1
|
Zheng Y, Dou G, Liu S, Meng Z, Tsao EI, Yu G, Zhu X, Gu R, Wu Z, Sun Y, Han P, Gan H. Preclinical Pharmacokinetics and Biodistribution of LR004, a Novel Antiepidermal Growth Factor Receptor Monoclonal Antibody. Molecules 2024; 29:545. [PMID: 38276624 PMCID: PMC10821095 DOI: 10.3390/molecules29020545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
LR004 is a novel chimeric (human/mouse) monoclonal antibody developed for the treatment of advanced colorectal carcinoma with detectable epidermal growth factor receptor (EGFR) expression. We aimed to investigate the preclinical pharmacokinetics (PK) and in vivo biodistribution of LR004. The PK profiles of LR004 were initially established in rhesus monkeys. Subsequently, 125I radionuclide-labeled LR004 was developed and the biodistribution, autoradiography, and NanoSPECT/CT of 125I-LR004 in xenograft mice bearing A431 tumors were examined. The PK data revealed a prolonged half-life and nonlinear PK characteristics of LR004 within the dose range of 6-54 mg/kg. The radiochemical purity of 125I-LR004 was approximately 98.54%, and iodination of LR004 did not affect its specific binding activity to the EGFR antigen. In a classical biodistribution study, 125I-LR004 exhibited higher uptake in highly perfused organs than in poorly perfused organs. Prolonged retention properties of 125I-LR004 in tumors were observed at 4 and 10 days. Autoradiography and NanoSPECT/CT confirmed the sustained retention of 125I-LR004 at the tumor site in xenograft mice. These findings demonstrated the adequate tumor targeting capabilities of 125I-LR004 in EGFR-positive tumors, which may improve dosing strategies and future drug development.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Shuchen Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Eric I. Tsao
- Synermore Biologics Co., Ltd., Suzhou 215000, China;
| | - Gang Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China;
| | - Xiaoxia Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Zhuona Wu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Yunbo Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Peng Han
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| |
Collapse
|
2
|
Clark GT, Yu Y, Urban CA, Fu G, Wang C, Zhang F, Linhardt RJ, Hurley JM. Circadian control of heparan sulfate levels times phagocytosis of amyloid beta aggregates. PLoS Genet 2022; 18:e1009994. [PMID: 35143487 PMCID: PMC8830681 DOI: 10.1371/journal.pgen.1009994] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's Disease (AD) is a neuroinflammatory disease characterized partly by the inability to clear, and subsequent build-up, of amyloid-beta (Aβ). AD has a bi-directional relationship with circadian disruption (CD) with sleep disturbances starting years before disease onset. However, the molecular mechanism underlying the relationship of CD and AD has not been elucidated. Myeloid-based phagocytosis, a key component in the metabolism of Aβ, is circadianly-regulated, presenting a potential link between CD and AD. In this work, we revealed that the phagocytosis of Aβ42 undergoes a daily circadian oscillation. We found the circadian timing of global heparan sulfate proteoglycan (HSPG) biosynthesis was the molecular timer for the clock-controlled phagocytosis of Aβ and that both HSPG binding and aggregation may play a role in this oscillation. These data highlight that circadian regulation in immune cells may play a role in the intricate relationship between the circadian clock and AD.
