1
|
Rasheed PA, Rasool K, Younes N, Nasrallah GK, Mahmoud KA. Ecotoxicity and environmental safety assessment of two-dimensional niobium carbides (MXenes). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174563. [PMID: 38981534 DOI: 10.1016/j.scitotenv.2024.174563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Two-dimensional (2D) MXenes have gained great interest in water treatment, biomedical, and environmental applications. The antimicrobial activity and cell toxicity of several MXenes including Nb4C3Tx and Nb2CTx have already been explored. However, potential side effects related to Nb-MXene toxicity, especially on aquatic pneuma, have rarely been studied. Using zebrafish embryos, we investigated and compared the potential acute toxicity between two forms of Nb-MXene: the multilayer (ML-Nb4C3Tx, ML-Nb2CTx) and the delaminated (DL-Nb2CTx, and DL-Nb4C3Tx) Nb-MXene. The LC50 of ML-Nb4C3Tx, ML-Nb2CTx, DL-Nb2CTx, and DL-Nb4C3Tx were estimated to be 220, 215, 225, and 128 mg/L, respectively. Although DL-Nb2CTx, and DL-Nb4C3Tx derivatives have similar sizes, DL-Nb4C3Tx not only shows the higher mortality (LC50 = 128 mg/L Vs 225 mg/L), but also the highest teratogenic effect (NOEC = 100 mg/L Vs 200 mg/L). LDH release assay suggested more cell membrane damage and a higher superoxide anion production in DL-Nb4C3Tx than DL-Nb2CTx,. Interestingly, both DL-Nb-MXene nanosheets showed insignificant cardiac, hepatic, or behavioral toxic effects compared to the negative control. Embryos treated with the NOEC of DL-Nb2CTx presented hyperlocomotion, while embryos treated with the NOEC of DL-Nb4C3Tx presented hyperlocomotion, suggesting developmental neurotoxic effect and muscle impairment induced by both DL-Nb-MXene. According to the Fish and Wildlife Service (FSW) Acute Toxicity Rating Scale, all tested Nb-MXene nanosheets were classified as "Practically not toxic". However, DL-Nb4C3Tx should be treated with caution as it might cause a neurotoxic effect on fauna when it ends up in wastewater in high concentrations.
Collapse
Affiliation(s)
- P Abdul Rasheed
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar; Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 623, India
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar
| | - Nadine Younes
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Khaled A Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P. O. Box 34110, Doha, Qatar; Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
2
|
Mahendra CK, Ser HL, Abidin SAZ, Khan SU, Pusparajah P, Htar TT, Chuah LH, Tang SY, Ming LC, Goh KW, Kumari Y, Goh BH. The anti-melanogenic properties of Swietenia macrophylla king. Biomed Pharmacother 2023; 162:114659. [PMID: 37068335 DOI: 10.1016/j.biopha.2023.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Fair flawless skin is the goal for some cultures and the development of irregular skin pigmentation is considered an indication of premature skin aging. Hence, there is a rising demand for skin whitening cosmetics. Thus, this research will be focusing on discovering the anti-pigmentation properties of Swietenia macrophylla seeds. Firstly, the seeds were extracted with ethanol and further fractionate based on their polarity before testing them on zebrafish embryos. The ethanolic extract of the seed demonstrated significant inhibition of both tyrosinase activity and melanin production in the embryos. However, after fractionation, the anti-melanogenic ability was observed to have decreased, signifying that the phytocompounds may be synergistic in nature. Still in the proteomic studies the ethanolic extract and its hexane fraction both induced the downregulation of cathepsin LB and cytoskeletal proteins that have connections to the melanogenic pathway, confirming that S. macrophylla seeds do indeed have anti-pigmentation properties that can be exploited for cosmetic use. Next, limonoids (tetranortriterpenoids found in the seed) were tested for their inhibitory effect against human tyrosinase related protein 1 (TYRP-1) via molecular docking. It was found that limonoids have a stronger binding affinity to TYRP-1 than kojic acid, suggesting that these phytocompounds may have the potential in inhibiting pigmentation. However, this still needs further confirmation before these phytocompounds can be developed into a skin whitening agent. Other assays like ex-vivo or 3D human skin culture can also be used to better study the seeds anti-pigmentation effect on humans.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Hooi-Leng Ser
