1
|
McCarthy DM, Vied C, Trupiano MX, Canekeratne AJ, Wang Y, Schatschneider C, Bhide PG. Behavioral, neurotransmitter and transcriptomic analyses in male and female Fmr1 KO mice. Front Behav Neurosci 2024; 18:1458502. [PMID: 39308631 PMCID: PMC11412825 DOI: 10.3389/fnbeh.2024.1458502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Fragile X syndrome is an inherited X-linked disorder associated with intellectual disabilities that begin in childhood and last a lifetime. The symptoms overlap with autism spectrum disorder, and the syndrome predominantly affects males. Consequently, FXS research tends to favor analysis of social behaviors in males, leaving a gap in our understanding of other behavioral traits, especially in females. Methods We used a mouse model of FXS to analyze developmental, behavioral, neurochemical, and transcriptomic profiles in males and females. Results Our behavioral assays demonstrated locomotor hyperactivity, motor impulsivity, increased "approach" behavior in an approach-avoidance assay, and deficits in nest building behavior. Analysis of brain neurotransmitter content revealed deficits in striatal GABA, glutamate, and serotonin content. RNA sequencing of the ventral striatum unveiled expression changes associated with neurotransmission as well as motivation and substance use pathways. Sex differences were identified in nest building behavior, striatal neurotransmitter content, and ventral striatal gene expression. Discussion In summary, our study identified sex differences in specific behavioral, neurotransmitter, and gene expression phenotypes and gene set enrichment analysis identified significant enrichment of pathways associated with motivation and drug reward.
Collapse
Affiliation(s)
- Deirdre M. McCarthy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Cynthia Vied
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Translational Science Laboratory, Florida State University College of Medicine Tallahassee, FL, United States
| | - Mia X. Trupiano
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Angeli J. Canekeratne
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Department of Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, United States
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
2
|
Jain J, Hasan W, Jat D, Biswas P, Yadav RS. Delayed in sensorimotor reflex ontogeny, slow physical growth, and impairments in behaviour as well as dopaminergic neuronal death in mice offspring following prenatally rotenone administration. Int J Dev Neurosci 2023; 83:518-531. [PMID: 37337287 DOI: 10.1002/jdn.10282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 06/21/2023] Open
Abstract
The environment is varying day by day with the introduction of chemicals such as pesticides, most of which have not been effectively studied for their influence on a susceptible group of population involving infants and pregnant females. Rotenone is an organic pesticide used to prepare Parkinson's disease models. A lot of literature is available on the toxicity of rotenone on the adult brain, but to the best of our knowledge, effect of rotenone on prenatally exposed mice has never been investigated yet. Therefore, the recent work aims to evaluate the toxic effect of rotenone on mice, exposed prenatally. We exposed female mice to rotenone at the dose of 5 mg/Kg b.w. throughout the gestational period with oral gavage. We then investigated the effects of rotenone on neonate's central nervous systems as well as on postnatal day (PD) 35 offspring. In the rotenone group, we observed slow physical growth, delays in physical milestones and sensorimotor reflex in neonates and induction of anxiety and impairment in cognitive performances of offspring at PD-35. Additionally, immunohistochemical analysis revealed a marked reduction in TH-positive neurons in substantia nigra. Histological examination of the cerebellum revealed a decrease in Purkinje neurons in the rotenone exposed group as compared to the control. The data from the study showed that prenatally exposure to rotenone affects growth, physical milestones, neuronal population and behaviour of mice when indirectly exposed to the offspring through their mother. This study could provide a great contribution to researchers to find out the molecular mechanism and participating signalling pathway behind these outcomes.
Collapse
Affiliation(s)
- Juli Jain
- Neuroscience Research Lab, School of Biological Sciences, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Whidul Hasan
- Neurology Department, Harward Medical School, Harvard Medical School, Boston, USA
| | - Deepali Jat
- Neuroscience Research Lab, School of Biological Sciences, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Pronit Biswas
- Department of Life Sciences, Christ (Deemed-to-be University), Bangalore, India
| | - Rajesh Singh Yadav
- School of Forensic Science, National Forensic Sciences University, Bhopal, India
| |
Collapse
|
3
|
Lizé M, Monfort C, Rouget F, Limon G, Durand G, Tillaut H, Chevrier C. Prenatal exposure to organophosphate pesticides and autism spectrum disorders in 11-year-old children in the French PELAGIE cohort. ENVIRONMENTAL RESEARCH 2022; 212:113348. [PMID: 35500857 DOI: 10.1016/j.envres.2022.113348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Organophosphate (OP) pesticides act by inhibiting acetylcholinesterase activity at synaptic junctions and have already been linked with deleterious effects on neurodevelopment, including autism spectrum disorders (ASD). OBJECTIVES To investigate the association of prenatal exposure to OP pesticides with traits related to ASD in 11-year-old children. METHODS The "Childhood Autism Spectrum Test" (CAST) parent questionnaire was used to screen for autistic traits in 792 children from the French PELAGIE cohort. Prenatal maternal urine samples were collected <19 weeks of gestation in which metabolites of organophosphate insecticides were assessed for 185 of them. Negative binomial regression models were performed to explore the association between the CAST score and 8 groups of urine components, adjusted for potential ASD risk factors. RESULTS In these urine samples, dialkylphosphates (DAP) were detected most often (>80%), terbufos and its metabolites least often (<10%). No association with ASD was found for DAP, terbufos or its metabolites. Incidence rate ratios (IRRs) increased with maternal urinary diazinon concentrations, from 1.11 (95% CI: 0.87-1.42) to 1.17 (95% CI: 0.94-1.46). Higher CAST scores were statistically significantly associated with the maternal urine samples in which chlorpyrifos or two of its metabolites (chlorpyrifos-oxon and 3,5,6-trichloro-2-pyridinol) were detected. The IRR for exposure to chlorpyrifos or chlorpyrifos-oxon was 1.27 (95%CI: 1.05-1.52) among all children, and 1.39 (95%CI: 1.07-1.82) among boys. CONCLUSION These findings suggest an increase in autistic traits among 11-year-old children in association with prenatal maternal exposure to chlorpyrifos and possibly diazinon. These associations were previously suspected in the literature, in particular for chlorpyrifos. Further work establishing the causal mechanisms behind these risk association is needed.
Collapse
Affiliation(s)
- Mathilde Lizé
- Université Rennes 1, CHU Rennes, Irset (institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Christine Monfort
- Université Rennes 1, CHU Rennes, Irset (institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Florence Rouget
- CHU Rennes, Université Rennes 1, Inserm, EHESP, Irset (institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000 Rennes, France.
| | - Gwendolina Limon
- LABOCEA (Laboratoire public Conseil, Expertise et Analyse in Brittany), F-29280, Plouzané, France.
| | - Gaël Durand
- LABOCEA (Laboratoire public Conseil, Expertise et Analyse in Brittany), F-29280, Plouzané, France.
| | - Hélène Tillaut
- Université Rennes 1, Inserm, EHESP, Irset (institut de Recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Cécile Chevrier
- Université Rennes 1, Inserm, EHESP, Irset (institut de Recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
4
|
Perez-Fernandez C, Morales-Navas M, Guardia-Escote L, Colomina MT, Giménez E, Sánchez Santed F. Pesticides and aging: Preweaning exposure to Chlorpyrifos induces a general hypomotricity state in late-adult rats. Neurotoxicology 2021; 86:69-77. [PMID: 34274376 DOI: 10.1016/j.neuro.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023]
Abstract
The molecular and behavioral effects of the developmental exposure to low doses of Chlorpyrifos (CPF) have been intensively studied in young (neonates and adolescents), and adult animals. However, no study examined influences of developmental CPF exposure in older adult or geriatric rats. This is relevant as such ages are generally linked to cognitive decline and the onset of specific neurodegenerative disorders, some of them previously associated with CPF exposure in both preclinical and human studies. 1 mg/kg/mL of CPF was orally administered to both male and female Wistar rats from Postnatal day 10 to 15. Animals' spatial memory, learning, compulsivity, motricity, and anxiety were analyzed with Morris Water Maze (15-16 months of age) and the Plus-maze (at 18 months of age). Results showed that postnatal CPF exposure did not alter either spatial memory, compulsive-like behaviors, or anxiety levels in late-adult rats. However, CPF exposed rats were hyposensitive to brief disruptions (Probe stage) following the learning phase and showed a general decrease in locomotor activity in both paradigms. These data are relevant as it is the first time that developmental exposure to CPF has been studied at such a late age, observing important effects in locomotor activity that could be linked to specific pathologies previously associated with CPF effects in people. Future studies should extend these findings to other behaviors and molecular outcomes.
Collapse
Affiliation(s)
- Cristian Perez-Fernandez
- Department of Psychology and Health Research Center (CEINSA), Laboratory of Psychobiology, University of Almería CeiA3, 04120, Carretera de Sacramento s/n, La Cañada de San Urbano, Almería, Spain.
| | - Miguel Morales-Navas
- Department of Psychology and Health Research Center (CEINSA), Laboratory of Psychobiology, University of Almería CeiA3, 04120, Carretera de Sacramento s/n, La Cañada de San Urbano, Almería, Spain.
| | - Laia Guardia-Escote
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira I Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007, Carretera de Valls, s/n, Tarragona, Spain.
| | - María Teresa Colomina
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira I Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007, Carretera de Valls, s/n, Tarragona, Spain.
| | - Estela Giménez
- Department of Biology and Geology, University of Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain.
| | - Fernando Sánchez Santed
- Department of Psychology and Health Research Center (CEINSA), Laboratory of Psychobiology, University of Almería CeiA3, 04120, Carretera de Sacramento s/n, La Cañada de San Urbano, Almería, Spain.
| |
Collapse
|
5
|
Kofman O, Lan A, Raykin E, Zega K, Brodski C. Developmental and social deficits and enhanced sensitivity to prenatal chlorpyrifos in PON1-/- mouse pups and adults. PLoS One 2020; 15:e0239738. [PMID: 32976529 PMCID: PMC7518626 DOI: 10.1371/journal.pone.0239738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
The levels and activity of the enzyme paraoxonase 1 affect the vulnerability to the teratogenic effects of organophosphate pesticides. Mutant mice lacking the gene for paraoxonase1 (PON1-/-) are more susceptible to the toxic effects of chlorpyrifos, and were hypothesized to be more vulnerable to social behavior deficits induced by exposure to chlorpyrifos during gestation. Three experiments were performed comparing PON1-/- mice to PON1+/+ mice born to dams treated with 0.5 mg/kg chlorpyrifos or cornoil vehicle on gestational days 12–15. Chlofpyrifos-exposed male PON1-/- mouse pups had delayed development of reflexes in in the first experiment. In the second experiment, adult male and female PON1-/- mice and the female PON1+/+ mice all displayed lower social preference than the male vehicle-treated PON1+/+ mice. The PON1-/- mice and the female PON1+/+ mice displayed lower social preference compared to the PON1+/+ male mice. Male adult mice that had been exposed in utero to chlorpyrifos showed less conditioned social preference regardless of genotype. In the third study, the delayed reflex development was replicated in male and female PON1-/- mice, but chlorpyrifos did not augment this effect. Nest Odor Preference, a test of early social attachment to dam and siblings, was lower in PON1-/- mouse pups compared to PON1+/+ pups. This study shows for the first time that PON1-/- mice have a behavioral phenotype that indicates impaired reflex development and social behavior. Chlorpyrifos exposure during gestation tended to augment some of these effects.
Collapse
Affiliation(s)
- Ora Kofman
- Department of Psychology, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- * E-mail:
| | - Anat Lan
- Department of Psychology, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Eynav Raykin
- Department of Physiology and Cellular Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Ksenija Zega
- Department of Physiology and Cellular Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Claude Brodski
- Department of Physiology and Cellular Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
6
|
Eidi H, Yoo J, Bairwa SC, Kuo M, Sayre EC, Tomljenovic L, Shaw CA. Early postnatal injections of whole vaccines compared to placebo controls: Differential behavioural outcomes in mice. J Inorg Biochem 2020; 212:111200. [PMID: 33039918 DOI: 10.1016/j.jinorgbio.2020.111200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/24/2020] [Accepted: 07/19/2020] [Indexed: 12/24/2022]
Abstract
The present study was designed to evaluate the possible effects of the paediatric vaccination schedule in the United States on the central nervous system in a murine model. We compared the impact of treatment with the whole vaccines versus true placebo control. Seventy-six pups were divided into three groups: two vaccinated groups and unvaccinated control. The two vaccinated groups were treated between 7 and 21 post-natal days either with one or three times of the vaccine doses per body weight as used in children between newborn and eighteen months of age. The post-vaccination development, neuromotor behaviours and neurobehavioural abnormalities (NBAs) were evaluated in all mouse groups during the 67 post-natal weeks of mouse age. Mouse body weight was affected only in the vaccinated females compared to males and control. Some NBAs such as decreased sociability, increased anxiety-like behaviours, and alteration of visual-spatial learning and memory were observed in vaccinated male and female mice compared to controls. The present study also shows a slower acquisition of some neonatal reflexes in vaccinated female mice compared to vaccinated males and controls. The observed neurodevelopmental alterations did not show a linear relationship with vaccine dose, suggesting that the single dose gave a saturated response. The outcomes seemed to be sex-dependent and transient with age.
Collapse
Affiliation(s)
- Housam Eidi
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; French agency for veterinary medicinal products (ANMV) - French agency for food, environmental and occupational health safety (ANSES), Fougères, France.
| | - Janice Yoo
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Suresh C Bairwa
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Kuo
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Lucija Tomljenovic
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Shaw
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Shahid A, Saher M. Repeated exposure of pyriproxyfen to pregnant female mice causes developmental abnormalities in prenatal pups. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26998-27009. [PMID: 32382916 DOI: 10.1007/s11356-020-08656-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The continuous exposure to conventional pesticides leads to severe health and environmental issues especially at prenatal stage during developmental period. Herein, we aimed to investigate the anomalies due to repeated exposure of pyriproxyfen in pregnant female mice and their neonates. Twenty-four pregnant female mice were repeatedly administered with pyriproxyfen at 30, 100, 300, and 1000 mg/kg by oral gauge from gestation day (GD) 7 to gestation day 17 and six females were given distilled water in the control group. All the live pups were euthanized at postnatal day (PND) 7 and their organs (heart, liver, kidney, and brain) were dissected out, weighed, and assessed for further histopathological examinations. The results exhibited a significant (P < 0.001) decrease in the body weight gain of all treated pregnant mice in comparison to the controls and a significant increase in the gestational length was observed in group IV (P < 0.01) and group V (P < 0.001). In addition, no live pups were born in groups IV and V and one pregnant female mouse was also found dead in both treatments. The body weights of the pups were significantly decreased in group II (P < 0.05) and group III (P < 0.001) and the relative organ (liver, heart, and kidney) weight of the pups was increased significantly (P < 0.001, P < 0.01, P < 0.05) due to prenatal exposure in group II as compared to group I. The relative brain weights of the pups were decreased significantly (P < 0.001) in groups II and III as compared to group I. The liver, kidney, heart, and brain sections exhibited various histological alterations in groups II and III by hematoxylin and eosin staining. Furthermore, immunohistochemical staining of the coronal sections of pup's brain showed significant (P < 0.001) reduction in cortical radial thickness and total neural count in group II and III as compared to group I. Therefore, the prenatal exposure to pyriproxyfen provoked the damage to various organs in mice offspring and an increase in fetal death at higher doses.
Collapse
Affiliation(s)
- Amna Shahid
- Department of Zoology, Government College University, Katchery Road, Lahore, 54000, Pakistan.
| | - Marryam Saher
- Department of Zoology, Government College University, Katchery Road, Lahore, 54000, Pakistan
| |
Collapse
|
8
|
Peris-Sampedro F, Guardia-Escote L, Basaure P, Cabré M, Colomina MT. Improvement of APOE4-dependent non-cognitive behavioural traits by postnatal cholinergic stimulation in female mice. Behav Brain Res 2020; 384:112552. [DOI: 10.1016/j.bbr.2020.112552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 02/08/2023]
|
9
|
Perez-Fernandez C, Morales-Navas M, Guardia-Escote L, Garrido-Cárdenas JA, Colomina MT, Giménez E, Sánchez-Santed F. Long-term effects of low doses of Chlorpyrifos exposure at the preweaning developmental stage: A locomotor, pharmacological, brain gene expression and gut microbiome analysis. Food Chem Toxicol 2020; 135:110865. [DOI: 10.1016/j.fct.2019.110865] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022]
|
10
|
Cui J, Fu Y, Lu R, Bi Y, Zhang L, Zhang C, Aschner M, Li X, Chen R. Metabolomics analysis explores the rescue to neurobehavioral disorder induced by maternal PM 2.5 exposure in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:687-695. [PMID: 30500738 DOI: 10.1016/j.ecoenv.2018.11.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/17/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Reproductive epidemiological studies have suggested associations between perinatal exposure to fine particulate matter (PM2.5) and adverse birth outcomes. To explore the effects of early prenatal exposure to PM2.5 on subsequent generations, pregnant mice were exposed to PM2.5 or filtered clean air in whole body dynamic exposure chambers for 14 consecutive days from gestation day (GD) 1.5 to GD15.5. Neurobehavioral tests showed that spontaneous locomotion and exploratory behaviors in the offspring were significantly enhanced in the open field test. Meanwhile, metabolomics analysis suggested activation of dopamine pathway while inhibition of glycine pathway in murine brains. Administration of the DRD4 antagonist, clozapine; or supplementation of glycine receptor agonist, taurine, to mice offspring attenuated the locomotor hyperactivities to levels indistinguishable from controls. These data provide strong evidence that maternal exposure to air pollution might increase the risk for neural disorders in the offspring during critical periods of brain development.
Collapse
Affiliation(s)
- Jian Cui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China
| | - You Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China; School of Continuing Education, Nanjing Medical University, Nanjing 211166, China
| | - Runze Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuan Bi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China
| | - Li Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China
| | - Chengcheng Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China.
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education School of Public Health, Southeast University, Nanjing 210009, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
11
|
Abstract
One of the major classes of pesticides is that of the organophosphates (OPs). Initial developments date back almost 2 centuries but it was only in the mid-1940s that OPs reached a prominent status as insecticides, a status that, albeit declining, is still ongoing. OPs are highly toxic to nontarget species including humans, the primary effects being an acute cholinergic toxicity (responsible for thousands of poisoning each year) and a delayed polyneuropathy. Several issues of current debate and investigation on the toxicology of OPs are discussed in this brief review. These include (1) possible additional targets of OPs, (2) OPs as developmental neurotoxicants, (3) OPs and neurodegenerative diseases, (4) OPs and the "aerotoxic syndrome," (5) OPs and the microbiome, and (6) OPs and cancer. Some of these issues have been debated and studied for some time, while others are newer, suggesting that the study of the toxicology of OPs will remain an important scientific and public health issue for years to come.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
- Department of Medicine and Surgery, University of Parma, Parma 43100, Italy
| |
Collapse
|
12
|
Abstract
Acute and chronic exposures to widely used organophosphorus (OP) insecticides are common. Children's detoxification mechanisms are not well developed until several years after birth. The increased cases of neurodevelopmental disorders in children, together with their increased susceptibility to OP neurotoxicity cannot be explained by genetic factors alone but could be related to gene-environment interactions. Paraoxonase-1 (PON1) is an enzyme that can detoxify OPs but its catalytic efficiency for hydrolysis to certain OPs is modulated by the Q192R polymorphism. Studies with animals have provided important information on the role of PON1 in protecting against gestational and postnatal toxicity to OPs. The PON1Q192 allele is less efficient in hydrolyzing certain OPs than the PON1R192 allele. Maternal PON1 status (PON1 activity levels, the most important measurement, and functional Q192R phenotype) modulates the detrimental effects of exposure to the OP chlorpyrifos oxon on fetal brain gene expression and biomarkers of exposure. Epidemiologic studies suggest that children from mothers with lower PON1 status who were in contact with OPs during pregnancy tend to show smaller head circumference at birth and adverse effects in cognitive function during childhood. Infants and children are vulnerable to OP toxicity. The detrimental consequences of OPs on neurodevelopment can lead to future generations with permanent cognitive problems and susceptibility to develop neurodegenerative diseases. Improved methods using mass spectrometry to monitor OP-adducted biomarker proteins are needed and will be extremely helpful in early life biomonitoring, while measurement of PON1 status as a biomarker of susceptibility will help identify mothers and children highly sensitive to OPs. The use of adductomics instead of enzymatic activity assays for biomonitoring OP exposures have proved to provide several advantages, including the use of dried blood spots, which would facilitate monitoring newborn babies and children.
Collapse
Affiliation(s)
- Judit Marsillach
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA; Department of Neuroscience, University of Parma, Parma, Italy
| | - Clement E Furlong
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA; Department of Genome Sciences, University of Washington, Seattle, WA.
| |
Collapse
|
13
|
Shiotani M, Cole TB, Hong S, Park JJY, Griffith WC, Burbacher TM, Workman T, Costa LG, Faustman EM. Neurobehavioral assessment of mice following repeated oral exposures to domoic acid during prenatal development. Neurotoxicol Teratol 2017; 64:8-19. [PMID: 28916171 DOI: 10.1016/j.ntt.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/06/2023]
Abstract
Domoic acid (DA) is an algal toxin which has been associated with significant neurotoxicity in humans, non-human primates, rodents, and marine mammals. Developmental exposure to DA is believed to result in neurotoxicity that may persist into adulthood. DA is produced by harmful algal blooms of Pseudo-nitzschia, raising concerns about the consumption of contaminated seafood. We evaluated oral exposures to DA during pregnancy in mice. Doses of 0 (vehicle), 1 or 3mg/kg/d of DA were administered by gavage to C57BL/6J mice on gestational days 10 to 17. The offspring were tested for persistent neurobehavioral consequences during early development, adolescence and adulthood. Neurobehavioral tests revealed both dose- and gender-related differences in several neurobehavioral measures, including motor coordination in the rotarod test, behavior in the elevated plus maze, circadian patterns of activity in Phenotyper cages, gait as assessed in the Catwalk, and exploratory activity in the Morris water maze. This study demonstrated significant gender-specific and persistent neurobehavioral effects of repeated prenatal oral exposures to DA at low-dose levels that did not induce toxicity in dams.
Collapse
Affiliation(s)
- Motohiro Shiotani
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States; Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, United States
| | - Toby B Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States; Center on Human Development and Disability, University of Washington, Seattle, WA, United States
| | - Sungwoo Hong
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Julie Ju Young Park
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States; Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, United States
| | - Thomas M Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States; Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, United States
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States; Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, United States.
| |
Collapse
|
14
|
Chronic exposure to chlorpyrifos triggered body weight increase and memory impairment depending on human apoE polymorphisms in a targeted replacement mouse model. Physiol Behav 2015; 144:37-45. [DOI: 10.1016/j.physbeh.2015.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
|
15
|
Multifactorial Origin of Neurodevelopmental Disorders: Approaches to Understanding Complex Etiologies. TOXICS 2015; 3:89-129. [PMID: 29056653 PMCID: PMC5634696 DOI: 10.3390/toxics3010089] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
A significant body of evidence supports the multifactorial etiology of neurodevelopmental disorders (NDDs) affecting children. The present review focuses on early exposure to environmental chemicals as a risk factor for neurodevelopment, and presents the major lines of evidence derived from epidemiological studies, underlying key uncertainties and research needs in this field. We introduce the exposome concept that, encompassing the totality of human environmental exposures to multiple risk factors, aims at explaining individual vulnerability and resilience to early chemical exposure. In this framework, we synthetically review the role of variable gene backgrounds, the involvement of epigenetic mechanisms as well as the function played by potential effect modifiers such as socioeconomic status. We describe laboratory rodent studies where the neurodevelopmental effects of environmental chemicals are assessed in the presence of either a “vulnerable” gene background or adverse pregnancy conditions (i.e., maternal stress). Finally, we discuss the need for more descriptive and “lifelike” experimental models of NDDs, to identify candidate biomarkers and pinpoint susceptible groups or life stages to be translated to large prospective studies within the exposome framework.
Collapse
|
16
|
Peris-Sampedro F, Salazar JG, Cabré M, Reverte I, Domingo JL, Sánchez-Santed F, Colomina MT. Impaired retention in AβPP Swedish mice six months after oral exposure to chlorpyrifos. Food Chem Toxicol 2014; 72:289-94. [DOI: 10.1016/j.fct.2014.07.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 02/07/2023]
|
17
|
|
18
|
López-Granero C, Cardona D, Giménez E, Lozano R, Barril J, Aschner M, Sánchez-Santed F, Cañadas F. Comparative study on short- and long-term behavioral consequences of organophosphate exposure: Relationship to AChE mRNA expression. Neurotoxicology 2014; 40:57-64. [DOI: 10.1016/j.neuro.2013.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 12/13/2022]
|
19
|
González-Alzaga B, Lacasaña M, Aguilar-Garduño C, Rodríguez-Barranco M, Ballester F, Rebagliato M, Hernández AF. A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure. Toxicol Lett 2013; 230:104-21. [PMID: 24291036 DOI: 10.1016/j.toxlet.2013.11.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/05/2013] [Accepted: 11/18/2013] [Indexed: 01/11/2023]
Abstract
Agricultural and residential use of organophosphate (OP) pesticides has increased in recent decades after banning some persistent pesticides. Although there is evidence of the effects of OPs on neurodevelopment and behaviour in adults, limited information is available about their effects in children, who might be more vulnerable to neurotoxic compounds. This paper was aimed at analysing the scientific evidence published to date on potential neurodevelopmental and behavioural effects of prenatal and postnatal exposure to OPs. A systematic review was undertaken to identify original articles published up to December 2012 evaluating prenatal or postnatal exposure to OPs in children and effects on neurodevelopment and/or behaviour. Articles were critically compared, focusing on the methodology used to assess exposure and adverse effects, as well as potential contributing factors that may modify both exposure and outcomes, such as genetic susceptibility to certain enzymes involved in OPs metabolisation (e.g. paraoxonase-1) and gender differences. Twenty articles met the inclusion criteria, 7 of which evaluated prenatal exposure to OPs, 8 postnatal exposure and 5 both pre- and postnatal exposure. Most of the studies evaluating prenatal exposure observed a negative effect on mental development and an increase in attention problems in preschool and school children. The evidence on postnatal exposure is less consistent, although 2 studies found an increase in reaction time in schoolchildren. Some paraoxonase-1 polymorphisms could enhance the association between OPs exposure and mental and psychomotor development. A large variability in epidemiological designs and methodologies used for assessing exposure and outcome was observed across the different studies, which made comparisons difficult. Prenatal and to a lesser extent postnatal exposure to OPs may contribute to neurodevelopmental and behavioural deficits in preschool and school children. Standardised methodologies are needed to allow results to be better compared and to perform a quantitative meta-analysis before drawing any final conclusions.
