1
|
Singh J, Patten SA. Modeling neuromuscular diseases in zebrafish. Front Mol Neurosci 2022; 15:1054573. [PMID: 36583079 PMCID: PMC9794147 DOI: 10.3389/fnmol.2022.1054573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Neuromuscular diseases are a diverse group of conditions that affect the motor system and present some overlapping as well as distinct clinical manifestations. Although individually rare, the combined prevalence of NMDs is similar to Parkinson's. Over the past decade, new genetic mutations have been discovered through whole exome/genome sequencing, but the pathogenesis of most NMDs remains largely unexplored. Little information on the molecular mechanism governing the progression and development of NMDs accounts for the continual failure of therapies in clinical trials. Different aspects of the diseases are typically investigated using different models from cells to animals. Zebrafish emerges as an excellent model for studying genetics and pathogenesis and for developing therapeutic interventions for most NMDs. In this review, we describe the generation of different zebrafish genetic models mimicking NMDs and how they are used for drug discovery and therapy development.
Collapse
Affiliation(s)
- Jaskaran Singh
- INRS – Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Shunmoogum A. Patten
- INRS – Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada,Departement de Neurosciences, Université de Montréal, Montréal, QC, Canada,Centre d'Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada,*Correspondence: Shunmoogum A. Patten,
| |
Collapse
|
2
|
Hassan MH, Khan R, Andreescu S. Advances in electrochemical detection methods for measuring contaminants of emerging concerns. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Mohamed H. Hassan
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| | - Reem Khan
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| |
Collapse
|
3
|
Physiological, Developmental, and Biomarker Responses of Zebrafish Embryos to Sub-Lethal Exposure of Bendiocarb. WATER 2021. [DOI: 10.3390/w13020204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bendiocarb is a broad-spectrum insecticide recommended for malaria control by the World Health Organization (WHO). Still, bendiocarb poses a toxic risk to populations of nontargeted aquatic organisms. Thus, our study was aimed to evaluate the sub-lethal effects of bendiocarb exposure on zebrafish (Danio rerio) embryos by assessing of physiological, developmental, and biochemical parameters. Bendiocarb-induced adverse effects on embryonic development, larval growth, heart rate, changes in phase II detoxifying enzyme glutathione-S-transferase (GST) activity, oxidative stress-related enzyme activities (superoxide dismutase (SOD), catalase (CAT)), and the damage-linked biomarker lipid peroxidation (LPO) in early life stage zebrafish were investigated. Our results highlight that the selected nonlethal concentrations (96 h median lethal concentration in this study was 32.52 mg/L−1) of bendiocarb inflicted adverse effects resulting in embryo deformities (96 h EC50 = 2.30 mg L−1), reduced body- and notochord length (above 0.75 and 0.39 mg L−1 bendiocarb concentrations at 96 hpf, respectively), oxidative stress, and altered heart rate (above 0.4 mg L−1 at 48 hpf) in the studied model system.
Collapse
|
4
|
Tabassum S, Rakhi SF, Reza AHMM, Mollah MFA, Hossain Z. Potential attenuation of biochemical parameters and enzymatic functions in Cyprinus carpio fingerlings by Phenthoate 50 EC insecticide exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35837-35851. [PMID: 32607992 DOI: 10.1007/s11356-020-09697-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The risks of the health-associated problems of pesticide-exposed non-target organisms are ubiquitous, therefore an emerging concern to strike the balance between benefit and risk factors. In the present study, by elucidating multiple biomarkers, the effects of Phenthoate 50 EC on the acute toxicity tests and different pathophysiological changes of common carp (Cyprinus carpio) fingerlings were studied in time- and concentration-dependent manners. The LC50 of Phenthoate 50 EC for the fish was 7.39 (6.716-8.076) ppm at 96 h. As an indicator of neurotoxicity, compared to the control group, significant (P < 0.01) reduction in brain acetylcholinesterase (AChE) activity was observed, whereas plasma glutamate-oxalacetate transaminase (PGOT) and plasma glutamate pyruvate transaminase (PGPT) activities were increased significantly (P < 0.01) at the doses of 2.22 and 3.69 ppm of Phenthoate 50 EC, respectively. Histopathological changes in the insecticide-treated fish liver suggested the hepatic tissue damages, while alteration of the blood, gills and kidney morphology; progressive decrease (P < 0.05) in the serum calcium levels; and significantly (P < 0.01) decreased blood glucose level at 2.22 and 3.69 or 5.17 ppm of Phenthoate 50 EC demonstrated the oxidative stress and requirement of the up-surging energy demands due to the exposure of this organophosphate chemical. These results advice the modulation caused by this widely used agrochemical on the physiology of aquatic fauna by changing the enzymatic and biochemical indices at cellular level.
