1
|
Stegmayr C, Stoffels G, Filß C, Heinzel A, Lohmann P, Willuweit A, Ermert J, Coenen HH, Mottaghy FM, Galldiks N, Langen KJ. Current trends in the use of O-(2-[ 18F]fluoroethyl)-L-tyrosine ([ 18F]FET) in neurooncology. Nucl Med Biol 2021; 92:78-84. [PMID: 32113820 DOI: 10.1016/j.nucmedbio.2020.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 12/14/2022]
Abstract
The diagnostic potential of PET using the amino acid analogue O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) in brain tumor diagnostics has been proven in many studies during the last two decades and is still the subject of multiple studies every year. In addition to standard magnetic resonance imaging (MRI), positron emission tomography (PET) using [18F]FET provides important diagnostic data concerning brain tumor delineation, therapy planning, treatment monitoring, and improved differentiation between treatment-related changes and tumor recurrence. The pharmacokinetics, uptake mechanisms and metabolism have been well described in various preclinical studies. The accumulation of [18F]FET in most benign lesions and healthy brain tissue has been shown to be low, thus providing a high contrast between tumor tissue and benign tissue alterations. Based on logistic advantages of F-18 labelling and convincing clinical results, [18F]FET has widely replaced short lived amino acid tracers such as L-[11C]methyl-methionine ([11C]MET) in many centers across Western Europe. This review summarizes the basic knowledge on [18F]FET and its contribution to the care of patients with brain tumors. In particular, recent studies about specificity, possible pitfalls, and the utility of [18F]FET PET in tumor grading and prognostication regarding the revised WHO classification of brain tumors are addressed.
Collapse
Affiliation(s)
- Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Christian Filß
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany
| | - Alexander Heinzel
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany; Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Johannes Ermert
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Heinz H Coenen
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Felix M Mottaghy
- Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany; Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Germany; Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Duesseldorf, Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Duesseldorf, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany; Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Germany; Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Duesseldorf, Germany.
| |
Collapse
|
2
|
Abstract
The major applications for molecular imaging with PET in clinical practice concern cancer imaging. Undoubtedly, 18F-FDG represents the backbone of nuclear oncology as it remains so far the most widely employed positron emitter compound. The acquired knowledge on cancer features, however, allowed the recognition in the last decades of multiple metabolic or pathogenic pathways within the cancer cells, which stimulated the development of novel radiopharmaceuticals. An endless list of PET tracers, substantially covering all hallmarks of cancer, has entered clinical routine or is being investigated in diagnostic trials. Some of them guard significant clinical applications, whereas others mostly bear a huge potential. This chapter summarizes a selected list of non-FDG PET tracers, described based on their introduction into and impact on clinical practice.
Collapse
|
3
|
Stegmayr C, Willuweit A, Lohmann P, Langen KJ. O-(2-[18F]-Fluoroethyl)-L-Tyrosine (FET) in Neurooncology: A Review of Experimental Results. Curr Radiopharm 2020; 12:201-210. [PMID: 30636621 DOI: 10.2174/1874471012666190111111046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
Abstract
In recent years, PET using radiolabelled amino acids has gained considerable interest as an additional tool besides MRI to improve the diagnosis of cerebral gliomas and brain metastases. A very successful tracer in this field is O-(2-[18F]fluoroethyl)-L-tyrosine (FET) which in recent years has replaced short-lived tracers such as [11C]-methyl-L-methionine in many neuro-oncological centers in Western Europe. FET can be produced with high efficiency and distributed in a satellite concept like 2- [18F]fluoro-2-deoxy-D-glucose. Many clinical studies have demonstrated that FET PET provides important diagnostic information regarding the delineation of cerebral gliomas for therapy planning, an improved differentiation of tumor recurrence from treatment-related changes and sensitive treatment monitoring. In parallel, a considerable number of experimental studies have investigated the uptake mechanisms of FET on the cellular level and the behavior of the tracer in various benign lesions in order to clarify the specificity of FET uptake for tumor tissue. Further studies have explored the effects of treatment related tissue alterations on tracer uptake such as surgery, radiation and drug therapy. Finally, the role of blood-brain barrier integrity for FET uptake which presents an important aspect for PET tracers targeting neoplastic lesions in the brain has been investigated in several studies. Based on a literature research regarding experimental FET studies and corresponding clinical applications this article summarizes the knowledge on the uptake behavior of FET, which has been collected in more than 30 experimental studies during the last two decades and discusses the role of these results in the clinical context.