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Liquid Chromatography Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Shafi Ullah Khan
- Product & Process Innovation Department, Qarshi Brands (Pvt) Ltd, Hattar Industrial Estate, 22610, Haripur, KPK, Pakistan
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Thet Thet Htar
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Siah Ying Tang
- Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia; Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Long Chiau Ming
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Khang Wen Goh
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Yatinesh Kumari
- Neurological Disorder and Aging Research Group (NDA), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
3
|
Tamagno WA, Alves C, Tessaro D, Sutorillo NT, Santin W, Barcellos LJG. Deferoxamine Supplementation Abolished Iron-Related Toxicity of Ilex paraguariensis Extract: Behavioral and Biochemical Evaluation in Adult Zebrafish (Danio rerio). Antioxidants (Basel) 2022; 11:antiox11081507. [PMID: 36009226 PMCID: PMC9404764 DOI: 10.3390/antiox11081507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022] Open
Abstract
Ilex paraguariensis (Herb mate) is a native plant from South America, widely consumed through the infusion of dried leaves. The presence of antioxidant properties in herb mate may be relevant and contribute to evaluating the effect of its compounds against oxidative stress, which could cause neurodegenerative diseases. Despite having health benefits, there are reports of the presence of heavy metals in extracts obtained from the infusion. One of these metals is iron (Fe), found in large amounts in herb mate. To reverse the cumulative effects of metals and Fe in the body, the use of Deferoxamine (Dfx) is indicated, being a potent chelator of Fe. In this work, we aimed to evaluate the antioxidant potential of the micro-encapsulated extract of I. paraguariensis (MEIP) supplemented with Dfx on zebrafish behavior and biochemical biomarkers. To evaluate the effect per se and the supplementation, four groups were established: the first group was the control (water); the second, fish treated with MEIP; the third group was formed of fish treated with Dfx; while the fourth group was treated with both MEIP and Dfx. When applied alone, Dfx presents an anxiogenic-like pattern on zebrafish (Danio rerio), while the MEIP shows an anxiolytic-like behavior. The antioxidant enzymes are re-modulated close to control when the MEIP + Dfx is applied. The cholinergic system shows an activation of the signaling, as well as the heme radical group formation, which is not affected by the Dfx-chelating effect. Thus, the supplementation of MEIP with Dfx is important to transform this extract into one that is safer and healthier for human consumption.
Collapse
Affiliation(s)
- Wagner Antonio Tamagno
- Biochemistry Profª Drª Rosilene Rodrigues Kaizer Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, Sertão 99170-000, RS, Brazil; (W.A.T.); (C.A.); (D.T.); (N.T.S.); (W.S.)
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105–900, RS, Brazil
| | - Carla Alves
- Biochemistry Profª Drª Rosilene Rodrigues Kaizer Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, Sertão 99170-000, RS, Brazil; (W.A.T.); (C.A.); (D.T.); (N.T.S.); (W.S.)
- Graduate Program in Bioexperimentation, Universidade de Passo Fundo (UPF), Passo Fundo 99052–900, RS, Brazil
| | - Diego Tessaro
- Biochemistry Profª Drª Rosilene Rodrigues Kaizer Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, Sertão 99170-000, RS, Brazil; (W.A.T.); (C.A.); (D.T.); (N.T.S.); (W.S.)
- Graduate Program in Environmental Science and Technology, Federal University of Fronteira Sul (UFFS), Erechim Campus, Erechim 99700-970, RS, Brazil
| | - Nathália Tafarel Sutorillo
- Biochemistry Profª Drª Rosilene Rodrigues Kaizer Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, Sertão 99170-000, RS, Brazil; (W.A.T.); (C.A.); (D.T.); (N.T.S.); (W.S.)
| | - Wallace Santin
- Biochemistry Profª Drª Rosilene Rodrigues Kaizer Laboratory of the Federal Institute of Education, Science, and Technology of Rio Grande do Sul, Sertão Campus, Sertão 99170-000, RS, Brazil; (W.A.T.); (C.A.); (D.T.); (N.T.S.); (W.S.)
| | - Leonardo José Gil Barcellos
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105–900, RS, Brazil
- Graduate Program in Bioexperimentation, Universidade de Passo Fundo (UPF), Passo Fundo 99052–900, RS, Brazil
- Correspondence:
| |
Collapse
|
4
|
Younes N, Alsahan BS, Al-Mesaifri AJ, Da’as SI, Pintus G, Majdalawieh AF, Nasrallah GK. JC-10 probe as a novel method for analyzing the mitochondrial membrane potential and cell stress in whole zebrafish embryos. Toxicol Res (Camb) 2022; 11:77-87. [PMID: 35237413 PMCID: PMC8882781 DOI: 10.1093/toxres/tfab114] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND A sensitive method to investigate cellular stress and cytotoxicity is based on measuring mitochondrial membrane potential. Recently, JC-10, was developed to measure mitochondrial membrane potential in vitro and used as an indicator for cytotoxicity. Yet, JC-10 has never been used in vivo (whole organism). In normal cells, JC-10 concentrates in the mitochondrial matrix, where it forms red fluorescent aggregates. However, in apoptotic/necrotic cells, JC-10 diffuses out of the mitochondria, changes to monomeric form, and stains cells in green. Here, we aimed to develop and optimize a JC-10 assay to measure cytotoxicity in zebrafish embryo. We also investigated the effectiveness of JC-10 assay by comparing it to common cytotoxicity assays. METHODS Zebrafish embryos were exposed to a toxic surfactant AEO-7 at no observed effect concentration (6.4 μg/L), and then cytotoxicity was measured using (i) JC-10 mitochondrial assay, (ii) acridine orange (AO), (iii) TUNEL assay, and (iv) measuring the level of Hsp70 by western blotting. RESULTS As compared to the negative control, embryos treated with NOEC of AEO-7 did not show significant cytotoxicity when assessed by AO, TUNEL or western blotting. However, when JC-10 was used under the same experimental conditions, a significant increase of green:red fluorescent ratio signal was detected in the AEO-7 treated embryos, indicating mitochondrial damage and cellular cytotoxicity. Noteworthy, the observed green: red ratio increase was dose dependent, suggesting specificity of the JC-10 assay. CONCLUSION JC-10 is a sensitive in vivo method, thus, can be used as surrogate assay to measure cytotoxicity in whole zebrafish embryos.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Bana S Alsahan
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Asmaa J Al-Mesaifri
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Sahar I Da’as
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O box 34110 Doha, Qatar
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, University of Sharjah, P.O. Box 27272 Sharjah, United Arab Emirates
| | - Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666 Sharjah, United Arab Emirates
| | - Gheyath K Nasrallah
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| |
Collapse
|
5
|
Al-Kandari S, Abdullah AM, Al-Kandari H, Nasrallah GK, Sharaf MA, AlMarzouq DS, Mohamed AM, Younes N, Kafour N, Al-Tahtamouni T. Eco-friendly highly efficient BN/rGO/TiO 2 nanocomposite visible-light photocatalyst for phenol mineralization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62771-62781. [PMID: 34215986 PMCID: PMC8589756 DOI: 10.1007/s11356-021-15083-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/19/2021] [Indexed: 05/25/2023]
Abstract
Boron nitride (BN) and reduced graphene oxide (rGO) of different loadings were composited with commercial P25 TiO2 (Ti) through the hydrothermal method. The as-prepared nanocomposites were characterized using various techniques: X-ray photoelectron spectroscopy, X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared and Raman spectroscopies, and transmission and scanning electron microscopies. It was observed that 10% and 0.1% of BN and rGO, respectively, loaded on TiO2 (10BNr0.1GOTi) resulted in the best nanocomposite in terms of phenol degradation under simulated sunlight. A 93.4% degradation of phenol was obtained within 30 min in the presence of H2O2. Finally, to ensure the safe use of BNrGOTi nanoparticles in the aquatic environment, acute zebrafish toxicity (acutoxicity) assays were studied. The 96-h acute toxicity assays using the zebrafish embryo model revealed that the LC50 for the BNrGOTi nanoparticle was 677.8 mg L-1 and the no observed effect concentration (NOEC) was 150 mg L-1. Therefore, based on the LC50 value and according to the Fish and Wildlife Service Acute Toxicity Rating Scale, BNrGOTi is categorized as a "practically not toxic" photocatalyst for water treatment.