Collapse
Affiliation(s)
- Sadia Tabassum
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sharmin Ferdewsi Rakhi
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
- Upazilla Fisheries Office, Kasba, Brahmanbaria, Bangladesh
| | - A H M Mohsinul Reza
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
- School of Biological Science, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Md Fazlul Awal Mollah
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Zakir Hossain
- Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
5
|
Cannabidiol did not induce teratogenicity or neurotoxicity in exposed zebrafish embryos. Chem Biol Interact 2018; 291:81-86. [DOI: 10.1016/j.cbi.2018.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/22/2018] [Accepted: 06/09/2018] [Indexed: 12/25/2022]
|
6
|
Zebrafish is a predictive model for identifying compounds that protect against brain toxicity in severe acute organophosphorus intoxication. Arch Toxicol 2016; 91:1891-1901. [PMID: 27655295 PMCID: PMC5364264 DOI: 10.1007/s00204-016-1851-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022]
Abstract
Acute organophosphorus (OP) intoxication is a worldwide clinical and public health problem. In addition to cholinergic crisis, neurodegeneration and brain damage are hallmarks of the severe form of this toxidrome. Recently, we generated a chemical model of severe acute OP intoxication in zebrafish that is characterized by altered head morphology and brain degeneration. The pathophysiological pathways resulting in brain toxicity in this model are similar to those described in humans. The aim of this study was to assess the predictive power of this zebrafish model by testing the effect of a panel of drugs that provide protection in mammalian models. The selected drugs included “standard therapy” drugs (atropine and pralidoxime), reversible acetylcholinesterase inhibitors (huperzine A, galantamine, physostigmine and pyridostigmine), N-methyl-d-aspartate (NMDA) receptor antagonists (MK-801 and memantine), dual-function NMDA receptor and acetylcholine receptor antagonists (caramiphen and benactyzine) and anti-inflammatory drugs (dexamethasone and ibuprofen). The effects of these drugs on zebrafish survival and the prevalence of abnormal head morphology in the larvae exposed to 4 µM chlorpyrifos oxon [1 × median lethal concentration (LC50)] were determined. Moreover, the neuroprotective effects of pralidoxime, memantine, caramiphen and dexamethasone at the gross morphological level were confirmed by histopathological and transcriptional analyses. Our results demonstrated that the zebrafish model for severe acute OP intoxication has a high predictive value and can be used to identify new compounds that provide neuroprotection against severe acute OP intoxication.
Collapse
|
7
|
Vivek C, Veeraiah K, Padmavathi P, Rao HD, Bramhachari P. Acute toxicity and residue analysis of cartap hydrochloride pesticide: Toxicological implications on the fingerlings of fresh water fish Labeo rohita. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Koenig JA, Dao TL, Kan RK, Shih TM. Zebrafish as a model for acetylcholinesterase-inhibiting organophosphorus agent exposure and oxime reactivation. Ann N Y Acad Sci 2016; 1374:68-77. [PMID: 27123828 DOI: 10.1111/nyas.13051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 01/05/2023]
Abstract
The current research progression efforts for investigating novel treatments for exposure to organophosphorus (OP) compounds that inhibit acetylcholinesterase (AChE), including pesticides and chemical warfare nerve agents (CWNAs), rely solely on in vitro cell assays and in vivo rodent models. The zebrafish (Danio rerio) is a popular, well-established vertebrate model in biomedical research that offers high-throughput capabilities and genetic manipulation not readily available with rodents. A number of research studies have investigated the effects of subacute developmental exposure to OP pesticides in zebrafish, observing detrimental effects on gross morphology, neuronal development, and behavior. Few studies, however, have utilized this model to evaluate treatments, such as oxime reactivators, anticholinergics, or anticonvulsants, following acute exposure. Preliminary work has investigated the effects of CWNA exposure. The results clearly demonstrated relative toxicity and oxime efficacy similar to that reported for the rodent model. This review surveys the current literature utilizing zebrafish as a model for OP exposure and highlights its potential use as a high-throughput system for evaluating AChE reactivator antidotal treatments to acute pesticide and CWNA exposure.
Collapse
Affiliation(s)
- Jeffrey A Koenig
- Pharmacology Branch, Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Thuy L Dao
- Pharmacology Branch, Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Robert K Kan
- Pharmacology Branch, Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| | - Tsung-Ming Shih
- Pharmacology Branch, Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland
| |
Collapse
|
9
|
Elistratova JG, Mustafina AR, Brylev KA, Petrov KA, Shestopalov MA, Mironov YV, Babaev VM, Rizvanov IK, Masson P, Sinyashin OG. Sensing activity of cholinesterases through a luminescence response of the hexarhenium cluster complex [{Re6S8}(OH)6]4−. Analyst 2016; 141:4204-10. [DOI: 10.1039/c6an00581k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new method to sense enzymatic hydrolysis of acetylcholine through a cluster luminescence.
Collapse
Affiliation(s)
- Julia G. Elistratova
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan
- Russian Federation
| | - Asiya R. Mustafina
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan
- Russian Federation
| | - Konstantin A. Brylev
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
- Russian Federation
| | - Konstantin A. Petrov
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan
- Russian Federation
| | | | - Yuri V. Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
- Russian Federation
| | - Vasily M. Babaev
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan
- Russian Federation
| | - Ildar K. Rizvanov
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan
- Russian Federation
| | | | - Oleg G. Sinyashin
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan
- Russian Federation
| |
Collapse
|