1
|
Liu J, Xu N, Wang X, Wang Y, Wu Q, Li X, Pan D, Wang L, Xu Y, Yan J, Li X, Yu L, Yang M. Quantitative radio-thin-layer chromatography and positron emission tomography studies for measuring streptavidin transduced chimeric antigen receptor T cells. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1182:122944. [PMID: 34592686 DOI: 10.1016/j.jchromb.2021.122944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
The proliferation of chimeric antigen receptor (CAR) T cells is closely related to their efficacy, but it is still a great challenge to monitor and quantify CAR T cells in vivo. Based on the high affinity (Kd ≈ 10-15 M) of streptavidin (SA) and biotin, radiolabeled biotin may be used to quantify SA-transduced CAR T cells (SA-CAR T cells). Radio-thin-layer chromatography (radio-TLC) and positron emission tomography (PET) are highly sensitive for trace analysis. Our aim was to develop radio-TLC and PET methods to quantify SA-CAR T cells in vitro and in vivo. First, we developed [68Ga]-DOTA-biotin. Commercially available SA was used as a standard, and quantitative standard curves were established in vitro and in vivo by radio-TLC and PET. Furthermore, the feasibility of the method was verified in Raji model mice. The linear range of radio-TLC was 0.02 ∼ 0.15 pmol/μL with R2 = 0.9993 in vitro. The linear range of PET was 0.02 ∼ 0.76 pmol/μL with R2 = 0.9986 in vivo. SA in CAR T cells can also be accurately quantified in a Raji leukemia model according to PET imaging. The radio-TLC/PET method established in this study is promising for using in the dynamic monitoring and analysis of SA-CAR T cells during therapy.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Nan Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd., Shanghai 200062, China
| | - Xinyu Wang
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yan Wang
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qiong Wu
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xinxin Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Donghui Pan
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Lizhen Wang
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yuping Xu
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Junjie Yan
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd., Shanghai 200062, China
| | - Min Yang
- Molecular Imaging Center, NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
2
|
Yousuf I, Bashir M, Arjmand F, Tabassum S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214104] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Arifin DR, Bulte JWM. In Vivo Imaging of Pancreatic Islet Grafts in Diabetes Treatment. Front Endocrinol (Lausanne) 2021; 12:640117. [PMID: 33737913 PMCID: PMC7961081 DOI: 10.3389/fendo.2021.640117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Transplantation of pancreatic islets has potential to offer life-long blood glucose management in type I diabetes and severe type II diabetes without the need of exogenous insulin administration. However, islet cell therapy suffers from autoimmune and allogeneic rejection as well as non-immune related factors. Non-invasive techniques to monitor and evaluate the fate of cell implants in vivo are essential to understand the underlying causes of graft failure, and hence to improve the precision and efficacy of islet therapy. This review describes how imaging technology has been employed to interrogate the distribution, number or volume, viability, and function of islet implants in vivo. To date, fluorescence imaging, PET, SPECT, BLI, MRI, MPI, and ultrasonography are the many imaging modalities being developed to fulfill this endeavor. We outline here the advantages, limitations, and clinical utility of each particular imaging approach.
Collapse
Affiliation(s)
- Dian R. Arifin
- Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jeff W. M. Bulte
- Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Jeff W. M. Bulte,
| |
Collapse
|
4
|
Prospective of 68Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation. CONTRAST MEDIA & MOLECULAR IMAGING 2018. [PMID: 29531507 PMCID: PMC5817300 DOI: 10.1155/2018/9713691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the last decade, the utilization of 68Ga for the development of imaging agents has increased considerably with the leading position in the oncology. The imaging of infection and inflammation is lagging despite strong unmet medical needs. This review presents the potential routes for the development of 68Ga-based agents for the imaging and quantification of infection and inflammation in various diseases and connection of the diagnosis to the treatment for the individualized patient management.
Collapse
|
5
|
Prakash S, Hazari PP, Meena VK, Jaswal A, Khurana H, Kukreti S, Mishra AK. Biotinidase Resistant 68Gallium-Radioligand Based on Biotin/Avidin Interaction for Pretargeting: Synthesis and Preclinical Evaluation. Bioconjug Chem 2016; 27:2780-2790. [PMID: 27723977 DOI: 10.1021/acs.bioconjchem.6b00576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new macrocyclic system 2,2'-(12-amino-11,13-dioxo-1,4,7,10-tetraazacyclotridecane-4,7-diyl)diacetic acid (ATRIDAT) was designed for coordinating metals in +2 and +3 oxidation states particularly 68Ga(III), for PET imaging. ATRIDAT was conjugated to d-biotin for pretargeting via biotin-avidin interaction. This model provides high tumor targeting efficiency and stability to biotinidase activity leading to modest signal amplification at the tumor site. Cyclization of triethylenetetramine with protected diethylamino malonate resulted in the formation of 13 membered diamide ring. d-Biotin was then anchored on the pendant amine rendering α-methyne carbon to the biotinamide bond which blocks the biotinidase enzyme activity. Biotinidase stability assay showed remarkable stability toward the action of biotinidase with ∼95% remaining intact after treatment following 4 h. Binding affinity experiments such as HABA assay, competitive displacement studies with d-biotin and CD showed high binding affinity of the molecule with avidin in nanomolar range. Biotin conjugate was successfully radiolabeled with 68Ga(III) with radiolabeling efficiency of ∼70% and then purified to get 99.9% radiochemical yield. IC50 of the compound was found to be 2.36 mM in HEK cell line and 0.82 mM in A549 as assessed in MTT assay. In biodistribution studies, the major route of excretion was found to be renal. Significant uptake of 4.15 ± 0.35% was observed in tumor in the avidin pretreated mouse at 1 h. μPET images also showed a high tumor to muscle ratio of 26.8 and tumor to kidney ratio of 1.74 at 1 h post-injection after avidin treatment.
Collapse
Affiliation(s)
- Surbhi Prakash
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India.,Department of Chemistry, University of Delhi , Delhi-110007, India
| | - Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| | - Virendra Kumar Meena
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| | - Ambika Jaswal
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| | - Harleen Khurana
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| | - Shrikant Kukreti
- Department of Chemistry, University of Delhi , Delhi-110007, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig SK Mazumdar Road, Delhi-110054, India
| |
Collapse
|
6
|
Velikyan I. 68Ga-Based radiopharmaceuticals: production and application relationship. Molecules 2015; 20:12913-43. [PMID: 26193247 PMCID: PMC6332429 DOI: 10.3390/molecules200712913] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 06/25/2015] [Accepted: 07/06/2015] [Indexed: 12/26/2022] Open
Abstract
The contribution of 68Ga to the promotion and expansion of clinical research and routine positron emission tomography (PET) for earlier better diagnostics and individualized medicine is considerable. The potential applications of 68Ga-comprising imaging agents include targeted, pre-targeted and non-targeted imaging. This review discusses the key aspects of the production of 68Ga and 68Ga-based radiopharmaceuticals in the light of the impact of regulatory requirements and endpoint pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Irina Velikyan
- Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala SE-751 85, Sweden.
- PET Center, Center for Medical Imaging, Uppsala University Hospital, Uppsala SE-751 85, Sweden .
| |
Collapse
|
7
|
Velikyan I. Continued rapid growth in68Ga applications: update 2013 to June 2014. J Labelled Comp Radiopharm 2015; 58:99-121. [DOI: 10.1002/jlcr.3250] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Irina Velikyan
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; SE-75183 Uppsala Sweden
- Department of Radiology, Oncology and Radiation Science; Uppsala University; SE-75285 Uppsala Sweden
- PET-Centre, Centre for Medical Imaging; Uppsala University Hospital; SE-75185 Uppsala Sweden
| |
Collapse
|
8
|
Velikyan I. Prospective of ⁶⁸Ga-radiopharmaceutical development. Theranostics 2013; 4:47-80. [PMID: 24396515 PMCID: PMC3881227 DOI: 10.7150/thno.7447] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/01/2013] [Indexed: 01/29/2023] Open
Abstract
Positron Emission Tomography (PET) experienced accelerated development and has become an established method for medical research and clinical routine diagnostics on patient individualized basis. Development and availability of new radiopharmaceuticals specific for particular diseases is one of the driving forces of the expansion of clinical PET. The future development of the ⁶⁸Ga-radiopharmaceuticals must be put in the context of several aspects such as role of PET in nuclear medicine, unmet medical needs, identification of new biomarkers, targets and corresponding ligands, production and availability of ⁶⁸Ga, automation of the radiopharmaceutical production, progress of positron emission tomography technologies and image analysis methodologies for improved quantitation accuracy, PET radiopharmaceutical regulations as well as advances in radiopharmaceutical chemistry. The review presents the prospects of the ⁶⁸Ga-based radiopharmaceutical development on the basis of the current status of these aspects as well as wide range and variety of imaging agents.
Collapse
Affiliation(s)
- Irina Velikyan
- 1. Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, SE-75183 Uppsala, Sweden
- 2. PET-Centre, Centre for Medical Imaging, Uppsala University Hospital, SE-75185, Uppsala, Sweden
- 3. Department of Radiology, Oncology, and Radiation Science, Uppsala University, SE-75285 Uppsala, Sweden
| |
Collapse
|
9
|
Sakata N, Yoshimatsu G, Tsuchiya H, Aoki T, Mizuma M, Motoi F, Katayose Y, Kodama T, Egawa S, Unno M. Imaging of transplanted islets by positron emission tomography, magnetic resonance imaging, and ultrasonography. Islets 2013; 5:179-87. [PMID: 24231367 PMCID: PMC4010569 DOI: 10.4161/isl.26980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
While islet transplantation is considered a useful therapeutic option for severe diabetes mellitus (DM), the outcome of this treatment remains unsatisfactory. This is largely due to the damage and loss of islets in the early transplant stage. Thus, it is important to monitor the condition of the transplanted islets, so that a treatment can be selected to rescue the islets from damage if needed. Recently, numerous trials have been performed to investigate the efficacy of different imaging modalities for visualizing transplanted islets. Positron emission tomography (PET) and magnetic resonance imaging (MRI) are the most commonly used imaging modalities for this purpose. Some groups, including ours, have also tried to visualize transplanted islets by ultrasonography (US). In this review article, we discuss the recent progress in islet imaging.
