• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4618902)   Today's Articles (5438)   Subscriber (49402)
For: Apanasevich P, Coste P, Ničeno B, Heib C, Lucas D. Comparison of CFD simulations on two-phase Pressurized Thermal Shock scenarios. Nuclear Engineering and Design 2014;266:112-28. [DOI: 10.1016/j.nucengdes.2013.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Number Cited by Other Article(s)
1
Prasser HM, Hampel U, Schütz P. TOPFLOW pressure chamber – Versatile techniques to simplify design and instrumentation of thermal fluid dynamic experiments at high pressure. NUCLEAR ENGINEERING AND DESIGN 2021. [DOI: 10.1016/j.nucengdes.2020.110971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
2
Uitslag-Doolaard H, Stefanini L, Shams A, Blom F. Numerical prediction of a single phase Pressurized Thermal Shock scenario for crack assessment in an Reactor Pressure Vessel wall. ANN NUCL ENERGY 2020. [DOI: 10.1016/j.anucene.2020.107563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
3
Thamaraiselvi K, Vishnuvardhan S. Fracture studies on reactor pressure vessel subjected to pressurised thermal shock: A review. NUCLEAR ENGINEERING AND DESIGN 2020. [DOI: 10.1016/j.nucengdes.2019.110471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
4
Two-phase pressurized thermal shock analysis with CFD including the effects of free-surface condensation. NUCLEAR ENGINEERING AND DESIGN 2019. [DOI: 10.1016/j.nucengdes.2019.110282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
5
Mora DF, Niffenegger M, Qian G, Jaros M, Niceno B. Modelling of reactor pressure vessel subjected to pressurized thermal shock using 3D-XFEM. NUCLEAR ENGINEERING AND DESIGN 2019. [DOI: 10.1016/j.nucengdes.2019.110237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
6
Feng T, Wang M, Song P, Liu L, Tian W, Su G, Qiu S. Numerical research on thermal mixing characteristics in a 45-degree T-junction for two-phase stratified flow during the emergency core cooling safety injection. PROGRESS IN NUCLEAR ENERGY 2019. [DOI: 10.1016/j.pnucene.2019.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
7
Bieder U, Rodio MG. Large Eddy Simulation of the injection of cold ECC water into the cold leg of a pressurized water reactor. NUCLEAR ENGINEERING AND DESIGN 2019. [DOI: 10.1016/j.nucengdes.2018.10.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
8
Zhang H, Li Y, Xiao J, Jordan T. Uncertainty analysis of condensation heat transfer benchmark using CFD code GASFLOW-MPI. NUCLEAR ENGINEERING AND DESIGN 2018. [DOI: 10.1016/j.nucengdes.2018.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
9
Chanaron B. Overview of the NURESAFE European Project. NUCLEAR ENGINEERING AND DESIGN 2017. [DOI: 10.1016/j.nucengdes.2017.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
10
Mérigoux N, Apanasevich P, Mehlhoop JP, Lucas D, Raynaud C, Badillo A. CFD codes benchmark on TOPFLOW-PTS experiment. NUCLEAR ENGINEERING AND DESIGN 2017. [DOI: 10.1016/j.nucengdes.2016.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
11
Computational fluid dynamics study of pressurized thermal shock phenomena in the reactor pressure vessel. NUCLEAR ENGINEERING AND DESIGN 2016. [DOI: 10.1016/j.nucengdes.2015.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
12
Coste P, Mérigoux N. Two-phase CFD validation: TOPFLOW-PTS steady-state steam-water tests 3–16, 3–17, 3–18 and 3–19. NUCLEAR ENGINEERING AND DESIGN 2016. [DOI: 10.1016/j.nucengdes.2015.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
13
Lucas D, Rzehak R, Krepper E, Ziegenhein T, Liao Y, Kriebitzsch S, Apanasevich P. A strategy for the qualification of multi-fluid approaches for nuclear reactor safety. NUCLEAR ENGINEERING AND DESIGN 2016. [DOI: 10.1016/j.nucengdes.2015.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
14
Kadi R, Aissani S, Bouam A. Numerical simulation of the direct contact condensation phenomena for PTS-related in single and combined-effect thermal hydraulic test facilities using TransAT CMFD code. NUCLEAR ENGINEERING AND DESIGN 2015. [DOI: 10.1016/j.nucengdes.2015.07.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
15
Park K, Khor CL. Consideration on hydrogen explosion scenario in APR 1400 containment building during small breakup loss of coolant accident. NUCLEAR ENGINEERING AND DESIGN 2015. [DOI: 10.1016/j.nucengdes.2015.07.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
16
Comparison of PTS analyses of RPVs based on 3D-CFD and RELAP5. NUCLEAR ENGINEERING AND DESIGN 2015. [DOI: 10.1016/j.nucengdes.2015.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
17
Two-phase CFD PTS validation in an extended range of thermohydraulics conditions covered by the COSI experiment. NUCLEAR ENGINEERING AND DESIGN 2014. [DOI: 10.1016/j.nucengdes.2014.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA