1
|
Fully automated 18F-fluorination of N-succinimidyl-4-[ 18F]fluorobenzoate ([ 18F]SFB) for indirect labelling of nanobodies. Sci Rep 2022; 12:18655. [PMID: 36333403 PMCID: PMC9636270 DOI: 10.1038/s41598-022-23552-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB), a widely used labeling agent to introduce the 4-[18F]fluorobenzoyl-prosthetic group, is normally obtained in three consecutive steps from [18F]fluoride ion. Here, we describe an efficient one-step labeling procedure of [18F]SFB starting from a tin precursor. This method circumvents volatile radioactive side-products and simplifies automatization. [18F]SFB was obtained after HPLC purification in a yield of 42 + 4% and a radiochemical purity (RCP) > 99% (n = 6). In addition, we investigate the automation of the coupling of [18F]SFB to a nanobody (cAbBcII10, targeting β-lactamase enzyme) and purification by size exclusion chromatography (PD-10 desalting column) to remove unconjugated reagent. Production and use of [18F]SFB were implemented on a radiosynthesis unit (Neptis®). The fully automated radiosynthesis process including purification and formulation required 160 min of synthesis time. [18F]SFB-labeled nanobody was obtained in a yield of 21 + 2% (activity yield 12 + 1% non-decay corrected) and a radiochemical purity (RCP) of > 95% (n = 3). This approach simplifies [18F]SFB synthesis to one-step, enhances the yield in comparison to the previous report and enables the production of radiolabeled nanobody on the same synthesis module.
Collapse
|
2
|
Van de Wiele C, Ustmert S, De Spiegeleer B, De Jonghe PJ, Sathekge M, Alex M. Apoptosis Imaging in Oncology by Means of Positron Emission Tomography: A Review. Int J Mol Sci 2021; 22:ijms22052753. [PMID: 33803180 PMCID: PMC7963162 DOI: 10.3390/ijms22052753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/02/2022] Open
Abstract
To date, a wide variety of potential PET-apoptosis imaging radiopharmaceuticals targeting apoptosis-induced cell membrane asymmetry and acidification, as well as caspase 3 activation (substrates and inhibitors) have been developed with the purpose of rapidly assessing the response to treatment in cancer patients. Many of these probes were shown to specifically bind to their apoptotic target in vitro and their uptake to be enhanced in the in vivo-xenografted tumours in mice treated by means of chemotherapy, however, to a significantly variable degree. This may, in part, relate to the tumour model used given the fact that different tumour cell lines bear a different sensitivity to a similar chemotherapeutic agent, to differences in the chemotherapeutic concentration and exposure time, as well as to the different timing of imaging performed post-treatment. The best validated cell membrane acidification and caspase 3 targeting radioligands, respectively 18F-ML-10 from the Aposense family and the radiolabelled caspase 3 substrate 18F-CP18, have also been injected in healthy individuals and shown to bear favourable dosimetric and safety characteristics. However, in contrast to, for instance, the 99mTc-HYNIC-Annexin V, neither of both tracers was taken up to a significant degree by the bone marrow in the healthy individuals under study. Removal of white and red blood cells from the bone marrow through apoptosis plays a major role in the maintenance of hematopoietic cell homeostasis. The major apoptotic population in normal bone marrow are immature erythroblasts. While an accurate estimate of the number of immature erythroblasts undergoing apoptosis is not feasible due to their unknown clearance rate, their number is likely substantial given the ineffective quote of the erythropoietic process described in healthy subjects. Thus, the clinical value of both 18F-ML-10 and 18F-CP18 for apoptosis imaging in cancer patients, as suggested by a small number of subsequent clinical phase I/II trials in patients suffering from primary or secondary brain malignancies using 18F-ML-10 and in an ongoing trial in patients suffering from cancer of the ovaries using 18F-CP18, remains to be proven and warrants further investigation.
