1
|
Ceccarelli I, Bioletti L, Peparini S, Solomita E, Ricci C, Casini I, Miceli E, Aloisi AM. Estrogens and phytoestrogens in body functions. Neurosci Biobehav Rev 2021; 132:648-663. [PMID: 34890602 DOI: 10.1016/j.neubiorev.2021.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/23/2022]
Abstract
Estrogens are the hormones of reproduction in women as well as of many other important functions in the male and female body. They undergo significant changes in the different phases of life, e.g. during puberty, pregnancy or at menopause/andropause. Phytoestrogens are natural non-steroidal phenolic plant compounds that can mimic the activity of estrogens and their beneficial effects in women and in men. This narrative review summarizes the literature on the physiological role of estrogens and the several potential health benefits of phytoestrogens, with particular attention given to the possible role of phytoestrogens in aging.
Collapse
Affiliation(s)
- Ilaria Ceccarelli
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Lucia Bioletti
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Sofia Peparini
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Erminia Solomita
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Comasia Ricci
- Department Life Sciences, University of Siena, Siena, Italy
| | - Ilenia Casini
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Elisangela Miceli
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Anna Maria Aloisi
- Department Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| |
Collapse
|
2
|
Reed BD, McKee KS, Plegue MA, Park SK, Haefner HK, Harlow SD. Environmental Exposure History and Vulvodynia Risk: A Population-Based Study. J Womens Health (Larchmt) 2018; 28:69-76. [PMID: 30307787 DOI: 10.1089/jwh.2018.7188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Risk factors for vulvodynia continue to be elusive. We evaluated the association between past environmental exposures and the presence of vulvodynia. MATERIALS AND METHODS The history of 28 lifetime environmental exposures was queried in the longitudinal population-based Woman-to-Woman Health Study on the 24-month follow-up survey. Relationships between these and vulvodynia case status were assessed using multinomial logistic regression. RESULTS Overall, 1585 women completed the 24-month survey, the required covariate responses, and questions required for case status assessment. Screening positive as a vulvodynia case was associated with history of exposures to home-sprayed chemicals (insecticides, fungicides, herbicides-odds ratio [OR] 2.47, 95% confidence interval [CI] 1.71-3.58, p < 0.0001), home rodent poison and mothballs (OR 1.62, 95% CI 1.25-2.09, p < 0.001), working with solvents and paints (OR 2.49, 95% CI 1.68-3.70, p < 0.0001), working as a housekeeper/maid (OR 2.07, 95% CI 1.42-3.00, p < 0.0001), working as a manicurist/hairdresser (OR 2.00, 95% CI 1.14-3.53, p < 0.05), and working at a dry cleaning facility (OR 2.13, 95% CI 1.08-4.19, p < 0.05). When classified into nine individual environmental exposure categories and all included in the same model, significant associations remained for four categories (home-sprayed chemicals, home rodent poison or mothballs, paints and solvents, and working as a housekeeper). CONCLUSIONS This preliminary evaluation suggests a positive association between vulvodynia and the reported history of exposures to a number of household and work-related environmental toxins. Further investigation of timing and dose of environmental exposures, relationship to clinical course, and treatment outcomes is warranted.
Collapse
Affiliation(s)
- Barbara D Reed
- 1 Department of Family Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kimberly S McKee
- 2 Department of Obstetrics, Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Melissa A Plegue
- 1 Department of Family Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sung Kyun Park
- 3 Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Hope K Haefner
- 2 Department of Obstetrics, Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Sioban D Harlow
- 3 Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Ceccarelli I, Fiorenzani P, Della Seta D, Aloisi AM. Perinatal 17α-ethinylestradiol exposure affects formalin-induced responses in middle-aged male (but not female) rats. Horm Behav 2015; 73:116-24. [PMID: 26159286 DOI: 10.1016/j.yhbeh.2015.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/16/2015] [Accepted: 07/01/2015] [Indexed: 11/27/2022]
Abstract
17α-Ethinylestradiol (EE), the main component of the contraceptive pill, is a synthetic estrogen found in rivers of the United States and Europe as an environmental contaminant. It is one of the most studied xenoestrogens due to its possible effect on the reproductive system. In the present study we evaluated the modulation of pain responses induced by formalin injection (licking, flexing, paw-jerk) in 8-month-old male and female offspring of female rats treated with two different doses of EE (4ng/kg/day or 400ng/kg/day) during pregnancy and lactation. Spontaneous behaviors and gonadal hormone levels were also determined. Both concentrations of EE induced an increase of pain behaviors in males only, i.e. higher flexing and licking of the formalin-injected paw than in OIL-exposed rats, during the second, inflammatory, phase of the formalin test. Grooming duration was increased by EE exposure in both males and females. Prenatal EE exposure (both concentrations) decreased estradiol plasma levels in the formalin-injected females but not in the males. These results underline the possibility that exposure to an environmental contaminant during the critical period of development can affect neural processes (such as those involved in pain modulation) during adulthood, indicating long-term changes in brain circuitry. However, such changes may be different in males and females.
