1
|
Rathore Y, Lakhanpal T, Chakraborty S, Chakravarty R, Mittal BR, Irrinki RNS, Laroiya I, Kaur K, Shukla J. Targeting Breast Cancer Using 177 Lu-Labeled Trastuzumab and Trastuzumab Fragment : First-in-Human Clinical Experience. Clin Nucl Med 2024; 49:e258-e265. [PMID: 38579266 DOI: 10.1097/rlu.0000000000005208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
PURPOSE A monoclonal antibody, trastuzumab, is used for immunotherapy for HER2-expressing breast cancers. Large-sized antibodies demonstrate hepatobiliary clearance and slower pharmacokinetics. A trastuzumab fragment (Fab; 45 kDa) has been generated for theranostic use. PATIENTS AND METHODS Fab was generated by papain digestion. Trastuzumab and Fab have been radiolabelled with 177 Lu after being conjugated with a bifunctional chelating. The affinity and target specificity were studied in vitro. The first-in-human study was performed. RESULTS The bifunctional chelating agent conjugation of 1-2 molecules with trastuzumab and Fab was detected at the molar ratio 1:10 in bicarbonate buffer (0.5 M, pH 8) at 37°-40°C. However, 2-3 molecules of bifunctional chelating agent were conjugated when DMSO in PBS (0.1 M, pH 7) was used as a conjugation buffer at a molar ratio of 1:10. The radiolabelling yield of DOTA-conjugated Fab and trastuzumab at pH 5, 45°C to 50°C, with incubation time 2.5-3 hours was 80% and 41.67%, respectively. However, with DOTAGA-conjugated trastuzumab and Fab, the maximum radiolabelling yield at pH 5.5, 37°C, and at 2.5-3 hours was 80.83% and 83%, respectively. The calculated K d of DOTAGA Fab and trastuzumab with HER2-positive SKBR3 cells was 6.85 ± 0.24 × 10 -8 M and 1.71 ± 0.10 × 10 -8 M, respectively. DOTAGA-Fab and trastuzumab showed better radiolabelling yield at mild reaction conditions.177 Lu-DOTAGA-Fab demonstrated higher lesion uptake and lower liver retention as compared with 177 Lu-DOTAGA-trastuzumab. However, 177 Lu-DOTAGA-Fab as compared with 177 Lu-DOTAGA-trastuzumab showed a relatively early washout (5 days) from the lesion. CONCLUSIONS 177 Lu-DOTAGA-Fab and trastuzumab are suitable for targeting the HER2 receptors.
Collapse
Affiliation(s)
- Yogesh Rathore
- From the Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh
| | - Tamanna Lakhanpal
- From the Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh
| | | | | | - B R Mittal
- From the Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh
| | - R N Santhosh Irrinki
- Department of General Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ishita Laroiya
- Department of General Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Komalpreet Kaur
- From the Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh
| | - Jaya Shukla
- From the Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh
| |
Collapse
|
2
|
Sharma R, Mukherjee A, Kumar A, Sarma HD. Evaluation of 177Lu-Labeled Pertuzumab F(ab') 2 Fragments for HER2-Positive Cancer Targeting: A Comparative In Vitro and In Vivo Study. Cancer Biother Radiopharm 2024; 39:64-74. [PMID: 38363819 DOI: 10.1089/cbr.2023.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024] Open
Abstract
Background: Radiolabeled antibody fragments present a promising opportunity as theranostic agents, offering distinct advantages over whole antibodies. In this study, the authors investigate the potential of [177Lu]Lu-DTPA-F(ab')2-pertuzumab as a theranostic agent for precise targeting of human epidermal growth factor receptor 2 (HER2)-positive cancers. Additionally, the authors aim to quantitatively assess the binding synergism in the presence of cold trastuzumab. Materials and Methods: F(ab')2-pertuzumab was prepared by pepsin digestion and conjugated with a bifunctional chelator. The immunoconjugate was radiolabeled with 177Lu and characterized by chromatography techniques. Binding parameters (affinity, specificity, and immunoreactivity) and cellular binding enhancement studies were evaluated in HER2-overexpressing and triple-negative cell lines. The in vivo enhancement in tumor uptake of the radiolabeled immunoformulation was assessed in severe combined immunodeficient (SCID) mice bearing tumors, both in the presence and absence of unlabeled trastuzumab. Results: The formulation of [177Lu]Lu-DTPA-F(ab')2-pertuzumab could be prepared in high yields and with consistent radiochemical purity, ensuring reproducibility. Comprehensive in vitro and in vivo evaluation studies confirmed high specificity and immunoreactivity of the formulation toward HER2 receptors. Binding synergism of radiolabeled pertuzumab fragments in the presence of trastuzumab to HER2 receptors was observed. Conclusions: The radioformulation of [177Lu]Lu-DTPA-F(ab')2-pertuzumab holds great promise as a targeted approach for addressing HER2-positive cancers. A potentially effective strategy to amplify therapeutic efficacy involves dual epitope targeting by combining radiolabeled pertuzumab with cold trastuzumab.
Collapse
Affiliation(s)
- Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Department of Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Department of Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Anuj Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| |
Collapse
|
3
|
Yue TC, Ge Y, Aprile FA, Ma MT, Pham TT, Long NJ. Site-Specific 68Ga Radiolabeling of Trastuzumab Fab via Methionine for ImmunoPET Imaging. Bioconjug Chem 2023; 34:1802-1810. [PMID: 37751398 PMCID: PMC10587866 DOI: 10.1021/acs.bioconjchem.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/10/2023] [Indexed: 09/28/2023]
Abstract
Bioconjugates of antibodies and their derivatives radiolabeled with β+-emitting radionuclides can be utilized for diagnostic PET imaging. Site-specific attachment of radioactive cargo to antibody delivery vectors provides homogeneous, well-defined immunoconjugates. Recent studies have demonstrated the utility of oxaziridine chemistry for site-specific labeling of methionine residues. Herein, we applied this approach to site-specifically radiolabel trastuzumab-derived Fab immunoconjugates with 68Ga, which can be used for in vivo PET imaging of HER2-positive breast cancer tumors. Initially, a reactive azide was introduced to a single solvent-accessible methionine residue in both the wild-type Fab and an engineered derivative containing methionine residue M74, utilizing the principles of oxaziridine chemistry. Subsequently, these conjugates were functionalized with a modified DFO chelator incorporating dibenzocyclooctyne. The resulting DFO-WT and DFO-M74 conjugates were radiolabeled with generator-produced [68Ga]Ga3+, to yield the novel PET radiotracers, [68Ga]Ga-DFO-WT and [68Ga]Ga-DFO-M74. In vitro and in vivo studies demonstrated that [68Ga]Ga-DFO-M74 exhibited a higher affinity for HER2 receptors. Biodistribution studies in mice bearing orthotopic HER2-positive breast tumors revealed a higher uptake of [68Ga]Ga-DFO-M74 in the tumor tissue, accompanied by rapid renal clearance, enabling clear delineation of tumors using PET imaging. Conversely, [68Ga]Ga-DFO-WT exhibited lower uptake and inferior image contrast compared to [68Ga]Ga-DFO-M74. Overall, the results demonstrate that the highly facile methionine-oxaziridine modification approach can be simply applied to the synthesis of stable and site-specifically modified radiolabeled antibody-chelator conjugates with favorable pharmacokinetics for PET imaging.
Collapse
Affiliation(s)
- Thomas
T. C. Yue
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W120BZ, U.K.
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St. Thomas’ Hospital, London SE17EH, U.K.
| | - Ying Ge
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W120BZ, U.K.
| | - Francesco A. Aprile
- Department
of Chemistry and Institute of Chemical Biology, Molecular Sciences
Research Hub, Imperial College London, White City Campus, Wood Lane, London W120BZ, U.K.
| | - Michelle T. Ma
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St. Thomas’ Hospital, London SE17EH, U.K.
| | - Truc T. Pham
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St. Thomas’ Hospital, London SE17EH, U.K.
| | - Nicholas J. Long
- Department
of Chemistry and Institute of Chemical Biology, Molecular Sciences
Research Hub, Imperial College London, White City Campus, Wood Lane, London W120BZ, U.K.
| |
Collapse
|
4
|
Biabani Ardakani J, Abedi SM, Mardanshahi A, Shojaee L, Zaboli E, Khorramimoghaddam A, Nosrati A, Sabahno H, Banimostafavi ES, Hosseinimehr SJ. Molecular Imaging of HER2 Expression in Breast Cancer patients Using the [ 99mTc] Tc-Labeled Small Peptide. Clin Breast Cancer 2023; 23:219-230. [PMID: 36581518 DOI: 10.1016/j.clbc.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE The accurate determination of human epidermal growth factor receptor 2 (HER2) status can predict response to treatment with HER2-targeted therapy for HER2-positive breast cancer patients. [99mTc]Tc-HYNIC-(Ser)3-LTVPWY ([99mTc]Tc-HYNIC-LY) is a small synthetic peptide molecule targeting of the HER2 receptor. This clinical study evaluated the pharmacokinetic, dosimetry, and efficacy of [99mTc]Tc-HYNIC-LY for determining the HER2 status in primary breast cancer patients. MATERIALS AND METHODS In total, 24 women with suspected primary breast cancer received an intravenous injection of approximately 20 µg (∼740 MBq) of [99mTc]Tc-HYNIC-LY. In the first 3 patients, blood levels of radioactivity were analyzed for pharmacokinetic evaluation and planar gamma camera imaging was conducted at 30 min and 1, 2, 4, and 24 hour after injection for dosimetry assessment. In the last 21 patients, planar imaging was performed at the baseline, as well as 1, 2, 3, and 4 hour, followed by single-photon emission computed tomography (SPECT) imaging after 4 hour to evaluate the tumor-targeting potential in primary lesions. RESULTS Injection of [99mTc]Tc-HYNIC-LY was safe and well tolerated. Fast blood clearance provided high-contrast HER2 imaging within 1 to 4 hour. The highest absorbed radiation dose was found for kidneys (6.78E-03 ± 2.62E-04 mSv/MBq), followed by the heart (3.73E-03 ± 1.98E-04 mSv/MBq). The [99mTc]Tc-HYNIC-LY peptide was able to detect HER2 status in primary tumors at an acceptable level. CONCLUSION The findings of this study indicated that [99mTc]Tc-HYNIC-LY SPECT is safe and feasible for the identification of HER2-positive lesions in primary breast cancer patients, and may provide an accurate and non-invasive modality for guiding HER2 targeted therapy.