Collapse
Affiliation(s)
- Gretchen T. Clark
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
| | - Yanlei Yu
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
| | - Cooper A. Urban
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
| | - Guo Fu
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Now at the Innovation and Integration Center of New Laser Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chunyu Wang
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemical and Biological Engineering, Troy, New York, United States of America
| | - Robert J. Linhardt
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemical and Biological Engineering, Troy, New York, United States of America
| | - Jennifer M. Hurley
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| |
Collapse
|
3
|
Wall JS, Williams A, Richey T, Stuckey A, Wooliver C, Christopher Scott J, Donnell R, Martin EB, Kennel SJ. Specific Amyloid Binding of Polybasic Peptides In Vivo Is Retained by β-Sheet Conformers but Lost in the Disrupted Coil and All D-Amino Acid Variants. Mol Imaging Biol 2018; 19:714-722. [PMID: 28229334 DOI: 10.1007/s11307-017-1063-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE The heparin-reactive, helical peptide p5 is an effective amyloid imaging agent in mice with systemic amyloidosis. Analogs of p5 with modified secondary structure characteristics exhibited altered binding to heparin, synthetic amyloid fibrils, and amyloid extracts in vitro. Herein, we further study the effects of peptide helicity and chirality on specific amyloid binding using a mouse model of systemic inflammation-associated (AA) amyloidosis. PROCEDURES Peptides with disrupted helical structure [p5(coil) and p5(Pro3)], with an extended sheet conformation [p5(sheet)] or an all-D enantiomer [p5(D)], were chemically synthesized, radioiodinated, and their biodistribution studied in WT mice as well as transgenic animals with severe systemic AA amyloidosis. Peptide binding was assessed qualitatively by using small animal single-photon emission computed tomography/x-ray computed tomography imaging and microautoradiography and quantitatively using tissue counting. RESULTS Peptides with reduced helical propensity, p5(coil) and p5(Pro3), exhibited significantly reduced binding to AA amyloid-laden organs. In contrast, peptide p5(D) was retained by non-amyloid-related ligands in the liver and kidneys of both WT and AA mice, but it also bound AA amyloid in the spleen. The p5(sheet) peptide specifically bound AA amyloid in vivo and was not retained by healthy tissues in WT animals. CONCLUSIONS Modification of amyloid-targeting peptides using D-amino acids should be performed cautiously due to the introduction of unexpected secondary pharmacologic effects. Peptides that adopt a helical structure, to align charged amino acid side chains along one face, exhibit specific reactivity with amyloid; however, polybasic peptides with a propensity for β-sheet conformation are also amyloid-reactive and may yield a novel class of amyloid-targeting agents for imaging and therapy.
Collapse
Affiliation(s)
- Jonathan S Wall
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA. .,Departments of Radiology, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA.
| | - Angela Williams
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| | - Tina Richey
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| | - Alan Stuckey
- Departments of Radiology, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| | - Craig Wooliver
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| | - J Christopher Scott
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| | - Robert Donnell
- Department of Pathobiology, University of Tennessee College of Veterinary Medicine, 2407 River Drive, Knoxville, TN, 37996, USA
| | - Emily B Martin
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| | - Stephen J Kennel
- Departments of Medicine, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA.,Departments of Radiology, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, TN, 37920, USA
| |
Collapse
|
4
|
Risør MW, Juhl DW, Bjerring M, Mathiesen J, Enghild JJ, Nielsen NC, Otzen DE. Critical Influence of Cosolutes and Surfaces on the Assembly of Serpin-Derived Amyloid Fibrils. Biophys J 2017; 113:580-596. [PMID: 28793213 DOI: 10.1016/j.bpj.2017.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Many proteins and peptides self-associate into highly ordered and structurally similar amyloid cross-β aggregates. This fibrillation is critically dependent on properties of the protein and the surrounding environment that alter kinetic and thermodynamic equilibria. Here, we report on dominating surface and solution effects on the fibrillogenic behavior and amyloid assembly of the C-36 peptide, a circulating bioactive peptide from the α1-antitrypsin serine protease inhibitor. C-36 converts from an unstructured peptide to mature amyloid twisted-ribbon fibrils over a few hours when incubated on polystyrene plates under physiological conditions through a pathway dominated by surface-enhanced nucleation. In contrast, in plates with nonbinding surfaces, slow bulk nucleation takes precedence over surface catalysis and leads to fibrillar polymorphism. Fibrillation is strongly ion-sensitive, underlining the interplay between hydrophilic and hydrophobic forces in molecular self-assembly. The addition of exogenous surfaces in the form of silica glass beads and polyanionic heparin molecules potently seeds the amyloid conversion process. In particular, heparin acts as an interacting template that rapidly forces β-sheet aggregation of C-36 to distinct amyloid species within minutes and leads to a more homogeneous fibril population according to solid-state NMR analysis. Heparin's template effect highlights its role in amyloid seeding and homogeneous self-assembly, which applies both in vitro and in vivo, where glycosaminoglycans are strongly associated with amyloid deposits. Our study illustrates the versatile thermodynamic landscape of amyloid formation and highlights how different experimental conditions direct C-36 into distinct macromolecular structures.