Collapse
Affiliation(s)
- Ilaria Ceccarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy
| | - Paolo Fiorenzani
- Department of Medicine, Surgery and Neuroscience, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy
| | - Daniele Della Seta
- Department of Medicine, Surgery and Neuroscience, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neuroscience, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy.
| |
Collapse
|
4
|
Vermeer LMM, Gregory E, Winter MK, McCarson KE, Berman NEJ. Behavioral effects and mechanisms of migraine pathogenesis following estradiol exposure in a multibehavioral model of migraine in rat. Exp Neurol 2014; 263:8-16. [PMID: 25263582 DOI: 10.1016/j.expneurol.2014.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/27/2014] [Accepted: 09/16/2014] [Indexed: 01/07/2023]
Abstract
Migraine is one of the most common neurological disorders, leading to more than 1% of total disability reported and over 68 million visits to emergency rooms or physician's offices each year in the United States. Three times as many women as men have migraine, and while the mechanism behind this is not well understood, 17β-estradiol (estradiol) has been implicated to play a role. Studies have demonstrated that exposure to estrogen can lead to activation of inflammatory pathways, changes in sodium gated channel activity, as well as enhanced vasodilation and allodynia. Estradiol receptors are found in trigeminal nociceptors, which are involved in signaling during a migraine attack. The purpose of this study was to investigate the role of estradiol in migraine pathogenesis utilizing a multibehavioral model of migraine in rat. Animals were surgically implanted with a cannula system to induce migraine and behavior was assessed following exposure to a proestrus level of estradiol for total locomotor activity, light and noise sensitivity, evoked grooming patterns, and enhanced acoustic startle response. Results demonstrated decreased locomotor activity, increased light and noise sensitivity, altered facial grooming indicative of allodynia and enhanced acoustic startle. Further examination of tissue samples revealed increased expression of genes associated with inflammation and vasodilation. Overall, this study demonstrates exacerbation of migraine-like behaviors following exposure to estradiol and helps further explain the underlying mechanisms behind sex differences found in this common neurological disorder.
Collapse
Affiliation(s)
- Lydia M M Vermeer
- Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Eugene Gregory
- Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Kenneth E McCarson
- Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Institute for Neurological Disorders, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Kansas Intellectual and Developmental Disabilities Research Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Nancy E J Berman
- Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Institute for Neurological Disorders, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
5
|
Vermeer LMM, Gregory E, Winter MK, McCarson KE, Berman NEJ. Exposure to bisphenol A exacerbates migraine-like behaviors in a multibehavior model of rat migraine. Toxicol Sci 2013; 137:416-27. [PMID: 24189132 DOI: 10.1093/toxsci/kft245] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Migraine is a common and debilitating neurological disorder suffered worldwide. Women experience this condition 3 times more frequently than men, with estrogen strongly implicated to play a role. Bisphenol A (BPA), a highly prevalent xenoestrogen, is known to have estrogenic activity and may have an effect in migraine onset, intensity, and duration through estrogen receptor signaling. It was hypothesized that BPA exposure exacerbates migraine symptoms through estrogen signaling and downstream activation of nociception related pathways. Utilizing a multibehavior model of migraine in ovariectomized female rats, changes in locomotion, light and sound sensitivity, grooming, and acoustic startle were examined. Furthermore, changes in the expression of genes related to estrogen (ERα, GPR30), and nociception (extracellular signal regulated kinase, ERK, sodium gated channel, Nav1.8, and fatty acid amide hydrolase, FAAH) were studied following behavioral experiments. The following results were obtained: BPA treatment significantly exacerbated migraine-like behaviors in rats. Rats exposed to BPA demonstrated decreased locomotion, exacerbated light and sound aversion, altered grooming habits, and enhanced startle reflexes. Furthermore, BPA exposure increased mRNA expression of estrogen receptors, total ERK mRNA and ERK activation, as well as Nav1.8, and FAAH mRNA, indicative of altered estrogen signaling and altered nociception. These results show that BPA, an environmentally pervasive xenoestrogen, exacerbates migraine-like behavior in a rat model and alters expression of estrogen and nociception-related genes.