Collapse
Affiliation(s)
- Javad Biabani Ardakani
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leyla Shojaee
- Department of Surgery, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Zaboli
- Department of Oncology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Khorramimoghaddam
- Department of Radiology, Faculty of Allied Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anahita Nosrati
- Department of Pathology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamideh Sabahno
- Parsisotope Laboratory, Radioisotope Institute, Tehran, Iran
| | - Elahm Sadat Banimostafavi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Suman SK, Mukherjee A, Pandey U, Chakraborty A, Rakshit S, Tawate M, Sarma HD. 68Ga-Labeled Trastuzumab Fragments for ImmunoPET Imaging of Human Epidermal Growth Factor Receptor 2 Expression in Solid Cancers. Cancer Biother Radiopharm 2023; 38:38-50. [PMID: 36413344 DOI: 10.1089/cbr.2022.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Trastuzumab, the first humanized antibody approved for therapeutic use has shown promising results for the treatment of patients with human epidermal growth factor receptor 2 (HER2) positive cancers. The aim of this study was to formulate immunoPET agents based on trastuzumab fragments and demonstrate their potential for early diagnosis of HER2-positive tumors. Materials and Methods: F(ab')2 and F(ab') fragments of trastuzumab were prepared by enzymatic digestion and conjugated with chelator NOTA for labeling with 68Ga. For comparison, intact trastuzumab was also radiolabeled. In vitro stability, immunoreactivity, and binding affinity of radio formulations toward HER2 receptors were evaluated by performing in vitro studies in cancer cell lines. Biodistribution and PET imaging studies were performed in animal model bearing tumors. Results: 68Ga-NOTA-F(ab')-trastuzumab, 68Ga-NOTA-F(ab')2-trastuzumab, and 68Ga-NOTA-trastuzumab could be prepared with >98% radiochemical purity (% RCP) and were found to be stable when studied up to 4 h. In vitro binding studies revealed high affinity and specificity of formulations toward HER2 receptors. Specific tumor uptake of 68Ga-NOTA-F(ab')-trastuzumab and 68Ga-NOTA-F(ab')2-trastuzumab in HER2-positive tumors was observed in biodistribution and PET imaging studies. Conclusions: This study describes optimization of protocol for the formulation of 68Ga-NOTA-F(ab')-trastuzumab and 68Ga-NOTA-F(ab')2-trastuzumab for targeting HER2-overexpressing tumors. Further studies with these radioformulations are warranted to confirm their potential as immunoPET agents for management of HER2-positive breast and other solid tumors.
Collapse
Affiliation(s)
- Shishu Kant Suman
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Usha Pandey
- Board of Radiation & Isotope Technology, Navi Mumbai, India
| | - Avik Chakraborty
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India.,Radiation Medicine Centre, BARC, Mumbai, India
| | | | | | - Haladhar Dev Sarma
- Radiation Biology & Health Science Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| |
Collapse
|
6
|
Ebrahimi F, Noaparast Z, Abedi SM, Hosseinimehr SJ. Homodimer 99mTc-HYNIC-E(SSSLTVPWY) 2 peptide improved HER2-overexpressed tumor targeting and imaging. Med Oncol 2022; 39:204. [PMID: 36175805 DOI: 10.1007/s12032-022-01798-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
We hypothesized that a novel design of the LTVPWY (LY) peptide might exhibit a great potential for improving binding affinity and targeting HER2-overexpressed tumors. Hence, new dimer construction of 99mTc-labeled LY [99mTc-HYNIC-E(SSSLTVPWY)2] (99mTc-DLY) was introduced. Afterward, a head-to-head comparison of in vitro and in vivo experiments was performed between 99mTc-DLY and 99mTc-HYNIC-SSSLTVPWY as the monomer analog. The blocking dosage of trastuzumab reduced the uptake of the dimer about 20% more efficiently than the monomer in the SKOV-3 cell line. A twofold increase in competitive binding affinity and biological half-life was observed for 99mTc-DLY. The ovarian-tumor-bearing mice were detected with high contrast where the tumor-to-muscle ratio of 99mTc-DLY was notably increased about 40% using a gamma camera. The biodistribution experiment revealed an approximately 10% enhancement in tumor/blood, tumor/muscle, and tumor/bone ratios for the dimer. More rapid blood clearance was another achievement of the homodimer design. Overall, 99mTc-DLY successfully affected the pharmacokinetics and consequently the visualization of HER2-overexpressing tumors.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Noaparast
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
7
|
Ranjbar V, Molavipordanjani S, Biabani Ardakani J, Akhlaghi M, Nikkholgh B, Hosseinimehr SJ. Initial preclinical evaluation of 68 Ga-DOTA-(Ser) 3 -LTVSPWY peptide as a PET radiotracer for glioblastoma targeting and imaging. Nucl Med Commun 2022; 43:945-951. [PMID: 35754162 DOI: 10.1097/mnm.0000000000001590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Imaging of glioblastoma multiform (GBM) tumor using 68 -Galium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaceticacid-Ser-Ser-Ser-Leu-Thr-Val-Ser-Pro-Trp-Tyr ( 68 Ga-DOTA-(Ser)3-LTVSPWY) as a PET radiotracer for HER2 receptor due to fact that this receptor plays a pivotal role in the tumorigenesis and tumor progression in a wide range of cancer. METHODS 68 Ga-DOTA-(Ser) 3 -LTVSPWY was produced with high radiochemical purity. The affinity and specificity of this radiotracer toward HER2 receptor on the surface of glioma glioblastoma (U-87 MG) cell line were evaluated. Furthermore, the biodistribution and PET imaging of this radiolabeled peptide were investigated on xenografted U-87 MG tumor-bearing mice. RESULTS The in-vitro specific binding study revealed that the 68 Ga-DOTA-(Ser) 3 -LTVSPWY binds to different cell lines with respect to their level of HER2 expression. The calculated K D and B max of radiolabeled peptide toward U-87 MG cell line were 5.5 ± 2.4 nmol/l and (2.4 ± 0.3) × 10 5 receptors per cell, respectively. The highest tumor uptake was observed at 30-min postinjection, whereas the tumor-to-muscle ratio was about four-fold. The acquired PET images distinctively show tumor site, which was blocked with excess nonlabeled peptide that revealed specific in-vivo targeting of 68 Ga-DOTA-(Ser) 3 -LTVSPWY for glioma. CONCLUSION 68 Ga-DOTA-(Ser) 3 -LTVSPWY specifically recognizes HER2 receptors and could be a potential candidate for GBM imaging.
Collapse
Affiliation(s)
- Venousheh Ranjbar
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences
| | - Sajjad Molavipordanjani
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari
| | - Javad Biabani Ardakani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd
| | - Mehdi Akhlaghi
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd
| | - Babak Nikkholgh
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences
| | | |
Collapse
|
8
|
Rathore Y, Shukla J, Laroiya I, Deep A, Lakhanpal T, Kumar R, Singh H, Bal A, Singh G, Gopal Thakur K, Mittal BR. Development 68Ga trastuzumab Fab and bioevaluation by PET imaging in HER2/neu expressing breast cancer patients. Nucl Med Commun 2022; 43:458-467. [PMID: 35131966 DOI: 10.1097/mnm.0000000000001521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Receptors on breast cancer cells play a crucial role in the management of patients. Trastuzumab is a widely used drug for the treatment of HER2/neu expressing tumors. ImmunoPET with trastuzumab is not feasible due to slow pharmacokinetics. Fragment of antigen-binding (Fab) radiolabeled with positron emitters can be used for immunoPET. METHODS Fab has been generated by papain digestion and conjugated with the bifunctional chelating agent NOTA. The SDS-PAGE and MALDI-TOF were used to see the integrity of Fab and conjugated Fab. In-vitro stability and target specificity for HER2/neu receptors were performed in plasma and receptor binding with bio-layer interferometry (BLI) techniques. Radiolabeling was standardized with 68GaCl3 and PET imaging was performed in seven patients showing 18F fluorodeoxyglucose (18F-FDG) uptake and correlated with HER2/neu expression by immunohistochemistry. RESULTS Fab production was optimized at molar ratio 23:1 of trastuzumab and papain at 37 °C with a constant stirrer at 850 rpm for 22-24 h, at pH 8. Conjugation with NOTA was standardized at molar ratio 1:25 of trastuzumab Fab and NOTA. Molecular mass of trastuzumab Fab-NOTA was found approximately 46.3 kDa (~1/3 of intact antibody). Trastuzumab Fab-NOTA showed radiolabelling efficiency of 48-70% with incubation time 15 min at 37-40 °C and pH 4.5-5.0. BLI demonstrated the affinity of trastuzumab, trastuzumab Fab and trastuzumab Fab-NOTA towards HER2/neu receptor with KD of <1pM, ~0.5nM and ~20nM, respectively. All immunohistochemistry proven patients showed uptake in primary breast lesion and lymph nodes. CONCLUSION Trastuzumab Fab-NOTA is suitable for radiolabelling with 68Ga and ImmunoPET imaging of HER2/neu receptor.
Collapse
Affiliation(s)
- Yogesh Rathore
- Department of Nuclear Medicine and PET, Post Graduate Institute of Medical Education and Research
| | - Jaya Shukla
- Department of Nuclear Medicine and PET, Post Graduate Institute of Medical Education and Research
| | - Ishita Laroiya
- Department of General Surgery, Post Graduate Institute of Medical Education and Research
| | - Amar Deep
- Structural Biology Laboratory, CSIR-Institute of Microbial Technology (IMTECH)
| | - Tamanna Lakhanpal
- Department of Nuclear Medicine and PET, Post Graduate Institute of Medical Education and Research
| | - Rajender Kumar
- Department of Nuclear Medicine and PET, Post Graduate Institute of Medical Education and Research
| | - Harmandeep Singh
- Department of Nuclear Medicine and PET, Post Graduate Institute of Medical Education and Research
| | - Amanjit Bal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh India
| | - Gurpreet Singh
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh India
| | | | - B R Mittal
- Department of Nuclear Medicine and PET, Post Graduate Institute of Medical Education and Research
| |
Collapse
|
9
|
Hagemans IM, Wierstra PJ, Steuten K, Molkenboer-Kuenen JDM, van Dalen D, Ter Beest M, van der Schoot JMS, Ilina O, Gotthardt M, Figdor CG, Scheeren FA, Heskamp S, Verdoes M. Multiscale imaging of therapeutic anti-PD-L1 antibody localization using molecularly defined imaging agents. J Nanobiotechnology 2022; 20:64. [PMID: 35109860 PMCID: PMC8811974 DOI: 10.1186/s12951-022-01272-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND While immune checkpoint inhibitors such as anti-PD-L1 antibodies have revolutionized cancer treatment, only subgroups of patients show durable responses. Insight in the relation between clinical response, PD-L1 expression and intratumoral localization of PD-L1 therapeutics could improve patient stratification. Therefore, we present the modular synthesis of multimodal antibody-based imaging tools for multiscale imaging of PD-L1 to study intratumoral distribution of PD-L1 therapeutics. RESULTS To introduce imaging modalities, a peptide containing a near-infrared dye (sulfo-Cy5), a chelator (DTPA), an azide, and a sortase-recognition motif was synthesized. This peptide and a non-fluorescent intermediate were used for site-specific functionalization of c-terminally sortaggable mouse IgG1 (mIgG1) and Fab anti-PD-L1. To increase the half-life of the Fab fragment, a 20 kDa PEG chain was attached via strain-promoted azide-alkyne cycloaddition (SPAAC). Biodistribution and imaging studies were performed with 111In-labeled constructs in 4T1 tumor-bearing mice. Comparing our site-specific antibody-conjugates with randomly conjugated antibodies, we found that antibody clone, isotype and method of DTPA conjugation did not change tumor uptake. Furthermore, addition of sulfo-Cy5 did not affect the biodistribution. PEGylated Fab fragment displayed a significantly longer half-life compared to unPEGylated Fab and demonstrated the highest overall tumor uptake of all constructs. PD-L1 in tumors was clearly visualized by SPECT/CT, as well as whole body fluorescence imaging. Immunohistochemistry staining of tumor sections demonstrated that PD-L1 co-localized with the fluorescent and autoradiographic signal. Intratumoral localization of the imaging agent could be determined with cellular resolution using fluorescent microscopy. CONCLUSIONS A set of molecularly defined multimodal antibody-based PD-L1 imaging agents were synthesized and validated for multiscale monitoring of PD-L1 expression and localization. Our modular approach for site-specific functionalization could easily be adapted to other targets.
Collapse
Affiliation(s)
- Iris M Hagemans
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Nijmegen, The Netherlands
| | - Peter J Wierstra
- Department of Medical Imaging, Nuclear Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kas Steuten
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Nijmegen, The Netherlands
| | - Janneke D M Molkenboer-Kuenen
- Department of Medical Imaging, Nuclear Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Duco van Dalen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Nijmegen, The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan M S van der Schoot
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Olga Ilina
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Nuclear Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Chemical Immunology, Nijmegen, The Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
- Institute for Chemical Immunology, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Preparation and validation of [67Ga]Ga-phytate kit and Monte Carlo dosimetry: an effort toward developing an impressive lymphoscintigraphy tracer. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-021-08183-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Song Y, Deng X, Shi W, Tang F, Huang W, Gong L, Qin Q. A homogeneous time-resolved fluorometric energy transfer assay for the binding assessment of FcRn with IgG antibodies. J Immunol Methods 2021; 499:113180. [PMID: 34736962 DOI: 10.1016/j.jim.2021.113180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Abstract
We aimed to develop a homogeneous time-resolved fluorometric energy transfer assay for assessment of human neonatal Fc receptor binding activity with IgG-type antibodies. The assay was configured with FcRn-coupled with Eu cryptate via biotin and streptavidin interaction as donor and IgG1 labeled with d2 as acceptor. Only a single incubation step was involved and no wash step was required. The assay demonstrated good accuracy, precision, linearity and specificity. Our further investigation with a rat pharmacokinetics study revealed that the terminal t1/2 for Trastuzumab and its related three ADCs agreed with the EC50 data. The assay can be applied to various IgGs with modifications to identify antibodies with appropriate binding ability to human FcRn.
Collapse
Affiliation(s)
- Yakai Song
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203,China
| | - Xiaojie Deng
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203,China
| | - Wei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
| | - Feng Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
| | - Likun Gong
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203,China.
| | - Qiuping Qin
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203,China.
| |
Collapse
|
12
|
Molecular Targeting of Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Molecules 2021; 26:molecules26041076. [PMID: 33670650 PMCID: PMC7922143 DOI: 10.3390/molecules26041076] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are two extensively studied membrane-bound receptor tyrosine kinase proteins that are frequently overexpressed in many cancers. As a result, these receptor families constitute attractive targets for imaging and therapeutic applications in the detection and treatment of cancer. This review explores the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides. A summary of the recent advances in molecular imaging techniques, including positron emission tomography (PET), single-photon emission computerized tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and optical imaging (OI), and in particular, near-IR fluorescence imaging using tetrapyrrolic-based fluorophores, concludes this review.
Collapse
|
13
|
Fu H, Du B, Chen Z, Li Y. Radiolabeled Peptides for SPECT and PET Imaging in the Detection of Breast Cancer: Preclinical and Clinical Perspectives. Curr Med Chem 2021; 27:6987-7002. [PMID: 32003658 DOI: 10.2174/0929867327666200128110827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. Due to the heterogeneous nature of breast cancer, the optimal treatment and expected response for each patient may not necessarily be universal. Molecular imaging techniques could play an important role in the early detection and targeted therapy evaluation of breast cancer. This review focuses on the development of peptides labeled with SPECT and PET radionuclides for breast cancer imaging. We summarized the current status of radiolabeled peptides for different receptors in breast cancer. The characteristics of radionuclides and major techniques for peptide labeling are also briefly discussed.
Collapse
Affiliation(s)
- Hao Fu
- Medical College of Xiamen University, Xiamen University, Xiamen, China
| | - Bulin Du
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zijun Chen
- Medical College of Xiamen University, Xiamen University, Xiamen, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| |
Collapse
|
14
|
Tolmachev V, Orlova A, Sörensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Semin Cancer Biol 2021; 72:185-197. [PMID: 33465471 DOI: 10.1016/j.semcancer.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Targeting of human epidermal growth factor type 2 (HER2) using monoclonal antibodies, antibody-drug conjugates and tyrosine kinase inhibitors extends survival of patients with HER2-expressing metastatic breast cancer. High expression of HER2 is a predictive biomarker for such specific treatment. Accurate determination of HER2 expression level is necessary for stratification of patients to targeted therapy. Non-invasive in vivo radionuclide molecular imaging of HER2 has a potential of repetitive measurements, addressing issues of heterogeneous expression and conversion of HER2 status during disease progression or in response to therapy. Imaging probes based of several classes of targeting proteins are currently in preclinical and early clinical development. Both preclinical and clinical data suggest that the most promising are imaging agents based on small proteins, such as single domain antibodies or engineered scaffold proteins. These agents permit a very specific high-contrast imaging at the day of injection.
Collapse
Affiliation(s)
- Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia.
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Division of Radiology and Nuclear Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Li M, Dong J, Cheng F, Li C, Wang H, Sun T, He W, Wang Q. Controlling Conjugated Antibodies at the Molecular Level for Active Targeting Nanoparticles toward HER2-Positive Cancer Cells. Mol Pharm 2021; 18:1196-1207. [PMID: 33448219 DOI: 10.1021/acs.molpharmaceut.0c01090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For active targeting nanodrug delivery systems conjugated with antibodies, both lack of control of the antibody at the molecular level and protein corona formation remarkably decreases targeting efficacy. Herein, we designed a series of silica nanoparticles toward HER2-positive breast cancer cells, with an anti-HER2 Fab-6His density ranging from 50 to 180 molecules per nanoparticle. Through the site-directed immobilization method we developed, the antigen-binding domain of anti-HER2 Fab was mostly accessible to the HER2 receptor. Both polyethylene glycol (PEG) chains and a high density of Fab were shown to suppress protein corona formation and macrophage uptake. The dependency of targeting efficacy and cytotoxicity on Fab density was shown using a series of breast cancer cell lines with different levels of the HER2 expression. The high density of Fab stimulates quick responses from HER2-positive cells. Combined with PEG chains, conjugated antibodies with a well-controlled orientation and density significantly improves delivery performance and sheds light on the design and preparation of an improved active targeting nanodrug delivery system.
Collapse
Affiliation(s)
- Mingyang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China.,Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Jicheng Dong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China.,Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China.,Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China.,Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Huanan Wang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Tao Sun
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China.,Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Qing Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China.,Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| |
Collapse
|
16
|
Biabani Ardakani J, Akhlaghi M, Nikkholgh B, Hosseinimehr SJ. Targeting and imaging of HER2 overexpression tumor with a new peptide-based 68Ga-PET radiotracer. Bioorg Chem 2020; 106:104474. [PMID: 33246602 DOI: 10.1016/j.bioorg.2020.104474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression, as a predictive biomarker, is associated with more tumor aggressiveness and worse clinical outcomes in cancer, whereas it's accurate identification has led to the choice of effective treatments in many patients. In this study, a peptide-based PET probe (68Ga-DOTA-(Ser)3-LTVSPWY) was developed for imaging HER2 expression in tumors. The DOTA-(Ser)3-LTVSPWY was labeled with 68Ga and then was evaluated in vitro with HER2-positive SKOV-3 cell line; moreover, the in vivo biodistribution and PET/CT imaging were performed in xenografted tumor-bearing nude mice. The 68Ga-DOTA-(Ser)3-LTVSPWY displayed the high radiochemical purity greater than 95% and good stability in normal saline and human serum. The cellular binding experiments showed that the cell uptake in HER2-positive ovarian cancer cells could be effectively blocked by non-labeled peptide. The Kd and Bmax values for radiolabeled peptide were obtained at 2.5 ± 0.6 nM and (3.4 ± 0.2) × 105 sites per cell, respectively. Biodistribution study demonstrated that tumor-to-blood and tumor-to-muscle ratios were about 1.73 ± 0.36 and 3.78 ± 0.17 at 120 min after the injection of the radiolabeled peptide, respectively. Tumor imaging by PET/CT exhibited high contrast tumor image at 60 min after injection in animal models. Consequently, the results were indicative of the specific accumulation of 68Ga-DOTA-(Ser)3-LTVSPWY peptide in HER2-positive tumors and the suitability of its application as a PET probe for the diagnosis of HER2-overexpression tumor.
Collapse
Affiliation(s)
- Javad Biabani Ardakani
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Nikkholgh
- Khatam PET/CT Center, Specialty and Subspecialty Hospital of Khatam ol-Anbia, Tehran, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
17
|
Sharma R, Kameswaran M, Dash A. Comparative In Vitro Cytotoxicity Studies of 177Lu-CHX-A″-DTPA-Trastuzumab and 177Lu-CHX-A″-DTPA-F(ab') 2-Trastuzumab in HER2-Positive Cancer Cell Lines. Cancer Biother Radiopharm 2020; 35:177-189. [PMID: 32196365 DOI: 10.1089/cbr.2019.2882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Human epidermal growth factor receptor 2 (HER2) is found to be amplified in ∼15%-20% of breast cancers. In this study, the authors report the synthesis and comparative in vitro therapeutic efficacy of 177Lu-CHX-A″-DTPA-trastuzumab and 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab to determine their potential as theranostic agents for patients with breast cancer. Materials and Methods: Bivalent F(ab')2-trastuzumab was produced by enzymatic digestion of trastuzumab, conjugated with p-SCN-Bn-CHX-A″-DTPA and subsequently radiolabeled with 177Lu. Cell viability, membrane toxicity assays, and apoptosis analysis were carried out with 177Lu-CHX-A″-DTPA-trastuzumab and 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab in HER2-positive ovarian (SK-OV-3) and breast cancer (SK-BR-3 and MDA-MB-453) cells. Results: In vitro cell binding studies showed ∼20%-25% binding of 177Lu-CHX-A″-DTPA-trastuzumab and 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab to SK-OV-3, SK-BR-3, and MDA-MB-453 cells. The cells exhibited similar degree of membrane integrity and cellular toxicity when treated with same amount (activity) of 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab and 177Lu-CHX-A″-DTPA-trastuzumab, and the toxicity was dose dependent. The mode of cell death was predominantly by apoptosis and necrosis with both the radioimmunoconjugates. Conclusions: The results indicated that the efficacy of both the radioimmunoconjugates, in terms of inducing cell death, was similar thereby ascertaining their potential as good therapeutic agents for patients with breast cancer.
Collapse
Affiliation(s)
- Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Mythili Kameswaran
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
18
|
Suman SK, Kameswaran M, Mallia M, Mittal S, Dash A. Synthesis and preliminary evaluation of 99mTc-Hynic-fragments [F(ab')2 and F(ab')] of Rituximab as radioimmunoscintigraphic agents for patients with Non-Hodgkin's lymphoma. Appl Radiat Isot 2019; 153:108808. [DOI: 10.1016/j.apradiso.2019.108808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022]
|
19
|
Suman SK, Kameswaran M, Pandey U, Sarma HD, Dash A. Preparation and preliminary bioevaluation studies of 68 Ga-NOTA-rituximab fragments as radioimmunoscintigraphic agents for non-Hodgkin lymphoma. J Labelled Comp Radiopharm 2019; 62:850-859. [PMID: 31461549 DOI: 10.1002/jlcr.3803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 11/11/2022]
Abstract
Rituximab is used for the treatment of non-Hodgkin lymphoma (NHL). This study focuses on development of 68 Ga-labeled rituximab fragments, (68 Ga-NOTA-F (ab')-rituximab and 68 Ga-NOTA-F (ab')2 -rituximab, as PET-imaging agents for NHL. Rituximab was digested with immobilized pepsin and papain to yield F (ab')2 and Fab fragments respectively that were characterized by size exclusion HPLC (SE-HPLC) and SDS-PAGE. They were conjugated with p-SCN-Bn-NOTA, labeled with 68 Ga and characterized by SE-HPLC. Intact rituximab was labeled with gallium-68 for comparison. Specificity of 68 Ga-labeled immunoconjugates was ascertained by immunoreactivity and cell binding studies in Raji cells, while biodistribution studies were performed in normal Swiss mice. Gradient SDS-PAGE under nonreducing condition showed molecular weights of F (ab')2 -rituximab and F (ab')-rituximab as approximately 100 and 40 Kd, respectively. Radiochemical purity (RCP) of 68 Ga-NOTA-F (ab')2 -rituximab and 68 Ga-NOTA-F (ab')-rituximab were 98.2 ± 0.5% and 98.8 ± 0.2% respectively with retention times of 17.1 ± 0.1 min and 19.3 ± 0.1 min in SE-HPLC. 68 Ga-labeled rituximab fragments were stable in saline and serum up to 2-hour post preparation and exhibited specificity to CD20 antigen. Immunoreactivity of 68 Ga-labeled immunoconjugates was greater than 80%. Clearance of the fragmented radioimmunoconjugates was predominantly through renal route. Preliminary results from this study demonstrate the potential of 68 Ga- NOTA-F (ab')2 -rituximab and 68 Ga-NOTA-F (ab')-rituximab as PET imaging agents for NHL.
Collapse
Affiliation(s)
- Shishu Kant Suman
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Mythili Kameswaran
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Usha Pandey
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Isotope Applications and Radiopharmaceuticals Division, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,Isotope Applications and Radiopharmaceuticals Division, Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
20
|
Hermanto S, Haryuni RD, Ramli M, Mutalib A, Hudiyono S. Synthesis and stability test of radioimmunoconjugate 177Lu-DOTA-F(ab′)2-trastuzumab for theranostic agent of HER2 positive breast cancer. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2016.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sandra Hermanto
- Department of Chemistry, Faculty of Mathematics and Science, University of Indonesia, Depok, 16424, Indonesia
- Study Program of Chemistry, Faculty of Science and Technology, Syarif Hidayatullah State Islamic University, Jl. Ir, H. Juanda No. 95, Ciputat, Jakarta, 15412, Indonesia
| | - Ratna Dini Haryuni
- Centre for Radioisotopes and Radiopharmaceuticals, National Nuclear Energy Agency of Indonesia, Kawasan Puspiptek, Setu, Kota Tangerang Selatan, Banten, 15314, Indonesia
| | - Martalena Ramli
- Centre for Radioisotopes and Radiopharmaceuticals, National Nuclear Energy Agency of Indonesia, Kawasan Puspiptek, Setu, Kota Tangerang Selatan, Banten, 15314, Indonesia
| | - Abdul Mutalib
- Department of Chemistry, Faculty of Mathematics and Science, Padjadjaran University, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Jawa Barat, Indonesia
| | - Sumi Hudiyono
- Department of Chemistry, Faculty of Mathematics and Science, University of Indonesia, Depok, 16424, Indonesia
| |
Collapse
|
21
|
Al-Saden N, Cai Z, Reilly RM. Tumor uptake and tumor/blood ratios for [ 89Zr]Zr-DFO-trastuzumab-DM1 on microPET/CT images in NOD/SCID mice with human breast cancer xenografts are directly correlated with HER2 expression and response to trastuzumab-DM1. Nucl Med Biol 2018; 67:43-51. [PMID: 30390575 DOI: 10.1016/j.nucmedbio.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/15/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Our objective was to determine correlations between the tumor uptake and T/B ratios for 89Zr-labeled T-DM1 (89Zr-DFO-T-DM1) in mice with human BC xenografts by microPET/CT and biodistribution studies with HER2 expression and response to treatment with trastuzumab-DM1 (T-DM1). METHODS The tumor and normal tissue uptake and T/B ratios for 89Zr-DFO-T-DM1 (10 μg; 7.0 MBq) incorporated into a therapeutic dose (60 μg) were determined by microPET/CT and biodistribution studies at 96 h p.i. in NOD/SCID mice with s.c. MDA-MB-231 (5 × 104 HER2/cell), MDA-MB-361 (5 × 105 HER2/cell) and BT-474 (2 × 106 HER2/cell) human BC xenografts. Mice bearing these tumors were treated with T-DM1 (3.6 mg/kg every 3 weeks) and the tumor doubling time estimated by fitting of tumor volume vs. time curves. A tumor doubling time ratio (TDR) was calculated by dividing the doubling time for T-DM1 and normal saline treated control mice. The clonogenic survival (CS) of BC cells with increasing HER2 expression treated for 72 h in vitro with T-DM1 or trastuzumab (0-100 μg/mL) was compared. Correlations were determined between the T/B ratios for 89Zr-DFO-T-DM1 and HER2 expression, TDR and CS, and between CS and TDR. RESULTS Uptake of 89Zr-DFO-T-DM1 in MDA-MB-231, MDA-MB-361 and BT-474 tumors was 2.4 ± 0.4%ID/g, 6.9 ± 2.2%ID/g and 9.8 ± 1.1%ID/g, respectively. There was a non-linear but direct correlation between the T/B ratios for 89Zr-DFO-T-DM1 and HER2 expression with the T/B ratio ranging from 4.5 ± 0.7 for MDA-MB-231 to 18.2 ± 1.8 for MDA-MB-361 and 35.9 ± 5.1 for BT-474 xenografts. Tumor intensity on microPET/CT images was proportional to HER2 expression. The standard uptake value (SUV) for the tumors on the images was strongly correlated with the T/B ratio in biodistribution studies. There was a direct linear correlation between the T/B ratio for 89Zr-DFO-T-DM1 and TDR, with TDR ranging from 0.9 for MDA-MB-231 to 1.6 for MDA-MB-361 and 2.1 for BT-474 tumors. The cytotoxicity of T-DM1 in vitro on BC cells was dependent on HER2 expression but T-DM1 was more potent than trastuzumab. There was an inverse correlation between the TDR for mice treated with T-DM1 and CS of BC cells exposed in vitro to T-DM1. CONCLUSIONS Based on the direct correlations between the T/B ratio for 89Zr-DFO-T-DM1 by PET and HER2 expression and response to T-DM1, our results suggest that PET with 89Zr-DFO-T-DM1 may predict response of HER2-positive BC to treatment with T-DM1. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Our results suggest that PET with 89Zr-DFO-T-DM1 may predict response to treatment with T-DM1 in HER-positive BC.
Collapse
Affiliation(s)
- Noor Al-Saden
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; Toronto General Research Institute and Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
22
|
El-Sayed A, Bernhard W, Barreto K, Gonzalez C, Hill W, Pastushok L, Fonge H, Geyer CR. Evaluation of antibody fragment properties for near-infrared fluorescence imaging of HER3-positive cancer xenografts. Am J Cancer Res 2018; 8:4856-4869. [PMID: 30279742 PMCID: PMC6160764 DOI: 10.7150/thno.24252] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/10/2018] [Indexed: 11/24/2022] Open
Abstract
In vivo imaging is influenced by the half-life, tissue penetration, biodistribution, and affinity of the imaging probe. Immunoglobulin G (IgG) is composed of discrete domains with known functions, providing a template for engineering antibody fragments with desired imaging properties. Here, we engineered antibody-based imaging probes, consisting of different combinations of antibody domains, labeled them with the near-infrared fluorescent dye IRDye800CW, and evaluated their in vivo imaging properties. Antibody-based imaging probes were based on an anti-HER3 antigen binding fragment (Fab) isolated using phage display. Methods: We constructed six anti-HER3 antibody-based imaging probes: a single chain variable fragment (scFv), Fab, diabody, scFv-CH3, scFv-Fc, and IgG. IRDye800CW-labeled, antibody-based probes were injected into nude mice bearing FaDu xenografts and their distribution to the xenograft, liver, and kidneys was evaluated. Results: These imaging probes bound to recombinant HER3 and to the HER3-positive cell line, FaDu. Small antibody fragments with molecular weight <60 kDa (scFv, diabody, and Fab) accumulated rapidly in the xenograft (maximum accumulation between 2-4 h post injection (hpi)) and cleared primarily through the kidneys. scFv-CH3 (80 kDa) had fast clearance and peaked in the xenograft between 2-3 hpi and cleared from xenograft in a rate comparable to Fab and diabody. IgG and scFv-Fc persisted in the xenografts for up to 72 hpi and distributed mainly to the xenograft and liver. The highest xenograft fluorescence signals were observed with IgG and scFv-Fc imaging probes and persisted for 2-3 days. Conclusion: These results highlight the utility of using antibody fragments to optimize clearance, tumor labeling, and biodistribution properties for developing anti-HER3 probes for image-guided surgery or PET imaging.
Collapse
|
23
|
Milani S, Ghaemimanesh F, Salimi A, Hadavi R, Bayat AA, Alirezapour B, Rabbani H. Production and evaluation of a 67Ga-labeled anti-Ror1 monoclonal antibody in a mouse model of breast cancer. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5755-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Evaluation of HER2-specific peptide ligand for its employment as radiolabeled imaging probe. Sci Rep 2018; 8:2998. [PMID: 29445216 PMCID: PMC5812989 DOI: 10.1038/s41598-018-21283-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 02/01/2018] [Indexed: 01/19/2023] Open
Abstract
HER2 transmembrane receptor is an important target in immunotherapy treatment of breast and gastroesophageal cancer. Molecular imaging of HER2 expression may provide essential prognostic and predictive information concerning disseminated cancer and aid in selection of an optimal therapy. Radiolabeled low molecular weight peptide ligands are particularly attractive as probes for molecular imaging, since they reach and bind to the target and clear from non-target organs and blood stream faster than bulky antibodies. In this study, we evaluated a potential HER2-imaging probe, an A9 nonapeptide, derived from the trastuzumab-Fab portion. Its cellular uptake was investigated by mass spectrometry analysis of the cytoplasmic cellular extracts. Moreover, based on in-silico modeling, DTPA chelator was conjugated to N-terminus of A9. 111In-labeled A9 demonstrated nanomolar affinity to HER2-expressing BT474 cells and favorable biodistribution profile in NMRI mice. This study suggests that the peptide A9 represents a good lead candidate for development of molecular probe, to be used for imaging purposes and for the delivery of cytotoxic agents.
Collapse
|
25
|
Molecular imaging in drug development: Update and challenges for radiolabeled antibodies and nanotechnology. Methods 2017; 130:23-35. [DOI: 10.1016/j.ymeth.2017.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023] Open
|
26
|
Gao Z, Li G, Li X, Zhou J, Duan X, Chen J, Joshi BP, Kuick R, Khoury B, Thomas DG, Fields T, Sabel MS, Appelman HD, Zhou Q, Li H, Kozloff K, Wang TD. In vivo near-infrared imaging of ErbB2 expressing breast tumors with dual-axes confocal endomicroscopy using a targeted peptide. Sci Rep 2017; 7:14404. [PMID: 29089571 PMCID: PMC5663926 DOI: 10.1038/s41598-017-13735-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/27/2017] [Indexed: 02/08/2023] Open
Abstract
ErbB2 expression in early breast cancer can predict tumor aggressiveness and clinical outcomes in large patient populations. Accurate assessment with physical biopsy and conventional pathology can be limited by tumor heterogeneity. We aim to demonstrate real-time optical sectioning using a near-infrared labeled ErbB2 peptide that generates tumor-specific contrast in human xenograft breast tumors in vivo. We used IRDye800CW as the fluorophore, validated performance characteristics for specific peptide binding to cells in vitro, and investigated peak peptide uptake in tumors using photoacoustic tomography. We performed real-time optical imaging using a handheld dual-axes confocal fluorescence endomicroscope that collects light off-axis to reduce tissue scattering for greater imaging depths. Optical sections in either the vertical or horizontal plane were collected with sub-cellular resolution. Also, we found significantly greater peptide binding to pre-clinical xenograft breast cancer in vivo and to human specimens of invasive ductal carcinoma that express ErbB2 ex vivo. We used a scrambled peptide for control. Peptide biodistribution showed high tumor uptake by comparison with other organs to support safety. This novel integrated imaging strategy is promising for visualizing ErbB2 expression in breast tumors and serve as an adjunct during surgery to improve diagnostic accuracy, identify tumor margins, and stage early cancers.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/diagnostic imaging
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Line, Tumor
- Female
- Fluorescent Dyes/chemistry
- Mice, Nude
- Microscopy, Confocal/methods
- Neoplasm Transplantation
- Optical Imaging/methods
- Peptides/chemistry
- Photoacoustic Techniques/methods
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/metabolism
- Tomography/methods
Collapse
Affiliation(s)
- Zhenghong Gao
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Gaoming Li
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Xue Li
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Juan Zhou
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Xiyu Duan
- Dept of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jing Chen
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Bishnu P Joshi
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Rork Kuick
- Dept of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Basma Khoury
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
- Dept of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Dafydd G Thomas
- Dept of Pathology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Tina Fields
- Dept of Pathology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Michael S Sabel
- Dept of Surgery, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Henry D Appelman
- Dept of Pathology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Quan Zhou
- Dept of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Haijun Li
- Dept of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Ken Kozloff
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
- Dept of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Thomas D Wang
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States.