Collapse
Affiliation(s)
- Michael W Risør
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Dennis W Juhl
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Morten Bjerring
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Jan J Enghild
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Niels C Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Daniel E Otzen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Albu SA, Al-Karmi SA, Vito A, Dzandzi JPK, Zlitni A, Beckford-Vera D, Blacker M, Janzen N, Patel RM, Capretta A, Valliant JF. (125)I-Tetrazines and Inverse-Electron-Demand Diels-Alder Chemistry: A Convenient Radioiodination Strategy for Biomolecule Labeling, Screening, and Biodistribution Studies. Bioconjug Chem 2016; 27:207-16. [PMID: 26699913 DOI: 10.1021/acs.bioconjchem.5b00609] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A convenient method to prepare radioiodinated tetrazines was developed, such that a bioorthogonal inverse electron demand Diels-Alder reaction can be used to label biomolecules with iodine-125 for in vitro screening and in vivo biodistribution studies. The tetrazine was prepared by employing a high-yielding oxidative halo destannylation reaction that concomitantly oxidized the dihydrotetrazine precursor. The product reacts quickly and efficiently with trans-cyclooctene derivatives. Utility was demonstrated through antibody and hormone labeling experiments and by evaluating products using standard analytical methods, in vitro assays, and quantitative biodistribution studies where the latter was performed in direct comparison to Bolton-Hunter and direct iodination methods. The approach described provides a convenient and advantageous alternative to conventional protein iodination methods that can expedite preclinical development and evaluation of biotherapeutics.
Collapse
Affiliation(s)
- Silvia A Albu
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Salma A Al-Karmi
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Alyssa Vito
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - James P K Dzandzi
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Aimen Zlitni
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Denis Beckford-Vera
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Megan Blacker
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Ramesh M Patel
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Alfredo Capretta
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - John F Valliant
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| |
Collapse
|
6
|
Kennel SJ, Williams A, Stuckey A, Richey T, Wooliver C, Chazin W, Stern DA, Martin EB, Wall JS. The pattern recognition reagents RAGE VC1 and peptide p5 share common binding sites and exhibit specific reactivity with AA amyloid in mice. Amyloid 2016; 23:8-16. [PMID: 26701064 PMCID: PMC4832564 DOI: 10.3109/13506129.2015.1112782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED In the US, there remains a need to develop a clinical method for imaging amyloid load in patients with systemic, visceral amyloidosis. The receptor for advanced glycation end products (RAGE), which exists as a transmembrane receptor and soluble variant, is found associated with a number of amyloid deposits in man. It is unclear whether amyloid-associated RAGE is the membrane or soluble form; however, given the affinity of RAGE for amyloid, we have examined the ability of soluble RAGE VC1 to specifically localize with systemic AA amyloid in mice. We further compared the reactivity of RAGE VC1 with that of the synthetic, amyloid-reactive peptide p5. METHODS Binding of radiolabeled RAGE VC1 and p5 to synthetic amyloid fibrils was evaluated using in vitro "pulldown" assays in the presence or absence of RAGE ligands. Radioiodinated RAGE VC1 and technetium-99 m-labeled p5 were studied in mice with systemic AA amyloidosis using dual-energy SPECT/CT imaging, biodistribution and microautoradiography. RESULTS Soluble RAGE VC1 competed with radioiodinated peptide p5 for binding to rVλ6Wil, Aβ (1-40) and IAPP fibrils but not with the higher affinity peptide, p5R. Pre-incubation with AGE-BSA abrogated binding of VC1 and p5 to rVλ6Wil fibrils. Dual-energy SPECT/CT images and quantitative tissue biodistribution data showed that soluble RAGE VC1 specifically bound AA amyloid-laden organs in mice as effectively as peptide p5. Furthermore, microautoradiography confirmed that RAGE VC1 bound specifically to areas of Congo red-positive amyloid in mouse tissues but not in comparable tissues from control WT mice. CONCLUSION Soluble RAGE VC1 and peptide p5 have similar ligand binding properties and specifically localize with visceral AA amyloid deposits in mice.