Collapse
|
6
|
Influence of royal jelly on the reproductive function of puberty male rats. Food Chem Toxicol 2012; 50:1834-40. [PMID: 22426244 DOI: 10.1016/j.fct.2012.02.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/25/2012] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
Abstract
The adverse effects of royal jelly on the reproductive system of puberty male rats were investigated. Royal jelly was daily administered by gavage to Sprague-Dawley rats at doses 200, 400, and 800 mg/kg for 4 weeks. The body weight and organ coefficients were determined. Sperm count, spermatozoa abnormality, and testicular histopathology were examined through light microscopy. Radioimmunoassay was used to detect serum hormones. The dietary exposure to royal jelly did not affect body weight, but the organ coefficients for the pituitary and testis in the high-dose group were decreased significantly compared with the control group, and significant changes in the microstructure of the testis were observed. No significant differences in sperm count were observed among all groups, however, the sperm deformity rate in the high-dose group increased significantly. Serum hormones in the high-dose group were significantly different from the control group. After royal jelly was stopped for 14 days, the adverse changes were partially reversed and returned to levels close to those in the control group. In conclusion, high-dose royal jelly oral administration for 4 weeks adversely affected the reproductive system of pubescent male rats, but the unfavorable effects are alleviated to some extent by cessation of administration.
Collapse
|
7
|
Inhibition of voltage-gated sodium channels by bisphenol A in mouse dorsal root ganglion neurons. Brain Res 2011; 1378:1-8. [PMID: 21241682 DOI: 10.1016/j.brainres.2011.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/14/2010] [Accepted: 01/08/2011] [Indexed: 11/22/2022]
Abstract
Bisphenol A (BPA), an estrogenic compound, is contained in cans, polycarbonate bottles, and some dental sealants. Exposure to BPA might have potential toxicological effects on the nervous system. Previous studies have demonstrated that BPA may affect ion channel function, but the effects of BPA on voltage-gated sodium channels are unknown. Herein, we report the effects of BPA on TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) Na+ currents, using a conventional whole-cell patch clamp technique from acutely isolated mouse dorsal root ganglion neurons. BPA inhibited TTX-S Na+ currents and TTX-R Na+ currents, the effects of BPA were rapid, reversible and in a concentration-dependent manner. Moreover, BPA could shift the voltage-gated activation curve for TTX-S Na+ channel in the hyperpolarizing direction without changing that for TTX-R Na+ channel; shift the steady-state inactivation curve for TTX-S Na+ channel in the depolarizing direction without changing that for TTX-R Na+ channel; and lengthen the time course of recovery from inactivation for both TTX-S Na+ current and TTX-R Na+ current. We also found that PKC inhibitor GÖ-6983 and PKA inhibitor H-89 blocked the BPA-induced inhibition of Na+ currents. Considering its complex modulatory effects on voltage-gated sodium channels, BPA might have potential toxicological effects on the nervous system and lead to a change in excitability of nociceptive afferent fibers.
Collapse
|
8
|
Dubovický M. Neurobehavioral manifestations of developmental impairment of the brain. Interdiscip Toxicol 2010; 3:59-67. [PMID: 21217874 PMCID: PMC2984125 DOI: 10.2478/v10102-010-0012-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 05/20/2010] [Accepted: 06/03/2010] [Indexed: 01/04/2023] Open
Abstract
Individual characteristics of human nature (e.g. introversion, extroversion, mood, activity, adaptability, aggressiveness, social ability, anxiety) do not need to be primarily innate. They can be determined by the action of various influences and their interactions on functional development of the brain. There is ample epidemiological and experimental evidence that chemical and/or physical factors acting during sensitive time windows of the brain development can cause mental, behavioral, emotional and/or cognitive disorders. Environmental pollutants, addictive substances, drugs, malnutrition, excessive stress and/or hypoxia-ischemia were reported to induce functional maldevelopment of the brain with consequent neurobehavioral disorders. The article provides review on most significant neurobehavioral manifestations of developmental impairment of the brain during prenatal, perinatal and early postnatal period. The most known adverse factors causing developmental neurobehavioral dysfunctions in humans as well as in experimental animals are discussed.
Collapse
Affiliation(s)
- Michal Dubovický
- Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, SK-84104, Bratislava, Slovakia
| |
Collapse
|