- Dept of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
- Dept of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
27
|
Maruthachalam BV, El-Sayed A, Liu J, Sutherland AR, Hill W, Alam MK, Pastushok L, Fonge H, Barreto K, Geyer CR. A Single-Framework Synthetic Antibody Library Containing a Combination of Canonical and Variable Complementarity-Determining Regions. Chembiochem 2017; 18:2247-2259. [DOI: 10.1002/cbic.201700279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 12/21/2022]
Affiliation(s)
| | - Ayman El-Sayed
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Jianghai Liu
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Ashley R. Sutherland
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Wayne Hill
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Md Kausar Alam
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Landon Pastushok
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Humphrey Fonge
- Department of Medical Imaging; University of Saskatchewan; Saskatoon SK S7N 0W8 Canada
| | - Kris Barreto
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - C. Ronald Geyer
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| |
Collapse
|
28
|
Jiang D, Im HJ, Sun H, Valdovinos HF, England CG, Ehlerding EB, Nickles RJ, Lee DS, Cho SY, Huang P, Cai W. Radiolabeled pertuzumab for imaging of human epidermal growth factor receptor 2 expression in ovarian cancer. Eur J Nucl Med Mol Imaging 2017; 44:1296-1305. [PMID: 28265738 PMCID: PMC5471126 DOI: 10.1007/s00259-017-3663-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/21/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2) is over-expressed in over 30% of ovarian cancer cases, playing an essential role in tumorigenesis and metastasis. Non-invasive imaging of HER2 is of great interest for physicians as a mean to better detect and monitor the progression of ovarian cancer. In this study, HER2 was assessed as a biomarker for ovarian cancer imaging using 64Cu-labeled pertuzumab for immunoPET imaging. METHODS HER2 expression and binding were examined in three ovarian cancer cell lines (SKOV3, OVCAR3, Caov3) using in vitro techniques, including western blot and saturation binding assays. PET imaging and biodistribution studies in subcutaneous models of ovarian cancer were performed for non-invasive in vivo evaluation of HER2 expression. Additionally, orthotopic models were employed to further validate the imaging capability of 64Cu-NOTA-pertuzumab. RESULTS HER2 expression was highest in SKOV3 cells, while OVCAR3 and Caov3 displayed lower HER2 expression. 64Cu-NOTA-pertuzumab showed high specificity for HER2 (Ka = 3.1 ± 0.6 nM) in SKOV3. In subcutaneous tumors, PET imaging revealed tumor uptake of 41.8 ± 3.8, 10.5 ± 3.9, and 12.1 ± 2.3%ID/g at 48 h post-injection for SKOV3, OVCAR3, and Caov3, respectively (n = 3). In orthotopic models, PET imaging with 64Cu-NOTA-pertuzumab allowed for rapid and clear delineation of both primary and small peritoneal metastases in HER2-expressing ovarian cancer. CONCLUSIONS 64Cu-NOTA-pertuzumab is an effective PET tracer for the non-invasive imaging of HER2 expression in vivo, rendering it a potential tracer for treatment monitoring and improved patient stratification.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/metabolism
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- Copper Radioisotopes
- Female
- Gene Expression Regulation, Neoplastic
- Heterocyclic Compounds, 1-Ring/chemistry
- Humans
- Isotope Labeling
- Mice
- Ovarian Neoplasms/diagnostic imaging
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Positron-Emission Tomography/methods
- Radiometry
- Receptor, ErbB-2/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Dawei Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Radiology, University of Wisconsin - Madison, Room 7137, 1111 Highland Ave, Madison, WI, 53705-2275, USA
| | - Hyung-Jun Im
- Department of Radiology, University of Wisconsin - Madison, Room 7137, 1111 Highland Ave, Madison, WI, 53705-2275, USA
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Haiyan Sun
- Department of Radiology, University of Wisconsin - Madison, Room 7137, 1111 Highland Ave, Madison, WI, 53705-2275, USA
| | - Hector F Valdovinos
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Christopher G England
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Dong Soo Lee
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Steve Y Cho
- Department of Radiology, University of Wisconsin - Madison, Room 7137, 1111 Highland Ave, Madison, WI, 53705-2275, USA
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin - Madison, Room 7137, 1111 Highland Ave, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
29
|
Nguyen HT, Tran TH, Thapa RK, Phung CD, Shin BS, Jeong JH, Choi HG, Yong CS, Kim JO. Targeted co-delivery of polypyrrole and rapamycin by trastuzumab-conjugated liposomes for combined chemo-photothermal therapy. Int J Pharm 2017; 527:61-71. [DOI: 10.1016/j.ijpharm.2017.05.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 01/09/2023]
|
30
|
99mTc-radiolabeled GE11-modified peptide for ovarian tumor targeting. ACTA ACUST UNITED AC 2017; 25:13. [PMID: 28464952 PMCID: PMC5414288 DOI: 10.1186/s40199-017-0179-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023]
Abstract
Background Ovarian cancer is a serious threat for women health and the early diagnosis of this cancer might improves the survival rate of patients. The use of the targeted radiopharmaceuticals could be a non-invasive and logical method for tumor imaging. The aim of this study was to radiolabel GE11 peptide as a new specific probe for imaging of ovarian tumor. Methods HYNIC-SSS-GE11 peptide was labeled with 99mTc using tricine as a coligand. The 99mTc-tricine-HYNIC-SSS-GE11 peptide was evaluated for specific cellular binding in three cell lines with different levels of EGFR expression. Tumor targeting was assessed in SKOV3 tumor bearing mice. Results By using tricine as a coligand, labeling yield was more than 98% and the stability of the radiolabelled peptide in human serum up to 4 h was 96%. The in vitro cell uptake test showed that this radiolabeled peptide had a good affinity to SKOV3 cells with dissociation constant of 73 nM. The in vivo results showed a tumor/muscle ratio of 3.2 at 4 h following injection of 99mTc-tricine-HYNIC-SSS-GE11 peptide. Conclusions Results of this study showed that 99mTc-tricine-HYNIC-SSS-GE11 peptide could be a promising tool for diagnosis and staging of ovarian cancer. Graphical Abstract 99mTc-tricine-HYNIC-SSS-GE11, a novl targeted agent for ovarian tumor imaging![]()
Collapse
|
31
|
Kwon LY, Scollard DA, Reilly RM. 64Cu-Labeled Trastuzumab Fab-PEG 24-EGF Radioimmunoconjugates Bispecific for HER2 and EGFR: Pharmacokinetics, Biodistribution, and Tumor Imaging by PET in Comparison to Monospecific Agents. Mol Pharm 2017; 14:492-501. [PMID: 28049295 DOI: 10.1021/acs.molpharmaceut.6b00963] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterodimerization of EGFR with HER2 coexpressed in breast cancer (BC) promotes tumor growth, and increased EGFR expression is associated with trastuzumab resistance. Our aim was to construct 64Cu-labeled bispecific radioimmunoconjugates (bsRIC) composed of trastuzumab Fab, which binds HER2 linked through a polyethylene glycol (PEG24) spacer to EGF, and to compare their pharmacokinetic, biodistribution, and tumor imaging characteristics by positron-emission tomography (PET). bsRICs were generated by linking maleimide modified trastuzumab Fab with thiolated EGF through a thioether bond. HER2 and EGFR binding were assessed in vitro in MDA-MB-231 (EGFRmod/HER2low), MDA-MB-468 (EGFRhigh/HER2neg), MDA-MB-231-H2N (EGFRmod/HER2mod), and SKOV3 (EGFRlow/HER2high) cells by competition and saturation cell binding assays to estimate the dissociation constant (Kd). The elimination of the 64Cu-NOTA-trastuzumab Fab-PEG24-EGF bsRICs from the blood of Balb/c mice was compared to monospecific 64Cu-NOTA-trastuzumab Fab and 64Cu-NOTA-EGF. MicroPET/CT imaging was performed in NOD/SCID mice bearing subcutaneous MDA-MB-468, MDA-MB-231/H2N, or SKOV3 human BC xenografts at 24 and 48 h postinjection (p.i.) of bsRICs. Tumor and normal tissue uptake were quantified by biodistribution studies and compared to monospecific agents. The binding of bsRICs to MDA-MB-231 cells was decreased to 24.5 ± 5.2% by excess EGF, while the binding of bsRICs to SKOV3 cells was decreased to 38.6 ± 5.4% by excess trastuzumab Fab, demonstrating specific binding to both EGFR and HER2. 64Cu-labeled bsRICs incorporating the PEG24 spacer were eliminated more slowly from the blood than 64Cu-bsRICs without the PEG spacer and were cleared much more slowly than 64Cu-NOTA-Fab or 64Cu-NOTA-EGF. All three tumor xenografts were visualized by microPET/CT at 24 and 48 h p.i. of bsRICs. Biodistribution studies at 48 h p.i. in NOD/SCID mice with MDA-MB-231/H2N tumors demonstrated significantly greater tumor uptake of 64Cu-NOTA-Fab-PEG24-EGF (4.9 ± 0.4%ID/g) than 64Cu-NOTA-Fab (1.9 ± 0.3%ID/g; P < 0.0001) and 64Cu-NOTA-EGF (0.7 ± 0.2%ID/g; P < 0.0001). Furthermore, preadministration of an excess of trastuzumab Fab or trastuzumab Fab-PEG24-EGF significantly decreased the tumor uptake of 64Cu-NOTA-Fab-PEG24-EGF in SK-OV-3 and MDA-MB-468 xenografts by 4.4-fold (P = 0.0012) and 1.8-fold (P = 0.0031), respectively. 64Cu-labeled bsRICs bound HER2 or EGFR and were taken up specifically in vivo in tumor xenografts expressing one or both receptors. The PEG24 linker prolonged the blood residence time contributing to the higher tumor uptake of the bsRICs than monospecific agents.
Collapse
Affiliation(s)
- Luke Yongkyu Kwon
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario, Canada
| | - Deborah A Scollard
- STTARR Innovation Centre, University Health Network , Toronto, Ontario, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
32
|
Moreau M, Poty S, Vrigneaud JM, Walker P, Guillemin M, Raguin O, Oudot A, Bernhard C, Goze C, Boschetti F, Collin B, Brunotte F, Denat F. MANOTA: a promising bifunctional chelating agent for copper-64 immunoPET. Dalton Trans 2017; 46:14659-14668. [DOI: 10.1039/c7dt01772c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comparison of four bifunctional chelating agents showed superior behaviour of a new NOTA derivative for 64Cu labelling of antibody fragments.
Collapse
|
33
|
Bhusari P, Vatsa R, Singh G, Parmar M, Bal A, Dhawan DK, Mittal BR, Shukla J. Development of Lu-177-trastuzumab for radioimmunotherapy of HER2 expressing breast cancer and its feasibility assessment in breast cancer patients. Int J Cancer 2016; 140:938-947. [PMID: 27813061 DOI: 10.1002/ijc.30500] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/24/2016] [Indexed: 11/08/2022]
Abstract
HER2/neu is over expressed in 20-25% of breast cancers. HER2 breast cancers are aggressive and are associated with poor prognosis. The aim of this study was to develop the clinical grade Lu-177-trastuzumab and its preliminary evaluation for specific tumor targeting in HER2 positive breast cancer patients. Trastuzumab was conjugated to bifunctional chelator, DOTA, and characterized for integrity and the number of molecules conjugated. Radiolabeling of DOTA-conjugated trastuzumab was optimized using Lu-177. Quality control parameters including radiochemical purity, stability, sterility, pyrogenicity and immunoreactivity were assessed. A preliminary pilot study was conducted on breast cancer patients (n = 6 HER2 positive and n = 4 HER2 negative) to evaluate the ability of Lu-177-trastuzumab for HER2 specific tumor targeting. The conjugates were efficiently labeled with Lu-177 with high radiochemical purity (up to 91%) and specific activity (6-13 µCi/µg). Lu-177-trastuzumab was stable up to 12 hr post labeling. The radioimmunoassay demonstrated good antigen binding ability and specificity for HER2 receptor protein. The patient studies showed the localization of Lu-177-trastuzumab at primary as well as metastatic sites (HER2 positive) in the planar and SPECT/CT images. No tracer uptake was observed in HER2 negative patients that indicated the specificity of Lu-177-trastuzumab. The study demonstrated that in-house developed Lu-177-trastuzumab has specific targeting ability for HER2 expressing lesions and may in future become a palliative treatment option in the form of targeted radionuclide therapy for disseminated HER2 positive breast cancer.
Collapse
Affiliation(s)
- Priya Bhusari
- Department of Nuclear Medicine & PET, PGIMER, Chandigarh, India.,Centre for Nuclear Medicine, Punjab University, Chandigarh, India
| | - Rakhee Vatsa
- Department of Nuclear Medicine & PET, PGIMER, Chandigarh, India.,Centre for Nuclear Medicine, Punjab University, Chandigarh, India
| | - Gurpreet Singh
- Department of General Surgery, PGIMER, Chandigarh, India
| | - Madan Parmar
- Department of Nuclear Medicine & PET, PGIMER, Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, PGIMER, Chandigarh, India
| | | | | | - Jaya Shukla
- Department of Nuclear Medicine & PET, PGIMER, Chandigarh, India
| |
Collapse
|
34
|
Lam K, Chan C, Reilly RM. Development and preclinical studies of 64Cu-NOTA-pertuzumab F(ab') 2 for imaging changes in tumor HER2 expression associated with response to trastuzumab by PET/CT. MAbs 2016; 9:154-164. [PMID: 27813707 DOI: 10.1080/19420862.2016.1255389] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We previously reported that microSPECT/CT imaging with 111In-labeled pertuzumab detected decreased HER2 expression in human breast cancer (BC) xenografts in athymic mice associated with response to treatment with trastuzumab (Herceptin). Our aim was to extend these results to PET/CT by constructing F(ab')2 of pertuzumab modified with NOTA chelators for complexing 64Cu. The effect of the administered mass (5-200 µg) of 64Cu-NOTA-pertuzumab F(ab')2 was studied in NOD/SCID mice engrafted with HER2-positive SK-OV-3 human ovarian cancer xenografts. Biodistribution studies were performed in non-tumor bearing Balb/c mice to predict radiation doses to normal organs in humans. Serial PET/CT imaging was conducted on mice engrafted with HER2-positive and trastuzumab-sensitive BT-474 or trastuzumab-insensitive SK-OV-3 xenografted mice treated with weekly doses of trastuzumab. There were no significant effects of the administered mass of 64Cu-NOTA-pertuzumab F(ab')2 on tumor or normal tissue uptake. The predicted total body dose in humans was 0.015 mSv/MBq, a 3.3-fold reduction compared to 111In-labeled pertuzumab. MicroPET/CT images revealed specific tumor uptake of 64Cu-NOTA-pertuzumab F(ab')2 at 24 or 48 h post-injection in mice with SK-OV-3 tumors. Image analysis of mice treated with trastuzumab showed 2-fold reduced uptake of 64Cu-NOTA-pertuzumab F(ab')2 in BT-474 tumors after 1 week of trastuzumab normalized to baseline, and 1.9-fold increased uptake in SK-OV-3 tumors after 3 weeks of trastuzumab, consistent with tumor response and resistance, respectively. We conclude that PET/CT imaging with 64Cu-NOTA-pertuzumab F(ab')2 detected changes in HER2 expression in response to trastuzumab while delivering a lower total body radiation dose compared to 111In-labeled pertuzumab.
Collapse
Affiliation(s)
- Karen Lam
- a Department of Pharmaceutical Sciences , University of Toronto , Toronto , ON , Canada
| | - Conrad Chan
- a Department of Pharmaceutical Sciences , University of Toronto , Toronto , ON , Canada
| | - Raymond M Reilly
- a Department of Pharmaceutical Sciences , University of Toronto , Toronto , ON , Canada.,b Department of Medical Imaging , University of Toronto , Toronto , ON , Canada.,c Toronto General Research Institute, University Health Network , Toronto , ON , Canada
| |
Collapse
|
35
|
Li C, Feng H, Xia X, Wang L, Gao B, Zhang Y, Lan X. (99m) Tc-labeled tetramer and pentamer of single-domain antibody for targeting epidermal growth factor receptor in xenografted tumors. J Labelled Comp Radiopharm 2016; 59:305-12. [PMID: 27123559 DOI: 10.1002/jlcr.3399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/04/2016] [Accepted: 03/17/2016] [Indexed: 01/01/2023]
Abstract
The single-domain antibody EG2 can be fused with right-handed coiled-coil (RHCC) and human cartilage oligomeric matrix protein (COMP), to form the multivalent antibodies EG2-RHCC and EG2-COMP. We labeled these two antibodies with (99m) Tc and assessed their targeting efficiency for epidermal growth factor receptor (EGFR). Cell binding, uptake, efflux, and blocking studies were performed with EGFR high- and/or low-expressing cells with (99m) Tc-labeled EG2-RHCC or EG2-COMP. Single photon-emission computed tomography (SPECT) imaging and biodistribution studies were further carried out. Both (99m) Tc-EG2-RHCC and (99m) Tc-EG2-COMP can specially bind to EGFR in vitro. SPECT imaging showed that A431, which expresses high levels of EGFR, was clearly visible 6 h after (99m) Tc-EG2-COMP injection; however, it was not detectable after administration of (99m) Tc-EG2-RHCC. Uptake of both antibodies by the non-EGFR-secreting OCM-1 tumors was low. EG2-COMP shows promise in identifying EGFR over-expression in tumors; however, EG2-RHCC may not be suitable for targeting EGFR in vivo.
Collapse
Affiliation(s)
- Chongjiao Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.,Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongyan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lifei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology (CASPMI), Centre for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Bin Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology (CASPMI), Centre for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Science and Technology of China, Hefei, China.,China-Japan Joint Laboratory of Molecular Immunology and Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
36
|
Fitzsimmons J, Nayak T, Cutler C, Atcher R. Synthesis and Preliminary Biological Evaluations of Fluorescent or 149Promethium Labeled Trastuzumab-Polyethylenimine. Biomedicines 2015; 4:biomedicines4010001. [PMID: 28536369 PMCID: PMC5344248 DOI: 10.3390/biomedicines4010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Radioimmunotherapy utilize a targeting antibody coupled to a therapeutic isotope to target and treat a tumor or disease. In this study we examine the synthesis and cell binding of a polymer scaffold containing a radiotherapeutic isotope and a targeting antibody. METHODS The multistep synthesis of a fluorescent or 149Promethium-labeled Trastuzumab-polyethyleneimine (PEI), Trastuzumab, or PEI is described. In vitro uptake, internalization and/or the binding affinity to the Her2/neu expressing human breast adenocarcinoma SKBr3 cells was investigated with the labeled compounds. RESULTS Fluorescent-labeled Trastuzumab-PEI was internalized more into cells at 2 and 18 h than fluorescent-labeled Trastuzumab or PEI. The fluorescent-labeled Trastuzumab was concentrated on the cell surface at 2 and 18 h and the labeled PEI had minimal uptake. DOTA-PEI was prepared and contained an average of 16 chelates per PEI; the compound was radio-labeled with 149Promethium and conjugated to Trastuzumab. The purified 149Pm-DOTA-PEI-Trastuzumab had a radiochemical purity of 96.7% and a specific activity of 0.118 TBq/g. The compound demonstrated a dissociation constant for the Her2/neu receptor of 20.30 ± 6.91 nM. CONCLUSION The results indicate the DOTA-PEI-Trastuzumab compound has potential as a targeted therapeutic carrier, and future in vivo studies should be performed.
Collapse
Affiliation(s)
- Jonathan Fitzsimmons
- Chemistry, Life, and Earth Sciences Directorate, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Tapan Nayak
- Department of Cell Biology and Physiology, School of Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.
- College of Pharmacy, Radiopharmaceutical Sciences Program, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.
| | - Cathy Cutler
- University of Missouri Research Reactor (MURR), University of Missouri-Columbia, Columbia MO 65211, USA.
| | - Robert Atcher
- Chemistry, Life, and Earth Sciences Directorate, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
- College of Pharmacy, Radiopharmaceutical Sciences Program, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
37
|
Mahajan A, Goh V, Basu S, Vaish R, Weeks AJ, Thakur MH, Cook GJ. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine? Clin Radiol 2015; 70:1060-82. [PMID: 26187890 DOI: 10.1016/j.crad.2015.06.082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023]
Abstract
Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research.
Collapse
Affiliation(s)
- A Mahajan
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK; Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, 400012, India.
| | - V Goh
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - S Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Mumbai, 400 012, India
| | - R Vaish
- Department of Head and Neck Surgical Oncology, Tata Memorial Centre, Mumbai, 400012, India
| | - A J Weeks
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK
| | - M H Thakur
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, 400012, India
| | - G J Cook
- Division of Imaging Sciences and Biomedical Engineering, King's College London, UK; Department of Nuclear Medicine, Guy's and St Thomas NHS Foundation Trust Hospital, London, UK
| |
Collapse
|
38
|
Bhusari P, Vatsa R, Singh G, Dhawan DK, Shukla J, Mittal BR. Development and characterization of DTPA-trastuzumab conjugates for radiolabeling with Tc-99m: A radiopharmaceutical for HER2/neu breast cancer. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Gilabert-Oriol R, Weng A, Trautner A, Weise C, Schmid D, Bhargava C, Niesler N, Wookey PJ, Fuchs H, Thakur M. Combinatorial approach to increase efficacy of Cetuximab, Panitumumab and Trastuzumab by dianthin conjugation and co-application of SO1861. Biochem Pharmacol 2015; 97:247-55. [PMID: 26253687 DOI: 10.1016/j.bcp.2015.07.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022]
Abstract
The therapeutic relevance of immunotoxins is based on the conjugation of monoclonal antibodies to toxins. In cancer therapies, the conjugated antibodies not only direct the binding of immunotoxins to cancer-specific receptors and mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. In the present study, the therapeutic antibodies Cetuximab (anti-EGFR, Erbitux(®)), Panitumumab (anti-EGFR, Vectibix(®)) and Trastuzumab (anti-HER2, Herceptin(®)) were chemically conjugated to the toxin dianthin. In the first instance, recombinant dianthin was characterized by mass spectrometry and its stability was analyzed by circular dichroism. Dianthin showed increased cytotoxicity on MCF-7 cells when tested in combination with a glycosylated triterpenoid (SO1861) in a real-time impedance-based cytotoxicity assay. In data obtained by live cell imaging, SO1861 specifically mediated the endo/lysosomal escape of dianthin without disrupting the plasma membrane. The purity of immunotoxins was confirmed by SDS-PAGE and Western blot. Their cytotoxicity was evaluated in the presence of SO1861 and dianthin-Cetuximab presented a GI50 (50% growth inhibition) of 5.3pM, dianthin-Panitumumab of 1.5pM, and dianthin-Trastuzumab of 23pM. Finally, the specificity of these immunotoxins was validated in a fluorescence-based real-time assay, where their binding to target cells was prevented by preincubation with an excess of label-free unconjugated antibody. Based on these data, we propose the use of dianthin and SO1861 as a new platform technology to enhance the efficacy of therapeutic antibodies.