Collapse
Affiliation(s)
| | - M Lacasaña
- Andalusian School of Public Health, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Spain.
| | | | - M Rodríguez-Barranco
- Andalusian School of Public Health, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Spain
| | - F Ballester
- CIBER of Epidemiology and Public Health (CIBERESP), Spain; Centre for Public Health Research (CSISP-FISABIO), Valencia, Spain; University of Valencia, Spain
| | - M Rebagliato
- CIBER of Epidemiology and Public Health (CIBERESP), Spain; Department of Medicine, University Jaume I, Castelló de la Plana, Spain
| | - A F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain
| |
Collapse
|
20
|
López-Granero C, Cañadas F, Cardona D, Yu Y, Giménez E, Lozano R, Avila DS, Aschner M, Sánchez-Santed F. Chlorpyrifos-, diisopropylphosphorofluoridate-, and parathion-induced behavioral and oxidative stress effects: are they mediated by analogous mechanisms of action? Toxicol Sci 2013; 131:206-16. [PMID: 22986948 PMCID: PMC3537130 DOI: 10.1093/toxsci/kfs280] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022] Open
Abstract
Exposure to organophosphates (OPs) can lead to cognitive deficits and oxidative damage. Little is known about the relationship between behavioral deficits and oxidative stress within the context of such exposures. Accordingly, the first experiment was carried out to address this issue. Male Wistar rats were administered 250 mg/kg of chlorpyrifos (CPF), 1.5 mg/kg of diisopropylphosphorofluoridate (DFP), or 15 mg/kg of parathion (PTN). Spatial learning in the water maze task was evaluated, and F(2)-isoprostanes (F(2)-IsoPs) and prostaglandin (PGE(2)) were analyzed in the hippocampus. A second experiment was designed to determine the degree of inhibition of brain acetylcholinesterase (AChE) activity, both the soluble and particulate forms of the enzyme, and to assess changes in AChE gene expression given evidence on alternative splicing of the gene in response to OP exposures. In addition, brain acylpeptide hydrolase (APH) activity was evaluated as a second target for OP-mediated effects. In both experiments, rats were sacrificed at various points to determine the time course of OPs toxicity in relation to their mechanism of action. Results from the first experiment suggest cognitive and emotional deficits after OPs exposure, which could be due to, at least in part, increased F(2)-IsoPs levels. Results from the second experiment revealed inhibition of brain AChE and APH activity at various time points post OP exposure. In addition, we observed increased brain read-through splice variant AChE (AChE-R) mRNA levels after 48 h PTN exposure. In conclusion, this study provides novel data on the relationship between cognitive alterations and oxidative stress, and the diverse mechanisms of action along a temporal axis in response to OP exposures in the rat.
Collapse
Affiliation(s)
- Caridad López-Granero
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, La Cañada, 04120 Almería, Spain
| | - Fernando Cañadas
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, La Cañada, 04120 Almería, Spain
| | - Diana Cardona
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, La Cañada, 04120 Almería, Spain
| | - Yingchun Yu
- Department of Pediatrics/Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Estela Giménez
- Departamento de Biología Vegetal y Ecología, E. Politécnica Superior; and
| | - Rafael Lozano
- Departamento de Biología Aplicada, Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, La Cañada, 04120 Almería, Spain
| | - Daiana Silva Avila
- Department of Pediatrics/Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Michael Aschner
- Department of Pediatrics/Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Fernando Sánchez-Santed
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, La Cañada, 04120 Almería, Spain
| |
Collapse
|