• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4598977)   Today's Articles (1346)   Subscriber (49356)
For: Mimouni S, Foissac A, Lavieville J. CFD modelling of wall steam condensation by a two-phase flow approach. Nuclear Engineering and Design 2011;241:4445-55. [DOI: 10.1016/j.nucengdes.2010.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Number Cited by Other Article(s)
1
Murase M, Utanohara Y. Numerical Simulation of Wall Condensation from a Superheated Steam and Air Mixture in a Vertical Pipe. NUCL TECHNOL 2023. [DOI: 10.1080/00295450.2023.2175598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
2
Loiseau C, Mimouni S, Studer E. Numerical simulation of wall condensation and spray using the MISTRA experiments. NUCLEAR ENGINEERING AND DESIGN 2023. [DOI: 10.1016/j.nucengdes.2022.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
3
A pilot study on modification of containment dome surface to enhance condensation. PROGRESS IN NUCLEAR ENERGY 2023. [DOI: 10.1016/j.pnucene.2022.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
4
Gera B, Ganju S, Chattopadhyay J. Validation of CFD code FLUIDYN-MP for steam condensation at walls in presence of non-condensable gases. ANN NUCL ENERGY 2021. [DOI: 10.1016/j.anucene.2020.107992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
5
Lee CW, Yoo JS, Cho HK. Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes. NUCLEAR ENGINEERING AND TECHNOLOGY 2021. [DOI: 10.1016/j.net.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
6
Condensation heat transfer for downward flows of superheated steam-air mixture in a circular pipe. NUCLEAR ENGINEERING AND DESIGN 2021. [DOI: 10.1016/j.nucengdes.2020.110948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
7
Lee JY, Jeong JJ, Yun B. Modifications of the turbulent diffusion layer model for the condensation heat transfer under the presence of noncondensable gases. ANN NUCL ENERGY 2020. [DOI: 10.1016/j.anucene.2019.107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
8
Lakehal D. A 20-year journey with George Yadigaroglu through computational thermal hydraulics. NUCLEAR ENGINEERING AND DESIGN 2019. [DOI: 10.1016/j.nucengdes.2019.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
9
CFD based wall condensation model for evaluating PCV conditions in Fukushima Daiichi Unit-1. NUCLEAR ENGINEERING AND DESIGN 2019. [DOI: 10.1016/j.nucengdes.2019.110170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
10
Li W, Zhang C, Chen T, Min J, Sénéchal D, Mimouni S. A unified wall function for wall condensation modelling in containment multi-component flows. NUCLEAR ENGINEERING AND DESIGN 2019. [DOI: 10.1016/j.nucengdes.2019.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
11
Lee JY, Jeong JJ, Kang JH, Yun B. Improvement of the condensation heat transfer model of the MARS-KS1.3 code using a modified diffusion layer model. PROGRESS IN NUCLEAR ENERGY 2018. [DOI: 10.1016/j.pnucene.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
12
Yoo JM, Kang JH, Yun BJ, Hong SW, Jeong JJ. Improvement of the MELCOR condensation heat transfer model for the thermal-hydraulic analysis of a PWR containment. PROGRESS IN NUCLEAR ENERGY 2018. [DOI: 10.1016/j.pnucene.2017.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
13
Simulations for cooling effect of PCCS in hot leg SB-LOCA of 1000 MW PWR. NUCLEAR ENGINEERING AND DESIGN 2017. [DOI: 10.1016/j.nucengdes.2017.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
14
Dispersed Two-Phase Flow Modelling for Nuclear Safety in the NEPTUNE_CFD Code. SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS 2017. [DOI: 10.1155/2017/3238545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
15
Proposed methodology for Passive Autocatalytic Recombiner sizing and location for a BWR Mark-III reactor containment building. ANN NUCL ENERGY 2016. [DOI: 10.1016/j.anucene.2016.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
16
Yadav MK, Khandekar S, Sharma PK. An integrated approach to steam condensation studies inside reactor containments: A review. NUCLEAR ENGINEERING AND DESIGN 2016. [DOI: 10.1016/j.nucengdes.2016.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
17
Kondo M, Yoneda K, Furuya M, Nishi Y. An evaluation model to predict steam concentration in a BWR reactor building. J NUCL SCI TECHNOL 2015. [DOI: 10.1080/00223131.2014.1000993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
18
Lee J, Park GC, Cho HK. Improvement of CUPID code for simulating filmwise steam condensation in the presence of noncondensable gases. NUCLEAR ENGINEERING AND TECHNOLOGY 2015. [DOI: 10.1016/j.net.2015.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
19
Malet J, Gélain T. Lumped-parameter simulations of wall condensation and sump evaporation under typical thermal-hydraulic conditions of nuclear reactor containment severe accident. PROGRESS IN NUCLEAR ENERGY 2014. [DOI: 10.1016/j.pnucene.2014.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
20
Computational Fluid Dynamics Modeling of Steam Condensation on Nuclear Containment Wall Surfaces Based on Semiempirical Generalized Correlations. SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS 2012. [DOI: 10.1155/2012/106759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA