1
|
Mastrangelo S, Romano A, Attinà G, Maurizi P, Ruggiero A. Timing and chemotherapy association for 131-I-MIBG treatment in high-risk neuroblastoma. Biochem Pharmacol 2023; 216:115802. [PMID: 37696454 DOI: 10.1016/j.bcp.2023.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Prognosis of high-risk neuroblastoma is dismal, despite intensive induction chemotherapy, surgery, high-dose chemotherapy, radiotherapy, and maintenance. Patients who do not achieve a complete metastatic response, with clearance of bone marrow and skeletal NB infiltration, after induction have a significantly lowersurvival rate. Thus, it's necessary to further intensifytreatment during this phase. 131-I-metaiodobenzylguanidine (131-I-MIBG) is a radioactive compound highly effective against neuroblastoma, with32% response rate in relapsed/resistant cases, and only hematological toxicity. 131-I-MIBG wasutilized at different doses in single or multiple administrations, before autologous transplant or combinedwith high-dose chemotherapy. Subsequently, it was added to consolidationin patients with advanced NB after induction, but an independent contribution against neuroblastoma and for myelotoxicity is difficult to determine. Despiteresults of a 2008 paper demonstratedefficacy and mild hematological toxicity of 131-I-MIBG at diagnosis, no center had included it with intensive chemotherapy in first-line treatment protocols. In our institution, at diagnosis, 131-I-MIBG was included in a 5-chemotherapy drug combination and administered on day-10, at doses up to 18.3 mCi/kg. Almost 87% of objective responses were observed 50 days from start with acceptable hematological toxicity. In this paper, we review the literature data regarding 131-I-MIBG treatment for neuroblastoma, and report on doses and combinations used, tumor responses and toxicity. 131-I-MIBG is very effective against neuroblastoma, in particular if given to patients at diagnosis and in combination with chemotherapy, and it should be included in all induction regimens to improve early responses rates and consequently long-term survival.
Collapse
Affiliation(s)
- Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy.
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy
| |
Collapse
|
2
|
Żelechowska-Matysiak K, Salvanou EA, Bouziotis P, Budlewski T, Bilewicz A, Majkowska-Pilip A. Improvement of the Effectiveness of HER2+ Cancer Therapy by Use of Doxorubicin and Trastuzumab Modified Radioactive Gold Nanoparticles. Mol Pharm 2023; 20:4676-4686. [PMID: 37607353 PMCID: PMC10481397 DOI: 10.1021/acs.molpharmaceut.3c00414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
In the present article, we describe a multimodal radiobioconjugate that contains a chemotherapeutic agent (doxorubicin, DOX), a β-emitter (198Au), and a guiding vector (trastuzumab, Tmab) for targeted therapy of cancers overexpressing HER2 receptors. To achieve this goal, radioactive gold nanoparticles (198AuNPs) with a mean diameter of 30 nm were synthesized and coated with a poly(ethylene glycol) (PEG) linker conjugated to DOX and monoclonal antibody (Tmab) via peptide bond formation. In vitro experiments demonstrated a high affinity of the radiobioconjugate to HER2 receptors and cell internalization. Cytotoxicity experiments performed using the MTS assay showed a significant decrease in the viability of SKOV-3 cells. A synergistic cytotoxic effect due to the simultaneous presence of DOX and 198Au was revealed after 48 h of treatment with 2.5 MBq/mL. Flow cytometry analysis indicated that DOX-198AuNPs-Tmab mainly induced cell cycle arrest in the G2/M phase and late apoptosis. Dose-dependent additive and synergistic effects of the radiobioconjugate were also shown in spheroid models. Ex vivo biodistribution experiments were performed in SKOV-3 tumor-bearing mice, investigating different distributions of the 198AuNPs-DOX and DOX-198AuNPs-Tmab after intravenous (i.v.) and intratumoral (i.t.) administration. Finally, in vivo therapeutic efficacy studies on the same animal model demonstrated very promising results, as they showed a significant tumor growth arrest up to 28 days following a single intratumoral injection of 10 MBq. Therefore, the proposed multimodal radiobioconjugate shows great potential for the local treatment of HER2+ cancers.
Collapse
Affiliation(s)
- Kinga Żelechowska-Matysiak
- Centre
of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
| | - Evangelia-Alexandra Salvanou
- Institute
of Nuclear & Radiological Sciences & Technology, Energy &
Safety, N.C.S.R. “Demokritos”, Agia Paraskevi, 15341 Athens, Greece
| | - Penelope Bouziotis
- Institute
of Nuclear & Radiological Sciences & Technology, Energy &
Safety, N.C.S.R. “Demokritos”, Agia Paraskevi, 15341 Athens, Greece
| | - Tadeusz Budlewski
- Isotope
Therapy Department, National Medical Institute
of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Aleksander Bilewicz
- Centre
of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
| | - Agnieszka Majkowska-Pilip
- Centre
of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
- Isotope
Therapy Department, National Medical Institute
of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
3
|
Mínguez P, Flux G, Genollá J, Guayambuco S, Delgado A, Fombellida JC, Sjögreen Gleisner K. Dosimetric results in treatments of neuroblastoma and neuroendocrine tumors with (131)I-metaiodobenzylguanidine with implications for the activity to administer. Med Phys 2015; 42:3969-78. [PMID: 26133597 DOI: 10.1118/1.4921807] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
PURPOSE The aim was to investigate whole-body and red marrow absorbed doses in treatments of neuroblastoma (NB) and adult neuroendocrine tumors (NETs) with (131)I-metaiodobenzylguanidine and to propose a simple method for determining the activity to administer when dosimetric data for the individual patient are not available. METHODS Nine NB patients and six NET patients were included, giving in total 19 treatments as four patients were treated twice. Whole-body absorbed doses were determined from dose-rate measurements and planar gamma-camera imaging. For six NB and five NET treatments, red marrow absorbed doses were also determined using the blood-based method. RESULTS Dosimetric data from repeated administrations in the same patient were consistent. In groups of NB and NET patients, similar whole-body residence times were obtained, implying that whole-body absorbed dose per unit of administered activity could be reasonably well described as a power function of the patient mass. For NB, this functional form was found to be consistent with dosimetric data from previously published studies. The whole-body to red marrow absorbed dose ratio was similar among patients, with values of 1.4 ± 0.6-1.7 ± 0.7 (1 standard deviation) in NB treatments and between 1.5 ± 0.6 and 1.7 ± 0.7 (1 standard deviation) in NET treatments. CONCLUSIONS The consistency of dosimetric results between administrations for the same patient supports prescription of the activity based on dosimetry performed in pretreatment studies, or during the first administration in a fractionated schedule. The expressions obtained for whole-body absorbed doses per unit of administered activity as a function of patient mass for NB and NET treatments are believed to be a useful tool to estimate the activity to administer at the stage when the individual patient biokinetics has not yet been measured.
Collapse
Affiliation(s)
- Pablo Mínguez
- Department of Medical Radiation Physics, Lund University, Lund 22185, Sweden and Department of Medical Physics, Gurutzeta/Cruces University Hospital, Barakaldo 48903, Spain
| | - Glenn Flux
- Joint Department of Physics, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton SM2 5PT, United Kingdom
| | - José Genollá
- Department of Nuclear Medicine, Gurutzeta/Cruces University Hospital, Barakaldo 48903, Spain
| | - Sonía Guayambuco
- Department of Nuclear Medicine, Gurutzeta/Cruces University Hospital, Barakaldo 48903, Spain
| | - Alejandro Delgado
- Department of Nuclear Medicine, Gurutzeta/Cruces University Hospital, Barakaldo 48903, Spain
| | - José Cruz Fombellida
- Department of Nuclear Medicine, Gurutzeta/Cruces University Hospital, Barakaldo 48903, Spain
| | | |
Collapse
|