Collapse
Affiliation(s)
- Naoaki Sakata
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
- Correspondence to: Naoaki Sakata,
| | - Gumpei Yoshimatsu
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Haruyuki Tsuchiya
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Takeshi Aoki
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Masamichi Mizuma
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Fuyuhiko Motoi
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Yu Katayose
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
- Division of Integrated Surgery and Oncology; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Tetsuya Kodama
- Department of Biomedical Engineering; Graduate School of Biomedical Engineering; Tohoku University; Sendai, Japan
| | - Shinichi Egawa
- Division of International Cooperation for Disaster Medicine; International Research Institute of Disaster Science; Tohoku University; Sendai, Japan
| | - Michiaki Unno
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| |
Collapse
|
10
|
Radiosynthesis of 68Ga-labelled DOTA-biocytin (68Ga-r-BHD) and assessment of its pharmaceutical quality for clinical use. Nucl Med Commun 2013; 33:1179-87. [PMID: 22836735 DOI: 10.1097/mnm.0b013e3283573e05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Biocytin analogues labelled with indium-111, yttrium-90 and lutetium-177 have shown their effectiveness in the imaging of infections/inflammation in patients with osteomyelitis and function as efficient tools in pretargeted antibody-guided radioimmunotherapy. In this study, the labelling of a biocytin analogue coupled with DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), namely, r-BHD, with gallium-68 (68Ga) was optimized, and the quality and stability of the preparations were assessed for clinical use. MATERIALS AND METHODS Synthesis of 68Ga-r-BHD was carried out by heating a fraction of the 68Ge/68Ga eluate in a reactor containing the biocytin analogue with the appropriate buffer. The influence of the precursor amount (from 2.5 to 140 nmol), the pH of the reaction (from 2 to 5.5) and the buffer species (1.5 mol/l sodium acetate, 1.5 mol/l sodium formate, 4.5 mol/l HEPES) on radiochemical yield and radiochemical purity was assessed. Studies on stability and binding to avidin (Av) were also conducted in different media. RESULTS Under the best labelling condition (56 nmol of precursor, 3.8 pH, sodium formate buffer) synthesis of 68Ga-r-BHD resulted in a yield of 64 ± 3% (not decay corrected). Radiochemical purity was around 95% because a 68Ga-coordinated sulfoxide form of the ligand was detected as a by-product of the reaction (68Ga-r-SBHD). The by-product was identified and characterized by liquid chromatography-electrospray ionization tandem mass spectrometry. At the natural 1 : 4 Av/68Ga-r-BHD molar ratio, affinity results were 62 ± 2 and 80 ± 2% in saline and human serum, respectively. Stability of 68Ga-r-BHD and of the radiotracer/Av complex remains almost constant over 180 min. 68Ga-r-BHD appears to be a good candidate for clinical applications.
Collapse
|
11
|
Claesener M, Breyholz HJ, Hermann S, Faust A, Wagner S, Schober O, Schäfers M, Kopka K. Efficient synthesis of a fluorine-18 labeled biotin derivative. Nucl Med Biol 2012; 39:1189-94. [PMID: 22998841 DOI: 10.1016/j.nucmedbio.2012.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 07/18/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
Abstract
INTRODUCTION The natural occurring vitamin biotin, also known as vitamin H or vitamin B(7), plays a major role in various metabolic reactions. Caused by its high binding affinity to the protein avidin with a dissociation constant of about 10(-15)M the biotin-avidin system was extensively examined for multiple applications. We have synthesized a fluorine-18 labeled biotin derivative [(18)F]4 for a potential application in positron emission tomography (PET). METHODS Mesylate precursor 3 was obtained by an efficient two-step reaction via a copper catalyzed azide-alkyne cycloaddition (CuAAC) from easily accessible starting materials. [(18)F]4 was successfully synthesized by a nucleophilic radiofluorination of precursor 3. A biodistribution study by means of small-animal PET imaging in wt-mice was performed and serum stability was examined. RESULTS Compound [(18)F]4 was obtained from precursor compound 3 with an average specific activity of 16GBq/μmol within 45min and a radiochemical yield of 45±5% (decay corrected). [(18)F]4 demonstrated only negligible decomposition in human serum. A qualitative binding study revealed the high affinity of the synthesized biotin derivative to avidin. Blocking experiments with native biotin showed that binding was site-specific. Biodistribution studies showed that [(18)F]4 was cleared quickly and efficiently from the body by hepatobiliary and renal elimination. CONCLUSION An efficient synthesis for [(18)F]4 was established. In vivo characteristics were determined and demonstrated the pharmacokinetic behaviour of [(18)F]4.
Collapse
Affiliation(s)
- Michael Claesener
- University Hospital Münster, Department of Nuclear Medicine, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|