1
|
Cid-Jofré V, Bahamondes T, Zúñiga Correa A, Ahumada Arias I, Reyes-Parada M, Renard GM. Psychostimulants and social behaviors. Front Pharmacol 2024; 15:1364630. [PMID: 38725665 PMCID: PMC11079219 DOI: 10.3389/fphar.2024.1364630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Mounting evidence from animal models and human studies indicates that psychostimulants can significantly affect social behaviors. This is not surprising considering that the neural circuits underlying the regulation and expression of social behaviors are highly overlapped with those targeted by psychostimulants, which in most cases have strong rewarding and, consequently, addictive properties. In the present work, we provide an overview regarding the effects of illicit and prescription psychostimulants, such as cocaine, amphetamine-type stimulants, methylphenidate or modafinil, upon social behaviors such as social play, maternal behavior, aggression, pair bonding and social cognition and how psychostimulants in both animals and humans alter them. Finally, we discuss why these effects can vary depending on numerous variables such as the type of drug considered, acute versus long-term use, clinical versus recreational consumption, or the presence or absence of concomitant risk factors.
Collapse
Affiliation(s)
- Valeska Cid-Jofré
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Tamara Bahamondes
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Agustina Zúñiga Correa
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Ivalú Ahumada Arias
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Georgina M. Renard
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
2
|
Senior D, Ahmed R, Arnavut E, Carvalho A, Lee WX, Blum K, Komatsu DE, Hadjiargyrou M, Badgaiyan RD, Thanos PK. Behavioral, Neurochemical and Developmental Effects of Chronic Oral Methylphenidate: A Review. J Pers Med 2023; 13:jpm13040574. [PMID: 37108960 PMCID: PMC10144804 DOI: 10.3390/jpm13040574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
The majority of animal studies on methylphenidate (MP) use intraperitoneal (IP) injections, subcutaneous (SC) injections, or the oral gavage route of administration. While all these methods allow for delivery of MP, it is the oral route that is clinically relevant. IP injections commonly deliver an immediate and maximum dose of MP due to their quick absorption. This quick-localized effect can give timely results but will only display a small window of the psychostimulant's effects on the animal model. On the opposite side of the spectrum, a SC injection does not accurately represent the pathophysiology of an oral exposure because the metabolic rate of the drug would be much slower. The oral-gavage method, while providing an oral route, possesses some adverse effects such as potential animal injury and can be stressful to the animal compared to voluntary drinking. It is thus important to allow the animal to have free consumption of MP, and drinking it to more accurately mirror human treatment. The use of a two-bottle drinking method allows for this. Rodents typically have a faster metabolism than humans, which means this needs to be considered when administering MP orally while reaching target pharmacokinetic levels in plasma. With this oral two-bottle approach, the pathophysiological effects of MP on development, behavior, neurochemistry and brain function can be studied. The present review summarizes these effects of oral MP which have important implications in medicine.
Collapse
Affiliation(s)
- Daniela Senior
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Rania Ahmed
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Eliz Arnavut
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Alexandra Carvalho
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Wen Xuan Lee
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of the Provost), Western University Health Sciences, Pomona, CA 91766, USA
| | - David E Komatsu
- Department of Orthopaedics and Rehabilitation, Stony Brook University, New York, NY 11794, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | | | - Panayotis K Thanos
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Zoratto F, Franchi F, Macrì S, Laviola G. Methylphenidate administration promotes sociability and reduces aggression in a mouse model of callousness. Psychopharmacology (Berl) 2019; 236:2593-2611. [PMID: 30955107 DOI: 10.1007/s00213-019-05229-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/18/2019] [Indexed: 01/06/2023]
Abstract
RATIONALE Deficits in empathy constitute a distinctive feature of several psychopathologies, including conduct disorder (CD). The co-occurrence of callous-unemotional (CU) traits, excess rates of aggression and violation of societal norms confers specific risk for adult psychopathy. To date, the off-label use of methylphenidate (MPH) constitutes the drug treatment of choice. OBJECTIVES Herein, we tested the therapeutic potential of MPH in a recently devised mouse model recapitulating the core phenotypic abnormalities of CD. METHODS Two subgroups of BALB/cJ male mice exhibiting opposite profiles of emotional contagion (i.e. socially transmitted adoption of another's emotional states) were investigated for reactive aggression, sociability, attention control, anxiety-related behaviours and locomotor activity, in response to MPH administration (0.0, 3.0 or 6.0 mg/kg). RESULTS Our data indicate that mice selected for excess callousness exhibit phenotypic abnormalities isomorphic to the symptoms of CD: stability of the low emotional contagion trait, increased aggression and reduced sociability. In accordance with our predictions, MPH reduced aggression and increased sociability in callous mice; yet, it failed to restore the low responsiveness to the emotions of a conspecific in pain, isomorphic to CU traits. CONCLUSIONS Although our data support the notion that MPH may contribute to the management of excess aggression in CD patients, additional studies shall identify specific treatments to target the callousness domain. The latter, unaffected by MPH in our experimental model, demands focused consideration whereby it constitutes a specifier associated with a worse prognosis.
Collapse
Affiliation(s)
- Francesca Zoratto
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy.
| | - Francesca Franchi
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy
| | - Simone Macrì
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy
| | - Giovanni Laviola
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy.
| |
Collapse
|
4
|
Boyette-Davis JA, Rice HR, Shoubaki RI, Gonzalez CM, Kunkel MN, Lucero DA, Womble PD, Guarraci FA. A recreational dose of methylphenidate, but not methamphetamine, decreases anxiety-like behavior in female rats. Neurosci Lett 2018; 682:21-26. [DOI: 10.1016/j.neulet.2018.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
|
5
|
Zucker I. Psychoactive drug exposure during breastfeeding: a critical need for preclinical behavioral testing. Psychopharmacology (Berl) 2018; 235:1335-1346. [PMID: 29549392 DOI: 10.1007/s00213-018-4873-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022]
Abstract
Breastfeeding women are excluded from clinical trials of psychoactive drugs because of ethical concerns. Animal testing, which often is predictive of adverse effects in humans, represents the only avenue available for assessing drug safety for human offspring exposed to drugs during lactation. I determined whether behavioral outcomes for children exposed during breastfeeding to antidepressants, anxiolytics, antipsychotics, anti-seizure medications, analgesics, sedatives, and marijuana can be predicted by rodent studies of offspring exposed to drugs during lactation. Animal data were available for only 10 of 80 CNS-active drugs canvassed. Behavioral deficits in adolescence or adulthood in rats and mice after various drug exposures during lactation included reductions in sexual behavior, increased anxiety, hyperactivity, and impaired learning and memory. Whether similar adverse effects will emerge in adulthood in children exposed to drugs during breastfeeding is unknown. Rodent research has the potential to forecast impairments in breastfed children long before information emerges from post-marketing reports and should be prioritized during preclinical drug evaluation by the FDA for new drugs and for drugs currently prescribed off-label for lactating women.
Collapse
Affiliation(s)
- Irving Zucker
- Departments of Psychology and Integrative Biology, University of California, Berkeley, CA, 94720, USA. .,Psychology Department, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Zhang S, Wang W, Zhornitsky S, Li CSR. Resting State Functional Connectivity of the Lateral and Medial Hypothalamus in Cocaine Dependence: An Exploratory Study. Front Psychiatry 2018; 9:344. [PMID: 30100886 PMCID: PMC6072838 DOI: 10.3389/fpsyt.2018.00344] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
The role of dopamine in cocaine misuse has been extensively documented for the mesocorticolimbic circuit. Preclinical work from earlier lesion studies to recent multidisciplinary investigations has suggested that the hypothalamus is critically involved in motivated behavior, with the lateral and medial hypothalamus each involved in waking/feeding and resting/satiety. However, little is known of hypothalamus function and dysfunction in cocaine misuse. Here, we examined resting state functional connectivity of the lateral and medial hypothalamus in 70 individuals with cocaine dependence (CD) and 70 age as well as gender matched healthy controls (HC). Image pre-processing and analyses followed published work. Compared to HC, CD showed increased lateral hypothalamic connectivity with dorsolateral prefrontal cortex and decreased functional connectivity with the ventral precuneus. CD showed increased medial hypothalamic connectivity with the inferior parietal lobule and decreased connectivity with the ventromedial prefrontal cortex, temporal gyrus, fusiform gyrus, and ventral striatum. Further, at trend level significance, the connectivity strength between lateral hypothalamus and dorsolateral prefrontal cortex was positively correlated with total amount of cocaine use in the past month (p = 0.004, r = 0.35) and the connectivity strength between medial hypothalamus and ventral striatum was negatively correlated with cocaine craving as assessed by the Tiffany Cocaine Craving Questionnaire (p = 0.008, r = -0.33). Together, the findings demonstrated altered resting state functional connectivity of the hypothalamus and may provide new insight on circuit level deficits in cocaine dependence.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States.,Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
7
|
Karim TJ, Reyes-Vazquez C, Dafny N. Comparison of the VTA and LC response to methylphenidate: a concomitant behavioral and neuronal study of adolescent male rats. J Neurophysiol 2017; 118:1501-1514. [PMID: 28615331 DOI: 10.1152/jn.00145.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022] Open
Abstract
Methylphenidate (MPD), also known as Ritalin, is a psychostimulant used to treat attention deficit hyperactivity disorder. However, it is increasingly being misused by normal adolescents for recreation and academic advantage. Therefore, it is important to elucidate the behavioral and neurophysiological effects of MPD in normal subjects. MPD inhibits the reuptake of catecholamines, mainly found in the ventral tegmental area (VTA) and locus coeruleus (LC). The VTA and LC normally mediate attention, motivation, and drug reward behaviors. Selective neuronal connections between the VTA and LC have been identified implicating regular interaction between the structures. The objective of this study was to compare the neuronal responses of the VTA and LC to MPD in normal adolescent rats. Animals were implanted with permanent electrodes in the VTA and LC, and neuronal units were recorded following acute and repetitive (chronic) saline or 0.6, 2.5, or 10.0 mg/kg MPD exposure. Animals displayed either behavioral sensitization or tolerance to all three doses of MPD. Acute MPD exposure elicited excitation in the majority of all VTA and LC units. Chronic MPD exposure elicited a further increase in VTA and LC neuronal activity in animals exhibiting behavioral sensitization and an attenuation in VTA and LC neuronal activity in animals exhibiting behavioral tolerance, demonstrating neurophysiological sensitization and tolerance, respectively. The similar pattern in VTA and LC unit activity suggests that the two structures are linked in their response to MPD. These results may help determine the exact mechanism of action of MPD, resulting in optimized treatment of patients.NEW & NOTEWORTHY The same dose of 0.6, 2.5, and 10 mg/kg methylphenidate (MPD) elicits either behavioral sensitization or tolerance in adolescent rats. There is a direct correlation between the ventral tegmental area (VTA) and locus coeruleus (LC) neuronal response to chronic MPD exposure. Both the VTA and LC are involved in the behavioral and neurophysiological effects of chronic MPD.
Collapse
Affiliation(s)
- Tahseen J Karim
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| | - Cruz Reyes-Vazquez
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| | - Nachum Dafny
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| |
Collapse
|
8
|
Montagnini BG, Silveira KM, Pierone BC, de Azevedo Camim N, Anselmo-Franci JA, de Fátima Paccola Mesquita S, Kiss ACI, Gerardin DCC. Reproductive parameters of female Wistar rats treated with methylphenidate during development. Physiol Behav 2016; 167:118-124. [DOI: 10.1016/j.physbeh.2016.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 11/25/2022]
|
9
|
Remmes J, Bodden C, Richter SH, Lesting J, Sachser N, Pape HC, Seidenbecher T. Impact of Life History on Fear Memory and Extinction. Front Behav Neurosci 2016; 10:185. [PMID: 27757077 PMCID: PMC5047906 DOI: 10.3389/fnbeh.2016.00185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/20/2016] [Indexed: 11/22/2022] Open
Abstract
Behavioral profiles are strongly shaped by an individual's whole life experience. The accumulation of negative experiences over lifetime is thought to promote anxiety-like behavior in adulthood (“allostatic load hypothesis”). In contrast, the “mismatch hypothesis” of psychiatric disease suggests that high levels of anxiety-like behavior are the result of a discrepancy between early and late environment. The aim of the present study was to investigate how different life histories shape the expression of anxiety-like behavior and modulate fear memory. In addition, we aimed to clarify which of the two hypotheses can better explain the modulation of anxiety and fear. For this purpose, male mice grew up under either adverse or beneficial conditions during early phase of life. In adulthood they were further subdivided in groups that either matched or mismatched the condition experienced before, resulting in four different life histories. The main results were: (i) Early life benefit followed by late life adversity caused decreased levels of anxiety-like behavior. (ii) Accumulation of adversity throughout life history led to impaired fear extinction learning. Late life adversity as compared to late life benefit mainly affected extinction training, while early life adversity as compared to early life benefit interfered with extinction recall. Concerning anxiety-like behavior, the results do neither support the allostatic load nor the mismatch hypothesis, but rather indicate an anxiolytic effect of a mismatched early beneficial and later adverse life history. In contrast, fear memory was strongly affected by the accumulation of adverse experiences over the lifetime, therefore supporting allostatic load hypothesis. In summary, this study highlights that anxiety-like behavior and fear memory are differently affected by specific combinations of adverse or beneficial events experienced throughout life.
Collapse
Affiliation(s)
- Jasmin Remmes
- Institute of Physiology I, Westfälische Wilhelms-UniversityMünster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-UniversityMünster, Germany
| | - Carina Bodden
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-UniversityMünster, Germany; Department of Behavioural Biology, Westfälische Wilhelms-UniversityMünster, Germany
| | - S Helene Richter
- Department of Behavioural Biology, Westfälische Wilhelms-University Münster, Germany
| | - Jörg Lesting
- Institute of Physiology I, Westfälische Wilhelms-UniversityMünster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-UniversityMünster, Germany
| | - Norbert Sachser
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-UniversityMünster, Germany; Department of Behavioural Biology, Westfälische Wilhelms-UniversityMünster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-UniversityMünster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-UniversityMünster, Germany
| | - Thomas Seidenbecher
- Institute of Physiology I, Westfälische Wilhelms-UniversityMünster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-UniversityMünster, Germany
| |
Collapse
|