Collapse
Affiliation(s)
- Roger Gilabert-Oriol
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany; Department of Medicine, University of Melbourne, Austin Health, Studley Road, VIC 3084 Heidelberg, Australia
| | - Alexander Weng
- Institut für Pharmazie-Pharmazeutische Biologie, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195 Berlin, Germany
| | - Alexandra Trautner
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Christoph Weise
- Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Daniel Schmid
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Cheenu Bhargava
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Nicole Niesler
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Peter J Wookey
- Department of Medicine, University of Melbourne, Austin Health, Studley Road, VIC 3084 Heidelberg, Australia
| | - Hendrik Fuchs
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Mayank Thakur
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| |
Collapse
|
40
|
Zhang J, Zhao X, Wang S, Wang N, Han J, Jia L, Ren X. Monitoring therapeutic response of human ovarian cancer to trastuzumab by SPECT imaging with (99m)Tc-peptide-Z(HER2:342). Nucl Med Biol 2015; 42:541-6. [PMID: 25735223 DOI: 10.1016/j.nucmedbio.2015.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Patients with human epidermal growth factor receptor 2 (HER2)-positive cancer are candidates for treatment with the anti-HER2 antibody trastuzumab. How to systemically assess tumor HER2 expression and identifying appropriate use of anti-HER2 therapies by noninvasive imaging in vivo is an urgent issue. The purpose of this study was to evaluate SPECT imaging of (99m)Tc-Gly-(D)Ala-Gly-Gly-Z(HER2:342) ((99m)Tc-peptide-Z(HER2:342)) for monitoring therapeutic response to trastuzumab in nude mice bearing HER2-positive SKOV-3 xenografts. METHODS Nude mice bearing HER2-positive SKOV-3 xenografts were treated with trastuzumab (treatment group) or saline (control) with ten mice in each group. Mice in trastuzumab-treated group were given trastuzumab intraperiotoneally 4 mg/kg on day 1 and 2 mg/kg on day 8; Mice in control group were given physiological saline on day 1 and 8. Mice body weights and tumour volume were monitored every three days during treatment. In vivo SPECT imaging was performed in mice of the two groups using (99m)Tc-peptide-Z(HER2:342) before treatment, on day 8 and 15 after treatment. Radiolabeled probe uptake in tumours was measured as the ratio of radioactive counts in the tumour to that in the contralateral equivalent region (T/NT). After SPECT imaging on day 15, all the mice were euthanized, biodistribution studies of the SKOV-3 xenografts were carried out to validate the imaging results and HER2 expression of the transplanted tumours was analyzed by immunohistochemistry (IHC). Correlation analysis was performed between T/NT ratios acquired by in vivo SPECT imaging on day 15 and the HER2 level of tumours. In vitro cell binding capacity of (99m)Tc-Z(HER2:342) with SKOV-3 cells in the absence and presence of varying amount of trastuzumab were also conducted in the study. RESULTS Twenty mice body weight in the two groups gradually increased during treatment, but there was no statistical difference (p > 0.05). Though volumes of SKOV-3 xenografts gradually increased in each group during the treatment, the transplanted tumours in trastuzumab-treated group had a slower growth than those in control group (p < 0.05). Compared with the baseline, the results of in vivo imaging showed that radionuclide accumulation in transplanted tumours reduced significantly in trastuzumab-treated group after treatment (p < 0.05), whereas the tumour accumulation in control group increased after treatment. Biodistribution studies demonstrated that the results corresponded well with in vivo imaging data. Immunohistochemical staining confirmed the significant reduction in tumor HER2 level upon trastuzumab treatment, and there was an obviously positive correlation between T/NT ratios and HER2 level of tumours with correlation coefficient rs = 0.919, p < 0.05. There was no significant significance in cell binding ratios between varying amount of trastuzumab and the absence of trastuzumab (p > 0.05). CONCLUSIONS The early response to trastuzumab in mice bearing SKOV-3 xenografts was successfully monitored by SPECT imaging using (99m)Tc-peptide-Z(HER2:342). This approach may be valuable in monitoring the therapeutic response in HER 2-positive tumours under HER2-targeted therapy.
Collapse
Affiliation(s)
- Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China.
| | - Shijie Wang
- Department of Tumor Imaging, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China
| | - Na Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China
| | - Jingya Han
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China
| | - Lizhuo Jia
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China
| | - Xiuchun Ren
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China
| |
Collapse
|
41
|
Obaid G, Chambrier I, Cook MJ, Russell DA. Cancer targeting with biomolecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Photochem Photobiol Sci 2015; 14:737-47. [DOI: 10.1039/c4pp00312h] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The functionalisation of therapeutic nanoparticle constructs with cancer-specific biomolecules can enable selective tumour accumulation and targeted treatment.
Collapse
Affiliation(s)
- Girgis Obaid
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | | | | | | |
Collapse
|
42
|
Sato R, Obonai T, Tsumura R, Tsumoto K, Koga Y, Yasunaga M, Matsumura Y. Preparation and characterization of anti-tissue factor single-chain variable fragment antibody for cancer diagnosis. Cancer Sci 2014; 105:1631-7. [PMID: 25311092 PMCID: PMC4317963 DOI: 10.1111/cas.12557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/21/2022] Open
Abstract
Tissue factor (TF), which serves as the initiator of the extrinsic blood coagulation cascade, has been found to be overexpressed in various solid tumors, especially brain tumors, pancreatic cancer, and gastric cancer. Overexpression of TF is considered to contribute to the high incidence of thrombotic complications and poor prognosis in patients with such cancers. Therefore, detection or targeting of TF may be a promising approach for the diagnosis and treatment of solid tumors that are known to overexpress the protein. Here, we used the recombinant DNA technology to develop an anti-TF single-chain Fv (scFv) of small size and high affinity for its target. The biochemical characteristics of the anti-TF scFv were evaluated using surface plasmon resonance (SPR) sensing and flow cytometry. The data obtained showed that the affinity of the anti-TF scFv was 2.04 × 10−8 (KD), and that the protein showed significant binding to the cancer cells. Then, Alexa 647-labeled anti-TF scFv and anti-TF IgG were administered to mice bearing chemically induced spontaneous tumors. The maximum tumor to background ratios of anti-TF scFv and anti-TF IgG were obtained 3 and 24 h after the injections, respectively. This study indicates anti-TF scFv may be suitable as an imaging probe for the diagnosis of solid tumors.
Collapse
Affiliation(s)
- Ryuta Sato
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Chiba, Japan; Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Boyle AJ, Cao PJ, Hedley DW, Sidhu SS, Winnik MA, Reilly RM. MicroPET/CT imaging of patient-derived pancreatic cancer xenografts implanted subcutaneously or orthotopically in NOD-scid mice using (64)Cu-NOTA-panitumumab F(ab')2 fragments. Nucl Med Biol 2014; 42:71-7. [PMID: 25456837 DOI: 10.1016/j.nucmedbio.2014.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/12/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Our objective was to study microPET/CT imaging of patient-derived pancreatic cancer xenografts in NOD-scid mice using F(ab')2 fragments of the fully-human anti-EGFR monoclonal antibody, panitumumab (Vectibix) labeled with (64)Cu. More than 90% of pancreatic cancers are EGFR-positive. METHODS F(ab')2 fragments were produced by proteolytic digestion of panitumumab IgG or non-specific human IgG, purified by ultrafiltration then modified with NOTA chelators for complexing (64)Cu. Panitumumab IgG and Fab fragments were similarly labeled with (64)Cu. EGFR immunoreactivity was determined in competition and direct (saturation) cell binding assays. The biodistribution of (64)Cu-labeled panitumumab IgG, F(ab')2 and Fab was compared in non-tumor-bearing Balb/c mice. MicroPET/CT and biodistribution studies were performed in NOD-scid mice engrafted subcutaneously (s.c.) or orthotopically with patient-derived OCIP23 pancreatic tumors, or in NOD-scid with s.c. PANC-1 human pancreatic cancer xenografts. RESULTS Panitumumab F(ab')2 fragments were produced in high purity (>90%), derivitized with 3.2±0.7 NOTA/F(ab')2, and labeled with (64)Cu (0.3-3.6MBq/μg). The binding of (64)Cu-NOTA-panitumumab F(ab')2 to OCIP23 or PANC-1 cells was decreased significantly by an excess of panitumumab IgG. The Kd for binding of (64)Cu-NOTA-panitumumab F(ab')2 to EGFR on PANC-1 cells was 0.14±0.05nmol/L. F(ab')2 fragments exhibited more suitable normal tissue distribution for tumor imaging with (64)Cu than panitumumab IgG or Fab. Tumor uptake at 48h post injection (p.i.) of (64)Cu-NOTA-panitumumab F(ab')2 was 12.0±0.9% injected dose/g (ID/g) in s.c. and 11.8±0.9% ID/g in orthotopic OCIP23 tumors vs. 6.1±1.1% ID/g in s.c. PANC-1 xenografts. Tumor/Blood (T/B) ratios were 5:1 to 9:1 for OCIP23 and 2.4:1 for PANC-1 tumors. Tumor uptake of (64)Cu-NOTA-non-specific F(ab')2 in OCIP23 xenografts was 5-fold lower than (64)Cu-panitumumab F(ab')2. All tumor xenografts were clearly imaged by microPET/CT at 24 or 48h p.i. of (64)Cu-NOTA-panitumumab F(ab')2. CONCLUSIONS (64)Cu-panitumumab F(ab')2 fragments bound with high affinity to EGFR on pancreatic cancer cells in vitro and localized specifically in patient-derived pancreatic cancer xenografts in mice in vivo, allowing tumor visualization by microPET/CT at 24 or 48h p.i.