Collapse
Affiliation(s)
- Shekhah Al-Kandari
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969 Safat, 13060, Kuwait City, Kuwait
| | - Aboubakr M Abdullah
- Center for Advanced Materials, Qatar University, Doha, P.O. Box 2713, Qatar.
| | - Halema Al-Kandari
- Department of Health Environment, College of Health Sciences, PAAET, P.O. Box 1428, Faiha, 72853, Kuwait City, Kuwait.
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Mohammed A Sharaf
- Department of Maritime Transportation Management Engineering, İstanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Douaa S AlMarzouq
- Department of Health Environment, College of Health Sciences, PAAET, P.O. Box 1428, Faiha, 72853, Kuwait City, Kuwait
| | - Ahmed M Mohamed
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969 Safat, 13060, Kuwait City, Kuwait
| | - Nadin Younes
- Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Nada Kafour
- Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Talal Al-Tahtamouni
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, P.O. Box 2713, Qatar
| |
Collapse
|
6
|
Jia H, Luo KQ. Fluorescence resonance energy transfer-based sensor zebrafish for detecting toxic agents with single-cell sensitivity. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124826. [PMID: 33421851 DOI: 10.1016/j.jhazmat.2020.124826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Zebrafish are widely used for detecting toxic agents because of their unique advantages. The conventional zebrafish-based tests use lethal rates and morphological changes as criteria to evaluate the toxicity. To increase the sensitivity of using zebrafish to detect toxic agents, a fluorescence resonance energy transfer-based apoptotic biosensor was introduced into zebrafish genome to generate transgenic sensor zebrafish. Seven chemicals including heavy metals, nanomaterials and DNA-damaging agents were used to treat the sensor zebrafish to determine the sensitivity of the sensor zebrafish. The results showed that sensor zebrafish can detect the toxicity of the tested agents with single-cell sensitivity. Using the sensor zebrafish, we found that, at 100 nM, heavy metal cadmium (Cd) induced apoptosis of zebrafish cells, while no obvious morphological or behavioral changes were observed from the sensor zebrafish. Even at 44.5 nM (the maximum allowable concentration in drinking water), Cd induced a significant increase of apoptosis in sensor zebrafish. ZnO nanoparticles caused apoptosis in sensor zebrafish at a very low concentration of 100 ng/mL. DNA-damaging agents induced the apoptosis of many cells in sensor zebrafish. The sensor zebrafish are much more sensitive than the conventional zebrafish-based tests and can serve as a powerful tool for detecting toxic agents.
Collapse
Affiliation(s)
- Hao Jia
- Faculty of Health Sciences, University of Macau, Taipa, Macao
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao.
| |
Collapse
|
7
|
Mathuthu E, Janse van Rensburg A, Du Plessis D, Mason S. EDTA as a chelating agent in quantitative 1H-NMR of biologically important ions. Biochem Cell Biol 2021; 99:465-475. [PMID: 33449856 DOI: 10.1139/bcb-2020-0543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Biologically important ions such as Ca, K, Mg, Fe, and Zn play major roles in numerous biological processes, and their homeostatic balance is necessary for the maintenance of cellular activities. Sudden and severe loss in homeostasis of just one biologically important ion can cause a cascade of negative effects. The ability to quickly, accurately, and reliably quantify biologically important ions in samples of human bio-fluids is something that has been sorely lacking within the field of metabolomics. 1H-NMR spectra. The foundation of our investigation was the a-priori knowledge that free ethylenediaminetetraacetic acid (EDTA) produces two clear single peaks on 1H-NMR spectra, and that EDTA chelated to different ions produces unique 1H-NMR spectral patterns due to 3D conformational changes in the chemical structure of chelated-EDTA and varying degrees of electronegativity. The aim of this study was to develop and test a 1H-NMR-based method, with application specifically to the field of metabolomics, to quantify biologically important ions within the physiological pH range of 6.50-7.50 using EDTA as a chelating agent. Our method produced linear, accurate, precise, and repeatable results for Ca, Mg, and Zn; however, K and Fe did not chelate with EDTA.
Collapse
Affiliation(s)
- Emmanuel Mathuthu
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.,Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Angelique Janse van Rensburg
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.,Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Dean Du Plessis
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.,Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.,Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Al-Jamal O, Al-Jighefee H, Younes N, Abdin R, Al-Asmakh MA, Radwan AB, Sliem MH, Majdalawieh AF, Pintus G, Yassine HM, Abdullah AM, Da'as SI, Nasrallah GK. Organ-specific toxicity evaluation of stearamidopropyl dimethylamine (SAPDMA) surfactant using zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140450. [PMID: 32886985 DOI: 10.1016/j.scitotenv.2020.140450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Surfactants are widely used in the industry of detergents, household products, and cosmetics. SAPDMA is a cationic surfactant that is used mostly in cosmetics, conditioning agents and has recently gained attention as a corrosion inhibitor in the sea pipelines industry. In this regard, literature concerning the ecotoxicological classification of SAPDMA on aquatic animals is lacking. This study aims to evaluate the potential ecotoxicity of SAPDMA using the aquatic zebrafish embryo model. The potential toxic effects of SAPDMA were assessed by different assays. This includes (i) mortality/survival assay to assess the median lethal concentration (LC50); (ii) teratogenicity assay to assess the no observed effect concentration (NOEC); (iii) organ-specific toxicity assays including cardiotoxicity, neurotoxicity (using locomotion assay), hematopoietic toxicity (hemoglobin synthesis using o-dianisidine staining), hepatotoxicity (liver steatosis and yolk retention using Oil Red O (ORO) stain); (iv) cellular cytotoxicity (mitochondrial membrane potential) by measuring the accumulation of JC-1 dye into mitochondria. Exposure of embryos to SAPDMA caused mortality in a dose-dependent manner with a calculated LC50 of 2.3 mg/L. Thus, based on the LC50 value and according to the Fish and Wildlife Service (FWS) Acute Toxicity Rating Scale, SAPDMA is classified as "moderately toxic". The No Observed Effect Concentration (NOEC) concerning a set of parameters including scoliosis, changes in body length, yolk, and eye sizes was 0.1 mg/L. At the same NOEC concentration (0.1 mg/L), no organ-specific toxicity was detected in fish treated with SAPDMA, except hepatomegaly with no associated liver dysfunctions. However, higher SAPDMA concentrations (0.8 mg/L) have dramatic effects on zebrafish organ development (eye, heart, and liver development). Our data recommend a re-evaluation of the SAPDMA employment in the industry setting and its strictly monitoring by environmental and public health agencies.
Collapse
Affiliation(s)
- Ola Al-Jamal
- Biomedical Research Center, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hadeel Al-Jighefee
- Biomedical Research Center, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nadin Younes
- Biomedical Research Center, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roba Abdin
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Maha A Al-Asmakh
- Biomedical Research Center, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - A Bahgat Radwan
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mostafa H Sliem
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Hadi M Yassine
- Biomedical Research Center, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Aboubakr M Abdullah
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
9
|
Shabrangharehdasht M, Mirvaghefi A, Farahmand H. Effects of nanosilver on hematologic, histologic and molecular parameters of rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105549. [PMID: 32599437 DOI: 10.1016/j.aquatox.2020.105549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 05/02/2023]
Abstract
Efficient antibacterial and antifungal properties of silver nanoparticles (AgNPs) sparked its commercial application in several industrial and household products. Drastic increase of AgNPs production raised concerns over aquatic organisms' exposure. The toxic dose, mechanism of toxicity, physiological damages, gene expression alteration, hematological and blood parameter distortion by AgNP needs to be investigated to explore inevitable risk in aquatic animals. In this study, rainbow trout (Oncorhynchus mykiss) (122.4 ± 1.4 g, 23.8 ± 0.7 cm) were exposed to colloidal AgNPs (28.3 ± 12.6 um) to determine the lethal concentration (LC50)(8.9 mg/l). Sub-lethal concentrations (10 %LC50, 25 %LC50, plus LC50 value) impact on hematologic, histological and molecular responses were evaluated. Results showed sever damage to blood cells morphology, and hematologic parameters change including RBC, WBC, Hct and Hb in all AgNP-treated groups. Histological damage in gill and liver of exposed fish were observed. Significant up-regulating of HSP70 and P53 genes were detected in response to AgNPs, whereas, it was found that in comparison to HSP70 gene, P53 induction occurred in lower AgNPs concentrations and lower exposure time. These results indicate adversely effects of AgNPs exposure to aquatic environments.
Collapse
Affiliation(s)
| | - Alireza Mirvaghefi
- Department of Fisheries and Environmental Science, University of Tehran, Karaj, Iran.
| | - Hamid Farahmand
- Department of Fisheries and Environmental Science, University of Tehran, Karaj, Iran
| |
Collapse
|
10
|
Sun Y, Cao Y, Tong L, Tao F, Wang X, Wu H, Wang M. Exposure to prothioconazole induces developmental toxicity and cardiovascular effects on zebrafish embryo. CHEMOSPHERE 2020; 251:126418. [PMID: 32443233 DOI: 10.1016/j.chemosphere.2020.126418] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Prothioconazole is a fungicide that has been widely used in general agriculture and livestock husbandry. This study evaluated the acute toxicity of prothioconazole to zebrafish embryos by assessing their hatching rate and malformation when exposed to different concentrations of prothioconazole. The 96 h-LC50 value of zebrafish embryos was 1.70 mg/L. Upon exposure to 0.85 mg/L, the mortality rate of the embryos significantly increased while their hatching rate decreased significantly. At prothioconazole concentrations higher than 0.43 mg/L, developmental morphologic abnormalities such as heart and yolk-sac edema, spine curvature, tail deformity, shortened body length and decreased eye area were observed. The heart rate of embryos decreased in a dose-dependent fashion during the exposure time. Prothioconazole exposure also resulted in increased rates of cardiac malformation detected by significant increase in the distance between the sinus venosus and bulbus arteriosus and the pericardium area. Moreover, the expression levels of genes related to cardiac development (amhc, vmhc, fli1, hand2, gata4, nkx2.5, tbx5 and atp2a2a) were significantly altered after exposure to prothioconazole. Indeed, this study revealed the adverse effects on the developmental and cardiovascular system of zebrafish embryo caused by prothioconazole. It further elucidated the risk of prothioconazole exposure to vertebrate cardiovascular toxicity. As such, it provides a theoretical foundation for pesticide risk management measures.
Collapse
Affiliation(s)
- Yongqi Sun
- School of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Yi Cao
- School of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Lili Tong
- School of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Fangyi Tao
- School of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Xiaonan Wang
- School of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Huiming Wu
- School of Agricultural and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou, China.
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide & Environmental Toxicology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Giordo R, Nasrallah GK, Al-Jamal O, Paliogiannis P, Pintus G. Resveratrol Inhibits Oxidative Stress and Prevents Mitochondrial Damage Induced by Zinc Oxide Nanoparticles in Zebrafish ( Danio rerio). Int J Mol Sci 2020; 21:E3838. [PMID: 32481628 PMCID: PMC7312482 DOI: 10.3390/ijms21113838] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Despite their wide industrial use, Zinc oxide (ZnO) nanoparticles (NPs) exhibit a high toxic potential while concerns of their health-related risks are still present, urging additional in vivo clarification studies. Oxidative stress is recognized as the primary trigger of NP-associated toxicity, suggesting antioxidants as a promising counteractive approach. Here, we investigated the protective effect of the natural antioxidant resveratrol against ZnO NP-induced toxicity in vivo using the zebrafish model. Our findings demonstrate that resveratrol counteracts ZnO NP-induced zebrafish lethality preventing cardiac morphological and functional damage. NP-induced vascular structural abnormalities during embryonic fish development were significantly counteracted by resveratrol treatment. Mechanistically, we further showed that resveratrol inhibits ROS increase, prevents mitochondrial membrane potential dysfunction, and counteracts cell apoptosis/necrosis elicited by ZnO NP. Overall, our data provide further evidence demonstrating the primary role of oxidative stress in NP-induced damage, and highlight new insights concerning the protective mechanism of antioxidants against nanomaterial toxicity.
Collapse
Affiliation(s)
- Roberta Giordo
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (O.A.-J.)
| | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (O.A.-J.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ola Al-Jamal
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (R.G.); (O.A.-J.)