Collapse
Affiliation(s)
- Stephen J Kennel
- a Department of Medicine and.,b Department of Radiology , University of Tennessee, Graduate School of Medicine , Knoxville , TN , USA
| | | | - Alan Stuckey
- b Department of Radiology , University of Tennessee, Graduate School of Medicine , Knoxville , TN , USA
| | | | | | - Walter Chazin
- c Departments of Biochemistry and Chemistry , Center for Structural Biology, Vanderbilt University , Nashville , TN , USA , and
| | - David A Stern
- d Department of Medicine , University of Tennessee School of Medicine , Memphis , TN , USA
| | | | - Jonathan S Wall
- a Department of Medicine and.,b Department of Radiology , University of Tennessee, Graduate School of Medicine , Knoxville , TN , USA
| |
Collapse
|
7
|
Dogra P, Martin EB, Williams A, Richardson RL, Foster JS, Hackenback N, Kennel SJ, Sparer TE, Wall JS. Novel heparan sulfate-binding peptides for blocking herpesvirus entry. PLoS One 2015; 10:e0126239. [PMID: 25992785 PMCID: PMC4436313 DOI: 10.1371/journal.pone.0126239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/31/2015] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection can lead to congenital hearing loss and mental retardation. Upon immune suppression, reactivation of latent HCMV or primary infection increases morbidity in cancer, transplantation, and late stage AIDS patients. Current treatments include nucleoside analogues, which have significant toxicities limiting their usefulness. In this study we screened a panel of synthetic heparin-binding peptides for their ability to prevent CMV infection in vitro. A peptide designated, p5+14 exhibited ~ 90% reduction in murine CMV (MCMV) infection. Because negatively charged, cell-surface heparan sulfate proteoglycans (HSPGs), serve as the attachment receptor during the adsorption phase of the CMV infection cycle, we hypothesized that p5+14 effectively competes for CMV adsorption to the cell surface resulting in the reduction in infection. Positively charged Lys residues were required for peptide binding to cell-surface HSPGs and reducing viral infection. We show that this inhibition was not due to a direct neutralizing effect on the virus itself and that the peptide blocked adsorption of the virus. The peptide also inhibited infection of other herpesviruses: HCMV and herpes simplex virus 1 and 2 in vitro, demonstrating it has broad-spectrum antiviral activity. Therefore, this peptide may offer an adjunct therapy for the treatment of herpes viral infections and other viruses that use HSPGs for entry.
Collapse
Affiliation(s)
- Pranay Dogra
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Emily B. Martin
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Angela Williams
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Raphael L. Richardson
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - James S. Foster
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Nicole Hackenback
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Stephen J. Kennel
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
- Department of Radiology, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| | - Tim E. Sparer
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jonathan S. Wall
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
- Department of Radiology, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, United States of America
| |
Collapse
|
8
|
Wall JS, Martin EB, Richey T, Stuckey AC, Macy S, Wooliver C, Williams A, Foster JS, McWilliams-Koeppen P, Uberbacher E, Cheng X, Kennel SJ. Preclinical Validation of the Heparin-Reactive Peptide p5+14 as a Molecular Imaging Agent for Visceral Amyloidosis. Molecules 2015; 20:7657-82. [PMID: 25923515 PMCID: PMC4442108 DOI: 10.3390/molecules20057657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/22/2015] [Indexed: 01/11/2023] Open
Abstract
Amyloid is a complex pathologic matrix comprised principally of paracrystalline protein fibrils and heparan sulfate proteoglycans. Systemic amyloid diseases are rare, thus, routine diagnosis is often challenging. The glycosaminoglycans ubiquitously present in amyloid deposits are biochemically and electrochemically distinct from those found in the healthy tissues due to the high degree of sulfation. We have exploited this unique property and evaluated heparin-reactive peptides, such as p5+14, as novel agents for specifically targeting and imaging amyloid. Herein, we demonstrate that radiolabeled p5+14 effectively bound murine AA amyloid in vivo by using molecular imaging. Biotinylated peptide also reacted with the major forms of human amyloid in tissue sections as evidenced immunohistochemically. Furthermore, we have demonstrated that the peptide also binds synthetic amyloid fibrils that lack glycosaminoglycans implying that the dense anionic motif present on heparin is mimicked by the amyloid protein fibril itself. These biochemical and functional data support the translation of radiolabeled peptide p5+14 for the clinical imaging of amyloid in patients.
Collapse
Affiliation(s)
- Jonathan S Wall
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
- Department of and Radiology, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
| | - Emily B Martin
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
| | - Tina Richey
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
| | - Alan C Stuckey
- Department of and Radiology, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
| | - Sallie Macy
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
| | - Craig Wooliver
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
| | - Angela Williams
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
| | - James S Foster
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
| | - Penney McWilliams-Koeppen
- Department of and Radiology, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
| | - Ed Uberbacher
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Xiaolin Cheng
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Stephen J Kennel
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
- Department of and Radiology, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
| |
Collapse
|
9
|
Vallen MJ, van der Steen SC, van Tilborg AA, Massuger LF, van Kuppevelt TH. Sulfated sugars in the extracellular matrix orchestrate ovarian cancer development: ‘When sweet turns sour’. Gynecol Oncol 2014; 135:371-81. [DOI: 10.1016/j.ygyno.2014.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 01/14/2023]
|
10
|
Haupt C, Fändrich M. Biotechnologically engineered protein binders for applications in amyloid diseases. Trends Biotechnol 2014; 32:513-20. [DOI: 10.1016/j.tibtech.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022]
|