1
|
Hu L, Cheng Z, Wu L, Luo L, Pan P, Li S, Jia Q, Yang N, Xu B. Histone methyltransferase SETDB1 promotes osteogenic differentiation in osteoporosis by activating OTX2-mediated BMP-Smad and Wnt/β-catenin pathways. Hum Cell 2023:10.1007/s13577-023-00902-w. [PMID: 37074626 DOI: 10.1007/s13577-023-00902-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Osteogenic differentiation plays important roles in the pathogenesis of osteoporosis. In this study, we explored the regulatory mechanism of histone methyltransferase SET domain bifurcated 1 (SETDB1) underlying the osteogenic differentiation in osteoporosis. The common osteoporosis-related genes were retrieved from the GeneCards, CTD, and Phenolyzer databases. The enrichment analysis was conducted on the candidate osteoporosis-related genes using the PANTHER software, and the binding site between transcription factors and target genes predicted by hTFtarget. The bioinformatics analyses suggested 6 osteoporosis-related chromatin/chromatin binding protein or regulatory proteins (HDAC4, SIRT1, SETDB1, MECP2, CHD7, and DKC1). Normal and osteoporosis tissues were collected from osteoporosis patients to examine the expression of SETDB1. It was found that SETDB1 was poorly expressed in osteoporotic femoral tissues, indicating that SETDB1 might be involved in the development of osteoporosis. We induced SETDB1 overexpression/knockdown, orthodenticle homeobox 2 (OTX2) overexpression, activation of Wnt/β-catenin or BMP-Smad pathways alone or in combination in osteoblasts or ovariectomized mice. The data indicated that SETDB1 methylation regulated H3K9me3 in the OTX2 promoter region and inhibited the expression of OTX2. Besides, the BMP-Smad and Wnt/β-catenin pathways were inhibited by OTX2, thereby resulting in inhibited osteogenic differentiation. Animal experiments showed that overexpressed SETDB1 could promote the increase of calcium level and differentiation of femoral tissues. In conclusion, upregulation of SETDB1 promotes osteogenic differentiation by inhibiting OTX2 and activating the BMP-Smad and Wnt/β-catenin pathways in osteoporosis.
Collapse
Affiliation(s)
- Lianying Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Zhen Cheng
- Clinical Laboratory, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, People's Republic of China
| | - Lunan Wu
- Department of Anesthesiology and Perioperative Medicine, The Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, The Second Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Liangliang Luo
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Ping Pan
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Shujin Li
- Clinical Laboratory, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, People's Republic of China
| | - Qiyu Jia
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China.
| | - Ning Yang
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China.
| | - Bin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
2
|
Yang LX, Wu J, Guo ML, Zhang Y, Ma SG. Suppression of long non-coding RNA TNRC6C-AS1 protects against thyroid carcinoma through DNA demethylation of STK4 via the Hippo signalling pathway. Cell Prolif 2019; 52:e12564. [PMID: 30938030 PMCID: PMC6536409 DOI: 10.1111/cpr.12564] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/28/2018] [Accepted: 11/02/2018] [Indexed: 01/09/2023] Open
Abstract
Objectives Thyroid carcinoma (TC) represents a malignant neoplasm affecting the thyroid. Current treatment strategies include the removal of part of the thyroid; however, this approach is associated with a significant risk of developing hypothyroidism. In order to adequately understand the expression profiles of TNRC6C‐AS1 and STK4 and their potential functions in TC, an investigation into their involvement with Hippo signalling pathway and the mechanism by which they influence TC apoptosis and autophagy were conducted. Methods A microarray analysis was performed to screen differentially expressed lncRNAs associated with TC. TC cells were employed to evaluate the role of TNRC6C‐AS1 by over‐expression or silencing means. The interaction of TNRC6C‐AS1 with methylation of STK4 promoter was evaluated to elucidate its ability to elicit autophagy, proliferation and apoptosis. Results TNRC6C‐AS1 was up‐regulated while STK4 was down‐regulated, where methylation level was elevated. STK4 was verified as a target gene of TNRC6C‐AS1, which was enriched by methyltransferase. Methyltransferase’s binding to STK4 increased expression of its promoter. Over‐expressed TNRC6C‐AS1 inhibited STK4 by promoting STK4 methylation and reducing the total protein levels of MST1 and LATS1/2. The phosphorylation of YAP1 phosphorylation was decreased, which resulted in the promotion of SW579 cell proliferation and tumorigenicity. Conclusion Based on our observations, we subsequently confirmed the anti‐proliferative, pro‐apoptotic and pro‐autophagy capabilities of TNRC6C‐AS1 through STK4 methylation via the Hippo signalling pathway in TC.
