negative effects, can have elevated costs on human economy, with the recreation and tourism industry suffering the most important economic impacts, at least locally. It is concluded that levels of total nitrogen lower than 0.5-1.0 mg TN/L could prevent aquatic ecosystems (excluding those ecosystems with naturally high N levels) from developing acidification and eutrophication, at least by inorganic nitrogen pollution. Those relatively low TN levels could also protect aquatic animals against the toxicity of inorganic nitrogenous compounds since, in the absence of eutrophication, surface waters usually present relatively high concentrations of dissolved oxygen, most inorganic reactive nitrogen being in the form of nitrate. Additionally, human health and economy would be safer from the adverse effects of inorganic nitrogen pollution.
Collapse
Affiliation(s)
- Julio A Camargo
- Departamento de Ecología, Edificio de Ciencias, Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain.
| | | |
Collapse
|