1
|
Sugo Y, Ohira SI, Manabe H, Maruyama YH, Yamazaki N, Miyachi R, Toda K, Ishioka NS, Mori M. Highly Efficient Separation of Ultratrace Radioactive Copper Using a Flow Electrolysis Cell. ACS OMEGA 2022; 7:15779-15785. [PMID: 35571765 PMCID: PMC9096931 DOI: 10.1021/acsomega.2c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Preparing compounds containing the radioisotope 64Cu for use in positron emission tomography cancer diagnostics is an ongoing area of research. In this study, a highly efficient separation method to recover 64Cu generated by irradiating the target 64Ni with a proton beam was developed by employing a flow electrolysis cell (FE). This system consists of (1) applying a reduction potential for the selective adsorption of 64Cu from the target solution when dissolved in HCl and (2) recovering the 64Cu deposited onto the carbon working electrode by desorbing it from the FE during elution with 10 mmol/L HNO3, which applies an oxidation potential. The 64Cu was selectively eluted at approximately 30 min under a flow rate of 0.5 mL/min from the injection to recovery. The newly developed flow electrolysis system can separate the femtomolar level of ultratrace radioisotopes from the larger amount of target metals as an alternative to conventional column chromatography.
Collapse
Affiliation(s)
- Yumi Sugo
- Department
of Radiation-Applied Biology Research, Takasaki Advanced Radiation
Research Institute, National Institutes
for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Shin-Ichi Ohira
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Hinako Manabe
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Yo-hei Maruyama
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Naoaki Yamazaki
- Graduate
School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Ryoma Miyachi
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Kei Toda
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Noriko S. Ishioka
- Department
of Radiation-Applied Biology Research, Takasaki Advanced Radiation
Research Institute, National Institutes
for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Masanobu Mori
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| |
Collapse
|
2
|
Sugo Y, Miyachi R, Maruyama YH, Ohira SI, Mori M, Ishioka NS, Toda K. Electrodialytic Handling of Radioactive Metal Ions for Preparation of Tracer Reagents. Anal Chem 2020; 92:14953-14958. [PMID: 32959650 DOI: 10.1021/acs.analchem.0c02456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radioactive metals are applied in biochemistry, medical diagnosis such as positron emission tomography (PET), and cancer therapy. However, the activity of radioisotopes exponentially decreases with time; therefore, rapid and reliable probe preparation methods are strongly recommended. In the present study, electrodialytic radioactive metal ion handling is studied for counter ion conversion and in-line probe synthesis. Presently, counter ion conversion and probe synthesis are achieved by evaporative dryness and solution mixing, respectively. Evaporative dryness is time-consuming and is a possible process that can lead to loss of radioactive metal ions. Mixing of solutions for synthesis makes dilution and undesirable effects of counter ion on the synthesis. An optimized electrodialytic flow device can transfer a radioisotope, 64Cu2+, with high recovery from HCl matrices to HNO3 (∼100%). Matrices can also be transferred into acetic acid and citric acid, even though the concentration of the metal ion is at the picomolar level. The ion transfer can also be achieved with simultaneous counter ion conversion, complex synthesis, and enrichment. When the ligand was dissolved in an acceptor solution, the transferred metal ions from the donor were well mixed and formed a complex with the ligand in-line. The efficiency of the synthesis was ∼100% for 1.0 pM 64Cu. A relatively larger donor-to-acceptor flow rate can enrich the metal ion in the acceptor solution continuously. The flow rate ratio of 10 (donor/acceptor) can achieve 10 times enrichment. The present electrodialytic ion handling method can treat ultra-trace radioisotopes in a closed system. With this method, rapid, effective, and safe radioisotope treatments were achieved.
Collapse
Affiliation(s)
- Yumi Sugo
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki 370-1292, Japan
| | - Ryoma Miyachi
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yo-Hei Maruyama
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Shin-Ichi Ohira
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masanobu Mori
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Noriko S Ishioka
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki 370-1292, Japan
| | - Kei Toda
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
4
|
Suzuki Y, Yamaguchi M, Odaka H, Shimada H, Yoshida Y, Torikai K, Satoh T, Arakawa K, Kawachi N, Watanabe S, Takeda S, Ishikawa SN, Aono H, Watanabe S, Takahashi T, Nakano T. Three-dimensional and Multienergy Gamma-ray Simultaneous Imaging by Using a Si/CdTe Compton Camera. Radiology 2013; 267:941-7. [DOI: 10.1148/radiol.13121194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|