Collapse
Affiliation(s)
- Carina Stegmayr
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany.,Department of Nuclear Medicine, University of Aachen, Aachen, Germany.,Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Juelich, Germany
| |
Collapse
|
4
|
Abstract
The major application for PET imaging in clinical practice is represented by cancer imaging and (18)F-FDG is the most widely employed positron emitter compound. However, some diseases cannot be properly evaluated with this tracer and thus there is the necessity to develop more specific compounds. The last decades were a continuous factory for new radiopharmaceuticals leading to an endless list of PET tracers; however, just some of them guard diagnostic relevance in routine medical practice. This chapter describes a selected list of non-FDG PET tracers, basing on their introduction into and impact on clinical practice.
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine Unit, Humanitas Cancer Center, Rozzano, MI, Italy
| | | |
Collapse
|
5
|
Reinfelder J, Maschauer S, Foss CA, Nimmagadda S, Fremont V, Wolf V, Weintraub BD, Pomper MG, Szkudlinski MW, Kuwert T, Prante O. Effects of recombinant human thyroid-stimulating hormone superagonists on thyroidal uptake of 18F-fluorodeoxyglucose and radioiodide. Thyroid 2011; 21:783-92. [PMID: 21568725 DOI: 10.1089/thy.2010.0394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Superagonist analogs of human thyroid-stimulating hormone (hTSH) may stimulate the uptake of (131)I-iodide and (18)F-fluorodeoxyglucose ((18)F-FDG) in thyroid carcinomas to a greater degree than hTSH. We herein report the potency and efficacy of two hTSH analogs, TR1401 and TR1402, to stimulate radioiodide and (18)F-FDG uptake in FRTL-5 cells and compared the effects of hTSH and TR1401 on radioiodide uptake in the thyroid in vivo in mice. METHODS The effects of hTSH analogs on intracellular levels of cAMP, uptake of (131)I-iodide, and (18)F-FDG were studied in FRTL-5 cells to determine the stimulatory potency and efficacy of the compounds by calculating half-maximum effective concentration (EC(50)) values and maximal stimulatory effects (E(max)). Biodistribution studies (n = 96) and positron emission tomography/computed tomography imaging studies (single animals) on thyroid (125)I/(124)I-iodide uptake were performed with T3-suppressed CD-1 mice in a dose-dependent manner (3, 10, and 30 μg/animal). RESULTS The EC(50) values of TR1401 and TR1402 demonstrated a 90-fold or 800-fold higher potency for their capacity to increase intracellular cAMP levels in comparison with hTSH (p < 0.05). Similar results were demonstrated for the stimulation of (18)F-FDG uptake. Bovine TSH, TR1401, and TR1402 were 85%-490% more potent to increase iodide uptake than hTSH (p < 0.05). TR1402 was 30% more efficacious to stimulate iodide uptake than hTSH. The agonist-induced increase in radiotracer uptake was paralleled by increases in NIS and GLUT-1 expression. Ex vivo biodistribution studies showed an increased iodide uptake in the thyroid of TR1401-treated mice at the low dose of 3 μg/animal in comparison with hTSH-treated mice (n = 16, p < 0.05). Positron emission tomography/computed tomography imaging studies confirmed the increased thyroidal iodide uptake in TR1401-treated mice in vivo. CONCLUSIONS TR1401 and TR1402 have considerably higher potency than hTSH to stimulate thyroidal iodide and (18)F-FDG uptake in vitro. Moreover, in vivo studies indicated that at low but not higher doses, TR1401 induced an enhanced ability for the thyroid to concentrate iodide compared with hTSH. These properties makes TR1401 and TR1402 interesting candidates for use in humans to enhance uptake of radioiodine and (18)F-FDG by metastases and recurrences of thyroid carcinoma.
Collapse
Affiliation(s)
- Julia Reinfelder
- Laboratory of Molecular Imaging, Clinic of Nuclear Medicine, Friedrich-Alexander University, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang L, Qu W, Lieberman B, Ploessl K, Kung HF. Synthesis and in vitro evaluation of 18F labeled tyrosine derivatives as potential positron emission tomography (PET) imaging agents. Bioorg Med Chem Lett 2010; 20:3482-5. [DOI: 10.1016/j.bmcl.2010.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/30/2010] [Accepted: 05/04/2010] [Indexed: 01/07/2023]
|
7
|
Detection of tumour invasion into the pyramidal tract in glioma patients with sensorimotor deficits by correlation of (18)F-fluoroethyl-L: -tyrosine PET and magnetic resonance diffusion tensor imaging. Acta Neurochir (Wien) 2009; 151:1061-9. [PMID: 19468675 DOI: 10.1007/s00701-009-0378-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Standard magnetic resonance imaging (MRI) does not depict the true extent of tumour cell invasion in gliomas. We investigated the feasibility of advanced imaging methods, i.e. diffusion tensor imaging (DTI), fibre tracking and O-(2-[(18)F]-fluoroethyl)-L: -tyrosine ((18)F-FET) PET, for the detection of tumour invasion into white matter structures not visible in routine MRI. METHODS DTI and fibre tracking was performed on ten patients with gliomas, WHO grades II-IV. Five patients experienced preoperative sensorimotor deficits. The ratio of fractional anisotropy (FA) between the ipsilateral and contralateral pyramidal tract was calculated. Twenty-one stereotactic biopsies from five patients were histopathologically evaluated for the absolute numbers and percentages of tumour cells. (18)F-FET PET scans were performed and the bilateral ratio [ipsilateral-to-contralateral ratio (ICR)] of (18)F-FET-uptake was calculated for both cross-sections of pyramidal tracts and biopsy sites. RESULTS The FA ratio within the pyramidal tract was lower in patients with sensorimotor deficits (0.61-1.06) compared with the FA ratio in patients without sensorimotor deficits (0.92-1.06). In patients with preoperative sensorimotor deficits, we found a significantly (p = 0.028) higher ICR of (18)F-FET uptake (1.01-1.59) than in patients without any deficits (0.96-1.08). The ICR of (18)F-FET-uptake showed a strong correlation (r = 0.696, p = 0.001) with the absolute number of tumour cells and a moderate correlation (r = 0.535, p = 0.012) with the percentage of tumour cells. CONCLUSIONS Our data show an association between preoperative sensorimotor deficits, increased (18)F-FET uptake and decreased FA ratio in the pyramidal tract. We demonstrated a correlation between tumour invasion and (18)F-FET uptake. These findings may help to distinguish between edema versus tumour-associated neurological deficits and could prevent the destruction of important structures, like the pyramidal tract, during tumour operations by allowing more precise preoperative planning.
Collapse
|
8
|
Burchardt C, Riss PJ, Zoller F, Maschauer S, Prante O, Kuwert T, Roesch F. [68Ga]Ga-DO2A-(OBu-l-tyr)2: Synthesis, 68Ga-radiolabeling and in vitro studies of a novel 68Ga-DO2A-tyrosine conjugate as potential tumor tracer for PET. Bioorg Med Chem Lett 2009; 19:3498-501. [DOI: 10.1016/j.bmcl.2009.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 04/30/2009] [Accepted: 05/03/2009] [Indexed: 11/27/2022]
|
9
|
Comparison of 11C-methionine PET and 18F-fluorodeoxyglucose PET in differentiated thyroid cancer. Nucl Med Commun 2008; 29:711-6. [PMID: 18753824 DOI: 10.1097/mnm.0b013e328301835c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The purpose of this prospective study is to evaluate the possibility of 11C-methionine (Met) PET compared with 18F-fluorodeoxyglucose (FDG) PET for the detection of recurrent or metastatic disease in patients with differentiated thyroid cancer (DTC). MATERIALS AND METHODS Twenty patients with clinical suspicion of recurrent DTC but negative posttreatment 131I-whole body scans were included in the study. Both 11C-Met PET and 18F-FDG PET were performed within 1 week. PET images were analyzed by two independent and blinded physicians using visual and standardized uptake value analysis. PET results were also correlated with radiologic and/or cytological investigations. RESULTS Thirteen patients showed concordant findings on both PET scans: six patients showed uptake and in seven no uptake was observed. In six of the seven patients without Met and FDG uptake, additional MRI and ultrasound-guided fine needle aspiration cytology of the lymph nodes revealed inconclusive or negative results. Six patients showed discordant findings on the PET scans: in three patients uptake was only observed on the Met PET, confirmed by MRI in one. In three patients lesions were seen on the FDG PET, confirmed by computed tomography or ultrasound-guided fine needle aspiration cytology. However, those lesions were not compatible with the lesions seen on the Met PET. In general, FDG uptake appeared to be higher than Met uptake, but was not significant (P=0.075). CONCLUSION This study shows that imaging using radiolabeled amino acids is feasible in DTC. For now, 11C-Met PET has not proven to be superior to 18F-FDG PET in the detection of recurrent disease in DTC. Complementary uptake of Met and FDG has, however, been observed, which has to be further clarified and long-term follow-up is needed to define the true clinical value of the 11C-Met PET, and possible other amino acids tracers.
Collapse
|
10
|
Stadlbauer A, Prante O, Nimsky C, Salomonowitz E, Buchfelder M, Kuwert T, Linke R, Ganslandt O. Metabolic imaging of cerebral gliomas: spatial correlation of changes in O-(2-18F-fluoroethyl)-L-tyrosine PET and proton magnetic resonance spectroscopic imaging. J Nucl Med 2008; 49:721-9. [PMID: 18413402 DOI: 10.2967/jnumed.107.049213] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The aim of this study was to determine the spatial correlation of O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) uptake and the concentrations of choline (Cho), creatine (Cr), and total N-acetylaspartate (tNAA) determined with proton magnetic resonance spectroscopic imaging ((1)H MRSI) in cerebral gliomas for the multimodal evaluation of metabolic changes. METHODS (18)F-FET PET and 2-dimensional (1)H MRSI were performed in 15 patients with cerebral gliomas of World Health Organization (WHO) grades II-IV. PET and (1)H MRSI datasets were coregistered by use of mutual information. On the basis of their levels of (18)F-FET uptake, 4 different areas in a tumor (maximum, strong, moderate, and low (18)F-FET uptake) were defined on PET slices as being congruent with the volume of interest in the (1)H MRSI experiment. (18)F-FET uptake in lesions was evaluated as tumor-to-brain ratios. Metabolite concentrations for Cho, Cr, and tNAA and Cho/tNAA ratios were computed for these 4 areas in the tumor and for the contralateral normal brain. RESULTS In the area with maximum (18)F-FET uptake, the concentration of tNAA (R= -0.588) and the Cho/tNAA ratio (R=0.945) correlated significantly with (18)F-FET uptake. In the areas with strong and moderate (18)F-FET uptake, only the Cho/tNAA ratios (R=0.811 and R=0.531, respectively) were significantly associated with amino acid transport. At low (18)F-FET uptake, analysis of the correlations of amino acid uptake and metabolite concentrations yielded a significant result only for the concentration of Cr (R=0.626). No correlation was found for metabolite concentrations determined with (1)H MRSI and (18)F-FET uptake in normal brain tissue. Maximum (18)F-FET uptake and the tNAA concentration were significantly different between gliomas of WHO grades II and IV, with P values of 0.032 and 0.016, respectively. CONCLUSION High (18)F-FET uptake, which is indicative of tumor cell infiltration, associates with neuronal cell loss (tNAA) and changes in ratios between parameters representing membrane proliferation and those of neuronal loss (Cho/tNAA ratio), which can be measured by (1)H MRSI. The significant correlation coefficients detected for Cr in regions with low (18)F-FET uptake suggests an association between the mechanism governing amino acid transport and energy metabolism in areas that are infiltrated by tumor cells to a lesser extent. These findings motivate further research directed at investigating the potential of (1)H MRSI to define tumor boundaries in a manner analogous to that of amino acid PET.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- Department of Neurosurgery, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|