Collapse
Affiliation(s)
- Amanda J Boyle
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Ping-Jiang Cao
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David W Hedley
- Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | | | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; Toronto General Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
44
|
Uehara T, Rokugawa T, Kinoshita M, Nemoto S, Fransisco Lazaro GG, Hanaoka H, Arano Y. (67/68)Ga-labeling agent that liberates (67/68)Ga-NOTA-methionine by lysosomal proteolysis of parental low molecular weight polypeptides to reduce renal radioactivity levels. Bioconjug Chem 2014; 25:2038-45. [PMID: 25303645 DOI: 10.1021/bc5004058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The renal localization of gallium-67 or gallium-68 ((67/68)Ga)-labeled low molecular weight (LMW) probes such as peptides and antibody fragments constitutes a problem in targeted imaging. Wu et al. previously showed that (67)Ga-labeled S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (SCN-Bz-NOTA)-conjugated methionine ((67)Ga-NOTA-Met) was rapidly excreted from the kidney in urine following lysosomal proteolysis of the parental (67)Ga-NOTA-Bz-SCN-disulfide-stabilized Fv fragment (Bioconjugate Chem., (1997) 8, 365-369). In the present study, a new (67/68)Ga-labeling reagent for LMW probes that liberates (67/68)Ga-NOTA-Met was designed, synthesized, and evaluated using longer-lived (67)Ga in order to reduce renal radioactivity levels. We employed a methionine-isoleucine (MI) dipeptide bond as the cleavable linkage. The amine residue of MI was coupled with SCN-Bz-NOTA for (67)Ga-labeling, while the carboxylic acid residue of MI was derivatized to maleimide for antibody conjugation in order to synthesize NOTA-MI-Mal. A Fab fragment of the anti-Her2 antibody was thiolated with iminothiolane, and NOTA-MI-Mal was conjugated with the antibody fragment by maleimide-thiol chemistry. The Fab fragment was also conjugated with SCN-Bz-NOTA (NOTA-Fab) for comparison. (67)Ga-NOTA-MI-Fab was obtained at radiochemical yields of over 95% and was stable in murine serum for 24 h. In the biodistribution study using normal mice, (67)Ga-NOTA-MI-Fab registered significantly lower renal radioactivity levels from 1 to 6 h postinjection than those of (67)Ga-NOTA-Fab. An analysis of urine samples obtained 6 h after the injection of (67)Ga-NOTA-MI-Fab showed that the majority of radioactivity was excreted as (67)Ga-NOTA-Met. In the biodistribution study using tumor-bearing mice, the tumor to kidney ratios of (67)Ga-NOTA-MI-Fab were 4 times higher (6 h postinjection) than those of (67)Ga-NOTA-Fab. Although further studies including the structure of radiometabolites and/or cleavable linkages are required, the results of the present study indicate that the current chemical design is applicable to the development of (67)Ga-labeled Fabs for low renal radioactivity levels.
Collapse
Affiliation(s)
- Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 263-8675, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Turker NS, Heidari P, Kucherlapati R, Kucherlapati M, Mahmood U. An EGFR targeted PET imaging probe for the detection of colonic adenocarcinomas in the setting of colitis. Am J Cancer Res 2014; 4:893-903. [PMID: 25057314 PMCID: PMC4107290 DOI: 10.7150/thno.9425] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/04/2014] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer is a serious complication associated with inflammatory bowel disease, often indistinguishable by screening with conventional FDG PET probes. We have developed an alternative EGFR-targeted PET imaging probe that may be used to overcome this difficulty, and successfully assessed its utility for neoplastic lesion detection in preclinical models. Cetuximab F(ab′)2 fragments were enzymatically generated, purified, and DOTA-conjugated. Radiolabeling was performed with 67Ga for cell based studies and 64Cu for in vivo imaging. Competitive binding studies were performed on CT26 cells to assess affinity (KD) and receptors per cell (Bmax). In vivo imaging using the EGFR targeted PET probe and 18F FDG was performed on CT26 tumor bearing mice in both control and dextran sodium sulfate (DSS) induced colitis settings. Spontaneous adenomas in genetically engineered mouse (GEM) models of colon cancer were additionally imaged. The EGFR imaging agent was generated with high purity (> 98%), with a labeling efficiency of 60 ± 5% and ≥99% radiochemical purity. The KD was 6.6 ± 0.7 nM and the Bmax for CT26 cells was 3.3 ± 0.1 × 106 receptors/cell. Target to background ratios (TBR) for CT26 tumors compared to colonic uptake demonstrated high values for both 18F-FDG (3.95 ± 0.13) and the developed 64Cu-DOTA-cetuximab-F(ab′)2 probe (4.42 ± 0.11) in control mice. The TBR for the EGFR targeted probe remained high (3.78 ± 0.06) in the setting of colitis, while for 18F FDG, this was markedly reduced (1.54 ± 0.08). Assessment of the EGFR targeted probe in the GEM models demonstrated a correlation between radiotracer uptake in spontaneous colonic lesions and the EGFR staining level ex vivo. A clinically translatable PET imaging probe was successfully developed to assess EGFR. The imaging agent can detect colonic tumors with a high TBR for detection of in situ lesions in the setting of colitis, and opens the possibility for a new approach for screening high-risk patients.
Collapse
|
46
|
Wang RE, Zhang Y, Tian L, Cai W, Cai J. Antibody-based imaging of HER-2: moving into the clinic. Curr Mol Med 2014; 13:1523-37. [PMID: 24206138 DOI: 10.2174/1566524013666131111120951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/17/2012] [Accepted: 09/10/2013] [Indexed: 12/31/2022]
Abstract
Human epidermal growth factor receptor-2 (HER-2) mediates a number of important cellular activities, and is up-regulated in a diverse set of cancer cell lines, especially breast cancer. Accordingly, HER-2 has been regarded as a common drug target in cancer therapy. Antibodies can serve as ideal candidates for targeted tumor imaging and drug delivery, due to their inherent affinity and specificity. Advanced by the development of a wide variety of imaging techniques, antibody-based imaging of HER-2 can allow for early detection and localization of tumors, as well as monitoring of drug delivery and tissue's response to drug treatment. In this review article, antibody-based imaging of HER-2 are summarized and discussed, with an emphasis on the involved imaging methods.
Collapse
Affiliation(s)
- R E Wang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
47
|
Zhang X, Soori G, Dobleman TJ, Xiao GG. The application of monoclonal antibodies in cancer diagnosis. Expert Rev Mol Diagn 2013; 14:97-106. [PMID: 24308340 DOI: 10.1586/14737159.2014.866039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer becomes the second leading cause of death in the world. An effective strategy for early diagnosis of the disease is key to reduce the mortality and morbidity. Development of effective monoclonal antibody (mAb)-based assays or diagnostic imaging techniques for detection of antigens and small molecules that are released from cancerous cells will enhance modern diagnostic medicine of cancer significantly. Although mAb technology is still under development, recent advances in preparation of recombinant antigen and antibody engineering techniques have dramatically enhanced the applications of this technology in cancer diagnosis. Compared with other methods, mAb-based assays may provide spatial, temporal, accurate and quantitative measurement for diagnosis of the disease. This review summarizes the progress of the mAb-based assays in the field of molecular diagnosis of cancer.
Collapse
Affiliation(s)
- Xuemei Zhang
- The Medical College of Dalian University, Dalian Economic & Technical Development Zone, Dalian 116622, People's Republic of China, China
| | | | | | | |
Collapse
|
48
|
Holloway CMB, Scollard DA, Caldwell CB, Ehrlich L, Kahn HJ, Reilly RM. Phase I trial of intraoperative detection of tumor margins in patients with HER2-positive carcinoma of the breast following administration of 111In-DTPA-trastuzumab Fab fragments. Nucl Med Biol 2013; 40:630-7. [PMID: 23618841 DOI: 10.1016/j.nucmedbio.2013.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/09/2013] [Accepted: 03/11/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Our aim was to conduct a Phase I clinical trial to determine the feasibility of intraoperative detection of tumor margins in HER2 positive breast carcinoma using a hand-held γ-probe following administration of (111)In-DTPA-trastuzumab Fab fragments. Accurate delineation of tumor margins is important for preventing local recurrence. METHODS Six patients with HER2-positive in situ or invasive ductal carcinoma were administered 74MBq (0.5mg) of (111)In-DTPA-trastuzumab Fab fragments and counts in the tumor, surgical cavity wall and en face margins were measured intraoperatively at 72h post-injection using the Navigator or C-Trak γ-probes. Margins were evaluated histologically. Quantitative whole body planar imaging was performed to estimate radiation absorbed doses using OLINDA/EXM software. SPECT imaging of the thorax was performed to evaluate tumor uptake. The pharmacokinetics of elimination from the blood and plasma were determined over 72h. RESULTS There were no acute adverse reactions from (111)In-DTPA-trastuzumab Fab fragments and no changes in hematological or biochemical indices were found over a 3month period. (111)In-DTPA-trastuzumab Fab fragments exhibited a biphasic elimination from the blood and plasma with t1/2α=11.9h and 7.5h, respectively, and t1/2β=26.6 and 20.7h, respectively. The radiopharmaceutical accumulated in the liver, spleen and kidneys. SPECT imaging did not reveal tumor in any patient. The mean effective dose was 0.146mSv/MBq (10.8mSv for 74MBq). Counts in excised tumors were low but were higher than in margins. Margins in two patients harboured tumor but this was not correlated with counts obtained using the γ-probes. Surgical cavity counts were high and likely due to detection of γ-photons outside the surgical field. CONCLUSION We conclude that it was not feasible, at least at the administered amount of radioactivity used in this study, to reliably detect the margins of disease in patients with in situ or invasive ductal carcinoma intraoperatively using a hand-held γ-probe and (111)In-DTPA-trastuzumab Fab fragments due to low uptake in the tumor and involved margins.
Collapse
Affiliation(s)
- Claire M B Holloway
- Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada M4N 3M5.
| | | | | | | | | | | |
Collapse
|
49
|
MicroSPECT/CT imaging of co-expressed HER2 and EGFR on subcutaneous human tumor xenografts in athymic mice using ¹¹¹In-labeled bispecific radioimmunoconjugates. Breast Cancer Res Treat 2013; 138:709-18. [PMID: 23525982 DOI: 10.1007/s10549-013-2490-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
Abstract
Epidermal growth factor receptors (EGFR) form heterodimers with HER2 in breast cancer, and increased EGFR expression has been found in HER2-positive tumors resistant to trastuzumab (Herceptin). Our objective was to synthesize bispecific radioimmunoconjugates (bsRICs) that recognize HER2 and EGFR and evaluate their ability to image tumors in athymic mice that express one or both receptors by microSPECT/CT. Bispecific radioimmunoconjugates were constructed by conjugating maleimide-derivatized trastuzumab Fab fragments that bind HER2 to a thiolated form of EGF with an intervening 24 mer polyethylene glycol (PEG24) spacer. Bispecific radioimmunoconjugates were derivatized with diethylenetriaminepentaacetic acid for labeling with (111)In. The ability of (111)In-bsRICs to bind HER2 or EGFR was determined in competition assays using cells expressing one or both receptors. Tumor and normal tissue uptake were examined in CD1 athymic mice bearing subcutaneous tumor xenografts that expressed HER2, EGFR, or both receptors, with or without pre-administration of Fab or EGF to determine specificity. HER2 and EGFR binding and displacement of binding by competitors were found for (111)In-bsICs. The highest uptake of (111)In-bsRICs [7.3 ± 3.5 %ID/g] in 231-H2N human breast cancer xenografts (HER2+/EGFR+) occurred at 48 h post-injection. Pre-administration of trastuzumab Fab decreased uptake in SK-OV-3 (HER2+/EGFR-) human ovarian cancer xenografts from 7.1 ± 1.2 to 2.4 ± 1.5 %ID/g. Pre-administration of excess EGF decreased uptake in MDA-MB-231 (HER2-/EGFR+) human breast cancer xenografts from 5.9 ± 0.5 to 2.0 ± 0.1 %ID/g. All tumors were imaged by microSPECT/CT. We conclude that (111)In-bsRICs composed of trastuzumab Fab and EGF exhibited specific binding in vitro to tumor cells displaying HER2 or EGFR, and were taken up specifically in vivo in tumors expressing one or both receptors, permitting tumor visualization by microSPECT/CT. These agents may ultimately be useful for imaging heterodimerized HER2-EGFR complexes since their bivalent properties permit more avid binding to these complexes.
Collapse
|
50
|
|