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Surgery, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy;
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, UAE
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| |
Collapse
|
12
|
Hu J, Lemasters JJ. Suppression of iron mobilization from lysosomes to mitochondria attenuates liver injury after acetaminophen overdose in vivo in mice: Protection by minocycline. Toxicol Appl Pharmacol 2020; 392:114930. [PMID: 32109512 DOI: 10.1016/j.taap.2020.114930] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Abstract
Acetaminophen (APAP) overdose causes hepatotoxicity involving mitochondrial dysfunction. Previous studies showed that translocation of Fe2+ from lysosomes into mitochondria by the mitochondrial Ca2+ uniporter (MCU) promotes the mitochondrial permeability transition (MPT) after APAP. Here, our Aim was to assess protection by iron chelation and MCU inhibition against APAP hepatotoxicity in mice. C57BL/6 mice and hepatocytes were administered toxic doses of APAP with and without starch-desferal (an iron chelator), minocycline (MCU inhibitor), or N-acetylcysteine (NAC). In mice, starch-desferal and minocycline pretreatment decreased ALT and liver necrosis after APAP by >60%. At 24 h after APAP, loss of fluorescence of mitochondrial rhodamine 123 occurred in pericentral hepatocytes often accompanied by propidium iodide labeling, indicating mitochondrial depolarization and cell death. Starch-desferal and minocycline pretreatment decreased mitochondrial depolarization and cell death by more than half. In cultured hepatocytes, cell killing at 10 h after APAP decreased from 83% to 49%, 35% and 27%, respectively, by 1 h posttreatment with minocycline, NAC, and minocycline plus NAC. With 4 h posttreatment in vivo, minocycline and minocycline plus NAC decreased ALT and necrosis by ~20% and ~50%, respectively, but NAC alone was not effective. In conclusion, minocycline and starch-desferal decrease mitochondrial dysfunction and severe liver injury after APAP overdose, suggesting that the MPT is likely triggered by iron uptake into mitochondria through MCU. In vivo, minocycline and minocycline plus NAC posttreatment after APAP protect at later time points than NAC alone, indicating that minocycline has a longer window of efficacy than NAC.
Collapse
Affiliation(s)
- Jiangting Hu
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | - John J Lemasters
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States of America.
| |
Collapse
|
13
|
da Luz TM, Freitas ÍN, Silva FG, da Costa Araújo AP, Fernandes T, Rodrigues FP, de Oliveira Junior AG, Malafaia G. Do predictive environmentally relevant concentrations of ZnO nanoparticles induce antipredator behavioral response deficit in Swiss mice? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135486. [PMID: 31757542 DOI: 10.1016/j.scitotenv.2019.135486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
The toxicity of zinc oxide nanoparticles (ZnO NPs) has been addressed in several studies; however, their effect on the mammalian group, even at environmentally relevant concentrations, remains poorly understood. The aims of the present study are to expose female Swiss mice to ZnO NP concentrations commonly faced by mammals who enter aquatic systems to perform different ecological functions and to assess the possible effects of such particles on their behavior. The test animals were placed in water added with ZnO NPs for 3 min, 2 times/day, for 21 days. Two experimental groups were set, NP1x, composed of animals subjected to ZnO NP concentration of 760 μg/L; and NP50x (control), which encompassed animals subjected to 38,000 μg/L. Based on field test results (OF), the contact with NPs did not induce locomotor deficits or anxiogenic and anxiolytic effect on the animal models. However, models exposed to NPs were not able to recognize the predatory threat posed by the presence of Pantherophis guttatus and Arapaima gigas; on the other hand, animals in the control group, who were not exposed to ZnO NPs, did not present antipredator behavioral response deficit. Furthermore, mice exposed to NPs were unable to distinguish real predators from plastic copies, and it suggests antipredator behavioral response deficit. High Zn concentrations in blood, liver, brain and skin samples are associated with deficit caused by the exposure to ZnO NPs. To the best of our knowledge, the current study is in the first to evidence that ZnO NPs induce changes in antipredator behavioral responses, even under ephemeral conditions and at low concentrations. However, the exposure to ZnO NPs can be a risk to the health of the assessed individuals and to the dynamics of their populations if the present antipredator behavioral response test results are extrapolated to the ecological context.
Collapse
Affiliation(s)
| | | | - Fabiano Guimarães Silva
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Post-graduation Program in Cerrado Natural Resource Conservation and Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil
| | - Thiago Fernandes
- Laboratory of Electron Microscopy and Microanalysis (L.E.M.M.) of Londrina State University, PR, Brazil
| | | | | | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil; Goiano Federal Institute - Rectory, GO, Brazil.
| |
Collapse
|