1
|
Kmecick M, Vieira da Costa MC, Ferreira EDC, Prodocimo MM, Ortolani-Machado CF. Critical Evaluation of Embedding Media for Histological Studies of Early Stages of Chick Embryo Development. Methods Protoc 2023; 6:mps6020038. [PMID: 37104020 PMCID: PMC10146326 DOI: 10.3390/mps6020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
A histological examination is an important tool in embryology, developmental biology, and correlated areas. Despite the amount of information available about tissue embedding and different media, there is a lack of information regarding best practices for embryonic tissues. Embryonic tissues are considered fragile structures, usually small in size, and frequently challenging to position correctly in media for the subsequent histological steps. Here, we discuss the embedding media and procedures that provided us with appropriate preservation of tissue and easier orientation of embryos at early development. Fertilized Gallus gallus eggs were incubated for 72 h, collected, fixed, processed, and embedded with paraplast, polyethylene glycol (PEG), or historesin. These resins were compared by the precision of tissue orientation, the preview of the embryos in the blocks, microtomy, contrast in staining, preservation, average time, and cost. Paraplast and PEG did not allow correct embryo orientation, even with agar–gelatin pre-embedded samples. Additionally, structural maintenance was hindered and did not allow detailed morphological assessment, presenting tissue shrinkage and disruption. Historesin provided precise tissue orientation and excellent preservation of structures. Assessing the performance of the embedding media contributes significantly to future developmental research, optimizing the processing of embryo specimens and improving results.
Collapse
Affiliation(s)
- Melyssa Kmecick
- Laboratory of Embryotoxicology, Department of Cell Biology, Biological Sciences Sector, Federal University of Paraná, Av. Cel. Francisco Heráclito dos Santos, 100, Curitiba 81.531-980, PR, Brazil
| | - Mariliza Cristine Vieira da Costa
- Laboratory of Embryotoxicology, Department of Cell Biology, Biological Sciences Sector, Federal University of Paraná, Av. Cel. Francisco Heráclito dos Santos, 100, Curitiba 81.531-980, PR, Brazil
| | - Eduardo da Costa Ferreira
- Laboratory of Embryotoxicology, Department of Cell Biology, Biological Sciences Sector, Federal University of Paraná, Av. Cel. Francisco Heráclito dos Santos, 100, Curitiba 81.531-980, PR, Brazil
| | - Maritana Mela Prodocimo
- Laboratory of Cell Toxicology, Department of Cell Biology, Biological Sciences Sector, Federal University of Paraná, Av. Cel. Francisco Heráclito dos Santos, 100, Curitiba 81.531-980, PR, Brazil
| | - Claudia Feijó Ortolani-Machado
- Laboratory of Embryotoxicology, Department of Cell Biology, Biological Sciences Sector, Federal University of Paraná, Av. Cel. Francisco Heráclito dos Santos, 100, Curitiba 81.531-980, PR, Brazil
| |
Collapse
|
2
|
Zha Y, Jin Y, Wang X, Chen L, Zhang X, Wang M. Long-term maintenance of synaptic plasticity by Fullerenol Ameliorates lead-induced-impaired learning and memory in vivo. J Nanobiotechnology 2022; 20:348. [PMID: 35909130 PMCID: PMC9341061 DOI: 10.1186/s12951-022-01550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Fullerenol, a functional and water-soluble fullerene derivative, plays an important role in antioxidant, antitumor and antivirus, implying its enormous potential in biomedical applications. However, the in vivo performance of fullerenol remains largely unclear. We aimed to investigate the effect of fullerenol (i.p., 5 mg/kg) on the impaired hippocampus in a rat model of lead exposure. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a kind of newly developed soft-ionization mass spectrometry technology. In the present study, an innovative strategy for biological distribution analysis using MALDI-TOF-MS confirmed that fullerenol could across the blood-brain barrier and accumulate in the brain. Results from behavioral tests showed that a low dose of fullerenol could improve the impaired learning and memory induced by lead. Furthermore, electrophysiology examinations indicated that this potential repair effect of fullerenol was mainly due to the long-term changes in hippocampal synaptic plasticity, with enhancement lasting for more than 2-3 h. In addition, morphological observations and biochemistry analyses manifested that the long-term change in synaptic efficacy was accompanied by some structural alteration in synaptic connection. Our study demonstrates the therapeutic feature of fullerenol will be beneficial to the discovery and development as a new drug and lays a solid foundation for further biomedical applications of nanomedicines.
Collapse
Affiliation(s)
- Yingying Zha
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Yan Jin
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Xinxing Wang
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Lin Chen
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xulai Zhang
- Department of Medical Education and Research, Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, 230022, Anhui, China.
| | - Ming Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|