Collapse
Affiliation(s)
- Christophe Van de Wiele
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
- Department of Diagnostic Sciences, University Ghent, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-5663-4120
| | - Sezgin Ustmert
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
| | - Bart De Spiegeleer
- Department of Analytical Chemistry, DRUQUAR, University Ghent, 9000 Ghent, Belgium;
| | - Pieter-Jan De Jonghe
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0084, South Africa;
| | - Maes Alex
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
- Department of Morphology and Imaging, University Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Abstract
One major characteristic of programmed cell death (apoptosis) results in the increased expression of phosphatidylserine (PS) on the outer membrane of dying cells. Consequently, PS represents an excellent target for non-invasive imaging of apoptosis by single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Annexin V is a 36 kDa protein which binds with high affinity to PS in the presence of Ca2+ ions. This makes radiolabeled annexins valuable apoptosis imaging agents for clinical and biomedical research applications for monitoring apoptosis in vivo. However, the use of radiolabeled annexin V for in vivo imaging of cell death has been met with a variety of challenges which have prevented its translation into the clinic. These difficulties include: complicated and time-consuming radiolabeling procedures, sub-optimal biodistribution, inadequate pharmacokinetics leading to poor tumour-to-blood contrast ratios, reliance upon Ca2+ concentrations in vivo, low tumor tissue penetration, and an incomplete understanding of what constitutes the best imaging protocol following induction of apoptosis. Therefore, new concepts and improved strategies for the development of PS-binding radiotracers are needed. Radiolabeled PS-binding peptides and various Zn(II) complexes as phosphate chemosensors offer an innovative strategy for radionuclide-based molecular imaging of apoptosis with PET and SPECT. Radiolabeled peptides and Zn(II) complexes provide several advantages over annexin V including better pharmacokinetics due to their smaller size, better availability, simpler synthesis and radiolabeling strategies as well as facilitated tissue penetration due to their smaller size and faster blood clearance profile allowing for optimized image contrast. In addition, peptides can be structurally modified to improve metabolic stability along with other pharmacokinetic and pharmacodynamic properties. The present review will summarize the current status of radiolabeled annexins, peptides and Zn(II) complexes developed as radiotracers for imaging apoptosis through targeting PS utilizing PET and SPECT imaging.
Collapse
|
4
|
Schmidt A, Wirtz M, Färber SF, Osl T, Beck R, Schottelius M, Schwaiger M, Wester HJ. Effect of Carbohydration on the Theranostic Tracer PSMA I&T. ACS OMEGA 2018; 3:8278-8287. [PMID: 30087939 PMCID: PMC6068695 DOI: 10.1021/acsomega.8b00790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
To investigate the effect of carbohydrate moieties on the pharmacokinetic profile of prostate-specific membrane antigen (PSMA) inhibitors, carbohydrated derivatives of the established PSMA-targeted radiopharmaceutical PSMA I&T were developed and evaluated. As observed for the reference PSMA I&T, the natGa/natLu complexes of the respective galactose-, mannose-, and cellobiose-conjugated analogs showed high PSMA affinity. Carbohydration had almost no effect on the lipophilicity, whereas PSMA-mediated internalization was reduced. The specific binding toward human serum albumin (HSA) decreased from 78.6% for [natLu]PSMA I&T to 19.9% for the natLu-labeled cellobiose derivative. Compared to [68Ga]PSMA I&T, [68Ga]PSMA galactose displayed lower nonspecific tissue and kidney accumulation but also slightly lower tumor uptake in small-animal positron emission tomography (μPET) imaging. Biodistribution studies confirmed reduced unspecific uptake in nontarget tissue and decreased renal accumulation of the metabolically stable [68Ga]PSMA galactose derivative, resulting in overall improved tumor-to-tissue ratios. However, carbohydration has no significant beneficial in vivo effect on the targeting performance of PSMA I&T. Nevertheless, carbohydration expands the repertoire of feasible modifications within the linker area and might be a valuable tool for the future development of PSMA inhibitors with decreased kidney uptake.
Collapse
Affiliation(s)
- Alexander Schmidt
- Pharmaceutical
Radiochemistry, Department of Chemistry, Technical University Munich, Walther-Meißner-Street 3, 85748 Garching, Germany
| | - Martina Wirtz
- Pharmaceutical
Radiochemistry, Department of Chemistry, Technical University Munich, Walther-Meißner-Street 3, 85748 Garching, Germany
| | - Stefanie Felicitas Färber
- Pharmaceutical
Radiochemistry, Department of Chemistry, Technical University Munich, Walther-Meißner-Street 3, 85748 Garching, Germany
| | - Theresa Osl
- Pharmaceutical
Radiochemistry, Department of Chemistry, Technical University Munich, Walther-Meißner-Street 3, 85748 Garching, Germany
| | - Roswitha Beck
- Pharmaceutical
Radiochemistry, Department of Chemistry, Technical University Munich, Walther-Meißner-Street 3, 85748 Garching, Germany
| | - Margret Schottelius
- Pharmaceutical
Radiochemistry, Department of Chemistry, Technical University Munich, Walther-Meißner-Street 3, 85748 Garching, Germany
| | - Markus Schwaiger
- Department
of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Ismaninger Street 22, 81675 Munich, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical
Radiochemistry, Department of Chemistry, Technical University Munich, Walther-Meißner-Street 3, 85748 Garching, Germany
| |
Collapse
|
5
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Preliminary biological evaluation of 18F-AlF-NOTA-MAL-Cys-Annexin V as a novel apoptosis imaging agent. Oncotarget 2017; 8:51086-51095. [PMID: 28881632 PMCID: PMC5584233 DOI: 10.18632/oncotarget.16994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/12/2017] [Indexed: 11/25/2022] Open
Abstract
A novel annexin V derivative (Cys-Annexin V) with a single cysteine residue at its C-terminal has been successfully labeled site-specifically with NOTA-maleimide aluminum [18F]fluoride complexation and evaluated it as a novel apoptosis agent in vitro and in vivo. The total synthesis time of 18F-AlF-NOTA-MAL-Cys-Annexin V from [18F]fluoride was about 65 min. The tracer was stable in vitro and it was excreted through renal in normal mice. The rate of the tracer bound to erythrocytes with exposed phosphatidylserine was 89.36±0.61% and this binding could be blocked by unlabeled Cys-Annexin V. In rats treated with cycloheximide, there were 6.23±0.23 times (n=4) increase in hepatic uptake of the tracer as compared to normal rats at 1h p.i. The uptake of the tracer in liver also could be blocked by co-injection of unlabeled Cys-Annexin V. These results indicated the favorable characterizations such as convenient synthesis and specific apoptotic cells targeting of18F-AlF-NOTA-MAL- Cys-Annexin V were suitable for its further investigation in clinical apoptosis imaging.
Collapse
|
7
|
Radiosynthesis of no-carrier-added meta-[ 124I]iodobenzylguanidine for PET imaging of metastatic neuroblastoma. J Radioanal Nucl Chem 2016; 311:727-732. [PMID: 28111488 PMCID: PMC5219010 DOI: 10.1007/s10967-016-5073-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Indexed: 01/07/2023]
Abstract
Meta-iodobenzylguanidine (mIBG) has been radiolabelled at the no-carrier-added level with [124I] for a proof of concept study to assess the diagnostic accuracy of [124I]mIBG PET/CT in detecting metastatic deposits in patients diagnosed with metastatic neuroblastoma. Radiolabelling of mIBG was achieved via the iododesilylation reaction between [124I]sodium iodide and meta-trimethylsilylbenzylguanidine. [124I]mIBG was produced in 62–70 % radioiodide incorporation yield from [124I]sodium iodide. The average amount of formulated [124I]mIBG was 359 MBq (range 344–389 MBq) with an average specific radioactivity of 4.1 TBq μmol−1 (range 1.8–5.9 TBq μmol−1) at end of synthesis.
Collapse
|
8
|
Synthesis and preclinical evaluation of DOTAGA-conjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer. EJNMMI Res 2014; 4:63. [PMID: 26116124 PMCID: PMC4452638 DOI: 10.1186/s13550-014-0063-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/06/2014] [Indexed: 01/12/2023] Open
Abstract
Background Due to its high expression in prostate cancer, PSMA (prostate-specific membrane antigen) represents an ideal target for both diagnostic imaging and endoradiotherapeutic approaches. Based on a previously published highly specific PSMA ligand ([68Ga]DOTA-FFK(Sub-KuE)), we developed a corresponding metabolically stable 1,4,7,10-tetraazacyclododececane,1-(glutaric acid)-4,7,10-triacetic acid (DOTAGA) construct for theranostic treatment of prostate cancer. Methods All ligands were synthesized by a combined solid phase and solution phase synthesis strategy. The affinity of the natgallium and lutetium complexes to PSMA and the internalization efficiency of the radiotracers were determined on PSMA-expressing LNCaP cells. The 68Ga- and 177Lu-labelled ligands were further investigated for lipophilicity, binding specificity, metabolic stability, as well as biodistribution and μPET in LNCaP-tumour-bearing mice. Results Radiochemical yields for 68Ga (3 nmol, 5.0 M NaCl/2.7 M HEPES (approximately 5/1), pH 3.5 to 4.5, 5 min, 95°C) and 177Lu labelling (0.7 nmol, 0.1 M NH4OAc, pH 5.5, 30 min, 95°C) were almost quantitative, resulting in specific activities of 250 to 300 GBq/μmol for the 68Ga analogues and 38 GBq/μmol for 177Lu complexes. Due to metabolic instability of l-amino acid spacers, d-amino acids were implemented resulting in a metabolically stable DOTAGA ligand. Compared to the DOTA ligand, the DOTAGA derivatives showed higher hydrophilicity (logP = −3.6 ± 0.1 and −3.9 ± 0.1 for 68Ga and 177Lu, respectively) and improved affinity to PSMA resulting in an about twofold increased specific internalization of the 68Ga- and 177Lu-labelled DOTAGA analogue. Especially, [68Ga]DOTAGA-ffk(Sub-KuE) exhibits favourable pharmacokinetics, low unspecific uptake and high tumour accumulation in LNCaP-tumour-bearing mice. Conclusions The pair of diagnostic/therapeutic PSMA-ligands [68Ga/177Lu]DOTAGA-ffk(Sub-KuE) possess remarkable potential for the management of prostate cancer.
Collapse
|
9
|
Braghirolli AMS, Waissmann W, da Silva JB, dos Santos GR. Production of iodine-124 and its applications in nuclear medicine. Appl Radiat Isot 2014; 90:138-48. [PMID: 24747530 DOI: 10.1016/j.apradiso.2014.03.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 03/07/2014] [Accepted: 03/24/2014] [Indexed: 12/16/2022]
Abstract
Until recently, iodine-124 was not considered to be an attractive isotope for medical applications owing to its complex radioactive decay scheme, which includes several high-energy gamma rays. However, its unique chemical properties, and convenient half-life of 4.2 days indicated it would be only a matter of time for its frequent application to become a reality. The development of new medical imaging techniques, especially improvements in the technology of positron emission tomography (PET), such as the development of new detectors and signal processing electronics, has opened up new prospects for its application. With the increasing use of PET in medical oncology, pharmacokinetics, and drug metabolism, (124)I-labeled radiopharmaceuticals are now becoming one of the most useful tools for PET imaging, and owing to the convenient half-life of I-124, they can be used in PET scanners far away from the radionuclide production site. Thus far, the limited availability of this radionuclide has been an impediment to its wider application in clinical use. For example, sodium [(124)I]-iodide is potentially useful for diagnosis and dosimetry in thyroid disease and [(124)I]-M-iodobenzylguanidine ([(124)I]-MIBG) has enormous potential for use in cardiovascular imaging, diagnosis, and dosimetry of malignant diseases such as neuroblastoma, paraganglioma, pheochromocytoma, and carcinoids. However, despite that potential, both are still not widely used. This is a typical scenario of a rising new star among the new PET tracers.
Collapse
Affiliation(s)
- Ana Maria S Braghirolli
- Instituto de Engenharia Nuclear, IEN-CNEN, Divisão de Radiofármacos, Rua Hélio de Almeida 75, Cidade Universitária, Ilha do Fundão, 21941-906 Rio de Janeiro, Brazil.
| | - William Waissmann
- Fundação Oswaldo Cruz, Escola Nacional de Sáúde Pública Sérgio Arouca, Centro de Estudos da Saúde do Trabalhador e Ecologia Humana, Rua Leopoldo Bulhões 1480, Manguinhos, RJ, Rio de Janeiro 21041-210, Brazil.
| | - Juliana Batista da Silva
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN-CNEN, Av. Antônio Carlos, 6627 Campus UFMG, Pampulha, BH/MG CEP: 30161-970, Brazil.
| | - Gonçalo R dos Santos
- Instituto de Engenharia Nuclear, IEN-CNEN, Divisão de Radiofármacos, Rua Hélio de Almeida 75, Cidade Universitária, Ilha do Fundão, 21941-906 Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Kostova MB, Rosen DM, Chen Y, Mease RC, Denmeade SR. Structural optimization, biological evaluation, and application of peptidomimetic prostate specific antigen inhibitors. J Med Chem 2013; 56:4224-35. [PMID: 23692593 DOI: 10.1021/jm301718c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prostate-specific antigen (PSA) is a serine protease produced at high levels by normal and malignant prostate epithelial cells that is used extensively as a biomarker in the clinical management of prostate cancer. To better understand PSA's role in prostate cancer progression, we prepared a library of peptidyl boronic acid-based inhibitors. To enhance selectivity for PSA vs other serine proteases, we modified the P1 site of the inhibitors to incorporate a bromopropylglycine group. This allowed the inhibitors to participate in halogen bond formation with the serine found at the bottom of the specificity pocket. The best of these Ahx-FSQn(boro)Bpg had PSA Ki of 72 nM and chymotrypsin Ki of 580 nM. In vivo studies using PSA-producing xenografts demonstrated that candidate inhibitors had minimal effect on growth but significantly altered serum levels of PSA. Biodistribution of (125)I labeled peptides showed low levels of uptake into tumors compared to other normal tissues.
Collapse
Affiliation(s)
- Maya B Kostova
- Department of Oncology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | |
Collapse
|
11
|
Glaser M, Goggi J, Smith G, Morrison M, Luthra SK, Robins E, Aboagye EO. Improved radiosynthesis of the apoptosis marker 18F-ICMT11 including biological evaluation. Bioorg Med Chem Lett 2011; 21:6945-9. [PMID: 22030029 DOI: 10.1016/j.bmcl.2011.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 01/24/2023]
Abstract
We improved the specific radioactivity of the apoptosis imaging isatin derivative (18)F-ICMT11. We then evaluated (18)F-ICMT11 in EL4 tumor-bearing mice 24h after treatment with etoposide/cyclophosphamide combination therapy. Dynamic PET imaging demonstrated increased uptake in the drug-treated (0.115±0.011 SUV) compared to the vehicle-treated EL4 tumors (0.083±0.008 SUV). This effect correlated to the observed increases in apoptotic index.
Collapse
Affiliation(s)
- Matthias Glaser
- MDx Discovery (Part of GE Healthcare), Hammersmith Imanet Ltd, Hammersmith Hospital, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
12
|
Dissoki S, Hagooly A, Elmachily S, Mishani E. Labeling approaches for the GE11 peptide, an epidermal growth factor receptor biomarker. J Labelled Comp Radiopharm 2011. [DOI: 10.1002/jlcr.1910] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Samar Dissoki
- Cyclotron/Radiochemistry Unit/Nuclear Medicine Department; Hadassah Hebrew University Hospital; Jerusalem; 91120; Israel
| | - Aviv Hagooly
- Cyclotron/Radiochemistry Unit/Nuclear Medicine Department; Hadassah Hebrew University Hospital; Jerusalem; 91120; Israel
| | - Smadar Elmachily
- Cyclotron/Radiochemistry Unit/Nuclear Medicine Department; Hadassah Hebrew University Hospital; Jerusalem; 91120; Israel
| | - Eyal Mishani
- Cyclotron/Radiochemistry Unit/Nuclear Medicine Department; Hadassah Hebrew University Hospital; Jerusalem; 91120; Israel
| |
Collapse
|
13
|
Comparison of the in vivo distribution of four different annexin a5 adducts in rhesus monkeys. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2011; 2011:405840. [PMID: 21629847 PMCID: PMC3099189 DOI: 10.1155/2011/405840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/19/2011] [Accepted: 02/23/2011] [Indexed: 12/29/2022]
Abstract
Annexin A5 has been used for the detection of apoptotic cells, due to its ability to bind to phosphatidylserine (PS). Four different labeled Annexin A5 adducts were evaluated in rhesus monkey, with radiolabeling achieved via 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Of these adducts differing conjugation methods were employed which resulted in nonspecific radiolabeling (AxA5-I), or site-specific radiolabeling (AxA5-II). A nonbinding variant of Annexin A5 was also evaluated (AxA5-IINBV), conjugation here was site specific. The fourth adduct examined had both specific and nonspecific conjugation techniques employed (AxA5-IImDOTA). Blood clearance for each adduct was comparable, while appreciable uptake was observed in kidney, liver, and spleen. Significant differences in uptake of AxA5-I and AxA5-II were observed, as well as between AxA5-II and AxA5-IINBV. No difference between AxA5-II and AxA5-IImDOTA was observed, suggesting that conjugating DOTA nonspecifically did not affect the in vivo biodistribution of Annexin A5.
Collapse
|
14
|
Vangestel C, Peeters M, Mees G, Oltenfreiter R, Boersma HH, Elsinga PH, Reutelingsperger C, Van Damme N, De Spiegeleer B, Van de Wiele C. In vivo imaging of apoptosis in oncology: an update. Mol Imaging 2011; 10:340-58. [PMID: 21521554 DOI: 10.2310/7290.2010.00058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/05/2010] [Indexed: 01/09/2023] Open
Abstract
In this review, data on noninvasive imaging of apoptosis in oncology are reviewed. Imaging data available are presented in order of occurrence in time of enzymatic and morphologic events occurring during apoptosis. Available studies suggest that various radiopharmaceutical probes bear great potential for apoptosis imaging by means of positron emission tomography and single-photon emission computed tomography (SPECT). However, for several of these probes, thorough toxicologic studies are required before they can be applied in clinical studies. Both preclinical and clinical studies support the notion that 99mTc-hydrazinonicotinamide-annexin A5 and SPECT allow for noninvasive, repetitive, quantitative apoptosis imaging and for assessing tumor response as early as 24 hours following treatment instigation. Bioluminescence imaging and near-infrared fluorescence imaging have shown great potential in small-animal imaging, but their usefulness for in vivo imaging in humans is limited to structures superficially located in the human body. Although preclinical tumor-based data using high-frequency-ultrasonography (US) are promising, whether or not US will become a routinely clinically useful tool in the assessment of therapy response in oncology remains to be proven. The potential of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) for imaging late apoptotic processes is currently unclear. Neither 31P MRS nor 1H MRS signals seems to be a unique identifier for apoptosis. Although MRI-measured apparent diffusion coefficients are altered in response to therapies that induce apoptosis, they are also altered by nonapoptotic cell death, including necrosis and mitotic catastrophe. In the future, rapid progress in the field of apoptosis imaging in oncology is expected.
Collapse
|
15
|
Nguyen QD, Aboagye EO. Imaging the life and death of tumors in living subjects: Preclinical PET imaging of proliferation and apoptosis. Integr Biol (Camb) 2010; 2:483-95. [PMID: 20737104 DOI: 10.1039/c0ib00066c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer is characterized by deregulation of cell proliferation and altered cell death apoptosis, which constitutes, in almost all instances, the minimal common platform upon which all neoplastic evolution occurs. The most implicit and clinically attractive anticancer strategies, therefore, consist of eliminating tumor cells by preventing their expansion and ultimately inducing cell death apoptosis. In this context, the non-invasive molecular assessment of tumor cell proliferation and apoptosis status using PET imaging constitutes a major strategy in preclinical studies to assess the efficacy of new anticancer therapeutics using small animal PET imaging, and in clinical settings for the monitoring of treatment responses in patients. For this purpose, a variety of PET tracers targeting specific molecular entities allowing the non-invasive measurement of biological processes, including cell proliferation and apoptosis, are under development for use in preclinical studies and clinical trials to non-invasively image in vivo the lifeline of tumors.
Collapse
Affiliation(s)
- Quang-Dé Nguyen
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, UK
| | | |
Collapse
|
16
|
Koehler L, Gagnon K, McQuarrie S, Wuest F. Iodine-124: a promising positron emitter for organic PET chemistry. Molecules 2010; 15:2686-718. [PMID: 20428073 PMCID: PMC6257279 DOI: 10.3390/molecules15042686] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 11/16/2022] Open
Abstract
The use of radiopharmaceuticals for molecular imaging of biochemical and physiological processes in vivo has evolved into an important diagnostic tool in modern nuclear medicine and medical research. Positron emission tomography (PET) is currently the most sophisticated molecular imaging methodology, mainly due to the unrivalled high sensitivity which allows for the studying of biochemistry in vivo on the molecular level. The most frequently used radionuclides for PET have relatively short half-lives (e.g. 11C: 20.4 min; 18F: 109.8 min) which may limit both the synthesis procedures and the time frame of PET studies. Iodine-124 (124I, t1/2 = 4.2 d) is an alternative long-lived PET radionuclide attracting increasing interest for long term clinical and small animal PET studies. The present review gives a survey on the use of 124I as promising PET radionuclide for molecular imaging. The first part describes the production of 124I. The second part covers basic radiochemistry with 124I focused on the synthesis of 124I-labeled compounds for molecular imaging purposes. The review concludes with a summary and an outlook on the future prospective of using the long-lived positron emitter 124I in the field of organic PET chemistry and molecular imaging.
Collapse
Affiliation(s)
- Lena Koehler
- Institute of Radiopharmacy, Research Center Dresden-Rossendorf, Dresden, Germany; E-Mail: (L.K.)
| | - Katherine Gagnon
- Department of Physics, University of Alberta, Edmonton, Canada; E-Mail: (K.G.)
| | - Steve McQuarrie
- Department of Oncology, University of Alberta, Edmonton, Canada; E-Mail: (S.M.)
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, Canada; E-Mail: (S.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1 780 989 8150; Fax: +1 780 432 8483
| |
Collapse
|
17
|
Liu T, Zhu W, Yang X, Chen L, Yang R, Hua Z, Li G. Detection of Apoptosis Based on the Interaction between Annexin V and Phosphatidylserine. Anal Chem 2009; 81:2410-3. [DOI: 10.1021/ac801267s] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ting Liu
- Department of Biochemistry and National Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China, and Laboratory of Biosensing Technology, School of Life Science, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Zhu
- Department of Biochemistry and National Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China, and Laboratory of Biosensing Technology, School of Life Science, Shanghai University, Shanghai 200444, P. R. China
| | - Xiang Yang
- Department of Biochemistry and National Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China, and Laboratory of Biosensing Technology, School of Life Science, Shanghai University, Shanghai 200444, P. R. China
| | - Lin Chen
- Department of Biochemistry and National Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China, and Laboratory of Biosensing Technology, School of Life Science, Shanghai University, Shanghai 200444, P. R. China
| | - Rongwu Yang
- Department of Biochemistry and National Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China, and Laboratory of Biosensing Technology, School of Life Science, Shanghai University, Shanghai 200444, P. R. China
| | - Zichun Hua
- Department of Biochemistry and National Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China, and Laboratory of Biosensing Technology, School of Life Science, Shanghai University, Shanghai 200444, P. R. China
| | - Genxi Li
- Department of Biochemistry and National Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China, and Laboratory of Biosensing Technology, School of Life Science, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
18
|
Chen Y, Foss CA, Byun Y, Nimmagadda S, Pullambhatla M, Fox JJ, Castanares M, Lupold SE, Babich JW, Mease RC, Pomper MG. Radiohalogenated prostate-specific membrane antigen (PSMA)-based ureas as imaging agents for prostate cancer. J Med Chem 2009; 51:7933-43. [PMID: 19053825 DOI: 10.1021/jm801055h] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To extend our development of new imaging agents targeting the prostate-specific membrane antigen (PSMA), we have used the versatile intermediate 2-[3-(5-amino-1-carboxy-pentyl)-ureido]-pentanedioic acid (Lys-C(O)-Glu), which allows ready incorporation of radiohalogens for single photon emission computed tomography (SPECT) and positron emission tomography (PET). We prepared 2-[3-[1-carboxy-5-(4-[(125)I]iodo-benzoylamino)-pentyl]-ureido]-pentanedioic acid ([(125)I]3), 2-[3-[1-carboxy-5-(4-[(18)F]fluoro-benzoylamino)-pentyl]-ureido]-pentanedioic acid ([(18)F]6), and 2-(3-[1-carboxy-5-[(5-[(125)I]iodo-pyridine-3-carbonyl)-amino]-pentyl]-ureido)-pentanedioic acid ([(125)I]8) in 65-80% (nondecay-corrected), 30-35% (decay corrected), and 59-75% (nondecay-corrected) radiochemical yields. Compound [(125)I]3 demonstrated 8.8 +/- 4.7% injected dose per gram (%ID/g) within PSMA(+) PC-3 PIP tumor at 30 min postinjection, which persisted, with clear delineation of the tumor by SPECT. Similar tumor uptake values at early time points were demonstrated for [(18)F]6 (using PET) and [(125)I]8. Because of the many radiohalogenated moieties that can be attached via the epsilon amino group, the intermediate Lys-C(O)-Glu is an attractive template upon which to develop new imaging agents for prostate cancer.
Collapse
Affiliation(s)
- Ying Chen
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Since its original description in 1972, apoptosis or programmed cell death has been recognized as the major pathway by which the body precisely regulates the number and type of its cells as part of normal embryogenesis, development, and homeostasis. Later it was found that apoptosis was also involved in the pathogenesis of a number of human diseases, cell immunity, and the action of cytotoxotic drugs and radiation therapy in cancer treatment. As such, the imaging of apoptosis with noninvasive techniques such as with radiotracers, including annexin V and lipid proton magnetic resonance spectroscopy, may have a wide range of clinical utility in both the diagnosis and monitoring therapy of a wide range of human disorders. In this chapter we review the basic biochemical and morphologic features of apoptosis and the methods developed thus far to image this complex process in humans.
Collapse
Affiliation(s)
- H William Strauss
- Memorial Sloan Kettering Hospital, 1275 York Ave., Room S-212, Nuclear Medicine, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
20
|
|
21
|
Vaidyanathan G, Affleck DJ, Alston KL, Zalutsky MR. A tin precursor for the synthesis of no-carrier-added [*I]MIBG and [211At]MABG. J Labelled Comp Radiopharm 2007. [DOI: 10.1002/jlcr.1243] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Abstract
New therapies aimed at molecular abnormalities are often more efficacious and less toxic than nontargeted therapies; however, with current technology, major treatment decisions are being made with inadequate data. This problem needs to be fixed by molecular imaging technology, enabling he noninvasive establishment of the presence of a molecular target, its spatial distribution and heterogeneity, and how this changes over time. This article discusses the status of molecular imaging in clinical trails today, and looks forward to what physicians would like it to become.
Collapse
|
23
|
Vaidyanathan G, Zalutsky MR. Preparation of N-succinimidyl 3-[*I]iodobenzoate: an agent for the indirect radioiodination of proteins. Nat Protoc 2006; 1:707-13. [PMID: 17406300 DOI: 10.1038/nprot.2006.99] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A procedure for the synthesis of N-succinimidyl 3-iodobenzoate labeled with any iodine isotope ([*I]SIB), which is an agent used in the radioiodination of proteins and peptides, from its tin precursor N-succinimidyl 3-(tri-n-butylstannyl)benzoate (STB) is described. Also included are protocols for the synthesis of an unlabeled standard of SIB and the tin precursor. Radioiododestannylation of STB using tert-butylhydroperoxide as the oxidant gives [*I]SIB in 80% radiochemical yields. The total time for the synthesis of [*I]SIB from STB is approximately 95 min. Use of [*I]SIB yields radioiodinated proteins that are considerably more stable in vivo than those radioiodinated by the direct electrophilic method.
Collapse
Affiliation(s)
- Ganesan Vaidyanathan
- Department of Radiology, Box 3808, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
24
|
Mukherjee A, Kothari K, Tóth G, Szemenyei E, Sarma HD, Környei J, Venkatesh M. 99mTc-labeled annexin V fragments: a potential SPECT radiopharmaceutical for imaging cell death. Nucl Med Biol 2006; 33:635-43. [PMID: 16843838 DOI: 10.1016/j.nucmedbio.2006.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/27/2006] [Accepted: 05/16/2006] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Annexin V is a protein that binds to phosphatidylserine exposed on dying cells. The phosphatidylserine-specific sequence is attributed to a chain on the N-terminal of annexin consisting of 13 amino acid sequence. Radiolabeled annexin V is used for imaging apoptosis. METHODS With an aim to synthesize a probe that can detect cell death akin to annexin V but smaller in size, annexin-13 fragments were derivatized to contain cysteine, cysteine-cysteine and histidine in their sequence at N terminal and were labeled with (99m)Tc via nitrido and carbonyl precursors. The (99m)Tc-labeled annexin-13 derivatives were characterized by HPLC and studied for their stability. In vitro and in vivo studies were carried out in apoptotic HL-60 cells and fibrosarcoma tumor-bearing Swiss mice, respectively. RESULTS The (99m)Tc complexes were formed in high yields and were found to be stable. HPLC pattern of (99m)Tc nitrido complex of cysteine-cysteine-annexine 13 (CC-Anx13) and (99m)Tc carbonyl complex of histdine-annexin 13 (H-Anx13) revealed the formation of single species. In vitro cell uptake studies with (99m)Tc nitrido complex of cysteine-cysteine-annexin 13 fragment showed 6.5% uptake in apoptotic HL-60 cells. The uptake was found to be specific on testing with apoptotic HL-60 cells. Biodistribution studies of (99m)Tc nitrido complex with CC-Anx13 in fibrosarcoma tumor-bearing Swiss mice revealed optimum tumor uptake of 0.52 (0.17) %ID/g at 1 h pi. CONCLUSION (99m)Tc(N)-CC-anx13 showed specific uptake in apoptotic tumor cells and warrants further evaluation.
Collapse
Affiliation(s)
- Archana Mukherjee
- Radiopharmaceuticals Division, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Mumbai-400085, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Workman P, Aboagye EO, Chung YL, Griffiths JR, Hart R, Leach MO, Maxwell RJ, McSheehy PMJ, Price PM, Zweit J. Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J Natl Cancer Inst 2006; 98:580-98. [PMID: 16670384 DOI: 10.1093/jnci/djj162] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Clinical trials of new cancer drugs should ideally include measurements of parameters such as molecular target expression, pharmacokinetic (PK) behavior, and pharmacodynamic (PD) endpoints that can be linked to measures of clinical effect. Appropriate PK/PD biomarkers facilitate proof-of-concept demonstrations for target modulation; enhance the rational selection of an optimal drug dose and schedule; aid decision-making, such as whether to continue or close a drug development project; and may explain or predict clinical outcomes. In addition, measurement of PK/PD biomarkers can minimize uncertainty associated with predicting drug safety and efficacy, reduce the high levels of drug attrition during development, accelerate drug approval, and decrease the overall costs of drug development. However, there are many challenges in the development and implementation of biomarkers that probably explain their disappointingly low implementation in phase I trials. The Pharmacodynamic/Pharmacokinetic Technologies Advisory committee of Cancer Research UK has found that submissions for phase I trials of new cancer drugs in the United Kingdom often lack detailed information about PK and/or PD endpoints, which leads to suboptimal information being obtained in those trials or to delays in starting the trials while PK/PD methods are developed and validated. Minimally invasive PK/PD technologies have logistic and ethical advantages over more invasive technologies. Here we review these technologies, emphasizing magnetic resonance spectroscopy and positron emission tomography, which provide detailed functional and metabolic information. Assays that measure effects of drugs on important biologic pathways and processes are likely to be more cost-effective than those that measure specific molecular targets. Development, validation, and implementation of minimally invasive PK/PD methods are encouraged.
Collapse
Affiliation(s)
- Paul Workman
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gillies JM, Prenant C, Chimon GN, Smethurst GJ, Dekker BA, Zweit J. Microfluidic technology for PET radiochemistry. Appl Radiat Isot 2005; 64:333-6. [PMID: 16290947 DOI: 10.1016/j.apradiso.2005.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 08/30/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
This paper describes the first application of a microfabricated reaction system to positron emission tomography (PET) radiochemistry. We have applied microfluidic technology to synthesise PET radiopharmaceuticals using (18)F and (124)I as labels for fluorodeoxyglucose (FDG) and Annexin-V, respectively. These reactions involved established methods of nucleophilic substitution on a mannose triflate precursor and direct iodination of the protein using iodogen as an oxidant. This has demonstrated a proof of principle of using microfluidic technology to radiochemical reactions involving low and high molecular weight compounds. Using microfluidic reactions, [(18)F]FDG was synthesised with a 50% incorporation of the available F-18 radioactivity in a very short time of 4s. The radiolabelling efficiency of (124)I Annexin-V was 40% after 1 min reaction time. Chromatographic analysis showed that such reaction yields are comparable to conventional methods, but in a much shorter time. The yields can be further improved with more optimisation of the microfluidic device itself and its fluid mixing profiles. This demonstrates the potential for this technology to have an impact on rapid and simpler radiopharmaceutical synthesis using short and medium half-life radionuclides.
Collapse
Affiliation(s)
- J M Gillies
- Cancer Research-UK/University of Manchester Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester M20 4BX, UK.
| | | | | | | | | | | |
Collapse
|