Collapse
Affiliation(s)
- Liu-Xue Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ji Wu
- Department of Thyroid and Breast Surgery, Suqian Hospital Affiliated to Xuzhou Medical University, Suqian, China.,Department of Thyroid and Breast Surgery, Nanjing Drum Tower Hospital, Suqian, China
| | - Man-Li Guo
- Department of Endocrinology and Metabolism, Suqian People's Hospital, Nanjing Drum Tower Hospital, Suqian, China
| | - Yong Zhang
- Department of Endocrinology and Metabolism, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, China.,Department of Endocrinology and Metabolism, Suqian First Hospital, Suqian, China
| | - Shao-Gang Ma
- Department of Endocrinology and Metabolism, Suqian First Hospital, Suqian, China.,Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
3
|
Wang HB, Wei H, Wang JS, Li L, Chen AY, Li ZG. Down-regulated expression of LINC00518 prevents epithelial cell growth and metastasis in breast cancer through the inhibition of CDX2 methylation and the Wnt signaling pathway. Biochim Biophys Acta Mol Basis Dis 2019; 1865:708-723. [PMID: 30611858 DOI: 10.1016/j.bbadis.2019.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/07/2018] [Accepted: 01/02/2019] [Indexed: 01/02/2023]
Abstract
Breast cancer (BC)-related mortality is associated with the potential metastatic properties of the primary breast tumors. The following study was conducted with the main focus on the effect of LINC00518 on the growth and metastasis of BC epithelial cells via the Wnt signaling pathway through regulation of the methylation of CDX2 gene. Initially, differentially expressed long intergenic non-protein coding RNAs (lincRNAs) related to BC were screened out in the Cancer Genome Atlas (TCGA) database, after which we detected the LINC00518 expression and localization in BC tissues and cells. Then the CDX2 positive expression and methylation level were identified. The targeting relationship of LINC00518 and CDX2, and binding methyltransferase in the promoter region were examined. BC epithelial cell proliferation, colony formation ability, invasion, migration and apoptosis were further evaluated. The lincRNA expression data related to BC downloaded from the TCGA database revealed that there was a high expression of LINC00518 in BC, and a negative correlation between LINC00518 and CDX2. In addition, LINC00518 promotes CDX2 methylation by recruiting DNA methyltransferase through activating the Wnt signaling pathway. The down-regulation of LINC00518 inhibited proliferation, invasion, migration, and EMT of BC epithelial cells while enhancing apoptosis. The inhibitory effects of LINC00518 down-regulation was reversed by CDX2 down-regulation. In conclusion, our findings revealed that down-regulation of LINC00518 might have the ability to suppress BC progression by up-regulating CDX2 expression through the reduction of methylation and blockade of the Wnt signaling pathway, resulting in the inhibition of proliferation and promotion of apoptosis of BC epithelial cells.
Collapse
Affiliation(s)
- Hong-Bin Wang
- Department of Breast Surgery (No. 2 Sickroom), Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Hong Wei
- Department of In-Patient Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Jin-Song Wang
- Department of Breast Surgery (No. 2 Sickroom), Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Lin Li
- Department of Breast Surgery (No. 2 Sickroom), Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - An-Yue Chen
- Department of Breast Surgery (No. 2 Sickroom), Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Zhi-Gao Li
- Department of Breast Surgery (No. 2 Sickroom), Harbin Medical University Cancer Hospital, Harbin 150081, PR China.
| |
Collapse
|
4
|
Inhibition of miR-146b expression increases radioiodine-sensitivity in poorly differential thyroid carcinoma via positively regulating NIS expression. Biochem Biophys Res Commun 2015; 462:314-21. [PMID: 25960292 DOI: 10.1016/j.bbrc.2015.04.134] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/23/2022]
Abstract
Dedifferentiated thyroid carcinoma (DTC) with the loss of radioiodine uptake (RAIU) is often observed in clinical practice under radioiodine therapy, indicating the challenge for poor prognosis. MicroRNA (miRNA) has emerged as a promising therapeutic target in many diseases; yet, the role of miRNAs in RAIU has not been generally investigated. Based on recent studies about miRNA expression in papillary or follicular thyroid carcinomas, the expression profiles of several thyroid relative miRNAs were investigated in one DTC cell line, derived from normal DTC cells by radioiodine treatment. The top candidate miR-146b, with the most significant overexpression profiles in dedifferentiated cells, was picked up. Further research found that miR-146b could be negatively regulated by histone deacetylase 3 (HDAC3) in normal cells, indicating the correlation between miR-146b and Na(+)/I(-) symporter (NIS)-mediated RAIU. Fortunately, it was confirmed that miR-146b could regulate NIS expression/activity; what is more important, miR-146b interference would contribute to the recovery of radioiodine-sensitivity in dedifferentiated cells via positively regulating NIS. In the present study, it was concluded that NIS-mediated RAIU could be modulated by miR-146b; accordingly, miR-146b might serve as one of targets to enhance efficacy of radioactive therapy against poorly differential thyroid carcinoma (PDTC).
Collapse
|