1
|
Zhang X, Wang J, Tan Y, Chen C, Tang S, Zhao S, Qin Q, Huang H, Duan S. Nanobodies in cytokine‑mediated immunotherapy and immunoimaging (Review). Int J Mol Med 2024; 53:12. [PMID: 38063273 DOI: 10.3892/ijmm.2023.5336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Cytokines are the main regulators of innate and adaptive immunity, mediating communications between the cells of the immune system and regulating biological functions, including cell motility, differentiation, growth and apoptosis. Cytokines and cytokine receptors have been used in the treatment of tumors and autoimmune diseases, and to intervene in cytokine storms. Indeed, the use of monoclonal antibodies to block cytokine‑receptor interactions, as well as antibody‑cytokine fusion proteins has exhibited immense potential for the treatment of tumors and autoimmune diseases. Compared with these traditional types of antibodies, nanobodies not only maintain a high affinity and specificity, but also have the advantages of high thermal stability, a high capacity for chemical manipulation, low immunogenicity, good tissue permeability, rapid clearance and economic production. Thus, nanobodies have extensive potential for use in the diagnosis and treatment of cytokine‑related diseases. The present review summarizes the application of nanobodies in cytokine‑mediated immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Jin Wang
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Ying Tan
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Chaoting Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shuang Tang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shimei Zhao
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Qiuhong Qin
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Hansheng Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Siliang Duan
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| |
Collapse
|
2
|
Bao Y, Lu W. Targeting cerebral diseases with enhanced delivery of therapeutic proteins across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1681-1698. [PMID: 36945117 DOI: 10.1080/17425247.2023.2193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Cerebral diseases have been threatening public physical and psychological health in the recent years. With the existence of the blood-brain barrier (BBB), it is particularly hard for therapeutic proteins like peptides, enzymes, antibodies, etc. to enter the central nervous system (CNS) and function in diagnosis and treatment in cerebral diseases. Fortunately, the past decade has witnessed some emerging strategies of delivering macromolecular therapeutic proteins across the BBB. AREAS COVERED Based on the structure, functions, and substances transport mechanisms, various enhanced delivery strategies of therapeutic proteins were reviewed, categorized by molecule-mediated delivery strategies, carrier-mediated delivery strategies, and other delivery strategies. EXPERT OPINION As for molecule-mediated delivery strategies, development of genetic engineering technology, optimization of protein expression and purification techniques, and mature of quality control systems all help to realize large-scale production of recombinant antibodies, making it possible to apply to the clinical practice. In terms of carrier-mediated delivery strategies and others, although nano-carriers/adeno-associated virus (AAV) are also promising candidates for delivering therapeutic proteins or genes across the BBB, some issues still remain to be further investigated, including safety concerns related to applied materials, large-scale production costs, quality control standards, combination therapies with auxiliary delivery strategies like focused ultrasound, etc.
Collapse
Affiliation(s)
- Yanning Bao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
- Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd. Lingang of Shanghai, China
| |
Collapse
|
3
|
Kelly VW, Sirk SJ. Short FcRn-Binding Peptides Enable Salvage and Transcytosis of scFv Antibody Fragments. ACS Chem Biol 2022; 17:404-413. [PMID: 35050570 DOI: 10.1021/acschembio.1c00862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Therapeutic antibodies have become one of the most widely used classes of biotherapeutics due to their unique antigen specificity and their ability to be engineered against diverse disease targets. There is significant interest in utilizing truncated antibody fragments as therapeutics, as their small size affords favorable properties such as increased tumor penetration as well as the ability to utilize lower-cost prokaryotic production methods. Their small size and simple architecture, however, also lead to rapid blood clearance, limiting the efficacy of these potentially powerful therapeutics. A common approach to circumvent these limitations is to enable engagement with the half-life extending neonatal Fc receptor (FcRn). This is usually achieved via fusion with a large Fc domain, which negates the benefits of the antibody fragment's small size. In this work, we show that modifying antibody fragments with short FcRn-binding peptide domains that mimic native IgG engagement with FcRn enables binding and FcRn-mediated recycling and transmembrane transcytosis in cell-based assays. Further, we show that rational, single amino acid mutations to the peptide sequence have a significant impact on the receptor-mediated function and investigate the underlying structural basis for this effect using computational modeling. Finally, we report the identification of a short peptide from human serum albumin that enables FcRn-mediated function when grafted onto a single-chain variable fragment (scFv) scaffold, establishing an approach for the rational selection of short-peptide domains from full-length proteins that could enable the transfer of non-native functions to small recombinant proteins without significantly impacting their size or structure.
Collapse
Affiliation(s)
- Vince W. Kelly
- Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Shannon J. Sirk
- Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
van Lith SAM, Huizing FJ, Franssen GM, Hoeben BAW, Lok J, Doulkeridou S, Boerman OC, Gotthardt M, van Bergen En Henegouwen PMP, Bussink J, Heskamp S. Novel VHH-Based Tracers with Variable Plasma Half-Lives for Imaging of CAIX-Expressing Hypoxic Tumor Cells. Mol Pharm 2022; 19:3511-3520. [PMID: 35044182 PMCID: PMC9533306 DOI: 10.1021/acs.molpharmaceut.1c00841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Hypoxic areas are
present in the majority of solid tumors, and
hypoxia is associated with resistance to therapies and poor outcomes.
A transmembrane protein that is upregulated by tumor cells that have
adapted to hypoxic conditions is carbonic anhydrase IX (CAIX). Therefore,
noninvasive imaging of CAIX could be of prognostic value, and it could
steer treatment strategies. The aim of this study was to compare variants
of CAIX-binding VHH B9, with and without a C-terminal albumin-binding
domain with varying affinity (ABDlow and ABDhigh), for SPECT imaging of CAIX expression. The binding affinity and
internalization of the various B9-variants were analyzed using SK-RC-52
cells. Biodistribution studies were performed in mice with subcutaneous
SCCNij153 human head and neck cancer xenografts. Tracer uptake was
determined by ex vivo radioactivity counting and
visualized by SPECT/CT imaging. Furthermore, autoradiography images
of tumor sections were spatially correlated with CAIX immunohistochemistry.
B9-variants demonstrated a similar moderate affinity for CAIX in vitro. Maximal tumor uptake and acceptable tumor-to-blood
ratios were found in the SCCNij153 model at 4 h post injection for
[111In]In-DTPA-B9 (0.51 ± 0.08%ID/g and 8.1 ±
0.85, respectively), 24 h post injection for [111In]In-DTPA-B9-ABDlow (2.39 ± 0.44%ID/g and 3.66 ± 0.81, respectively)
and at 72 h post injection for [111In]In-DTPA-B9-ABDhigh (8.7 ± 1.34%ID/g and 2.43 ± 0.15, respectively). An excess of unlabeled monoclonal anti-CAIX antibody efficiently
inhibited tumor uptake of [111In]In-DTPA-B9, while only
a partial reduction of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh uptake was found.
Immunohistochemistry and autoradiography images showed colocalization
of all B9-variants with CAIX expression; however, [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh also
accumulated in non-CAIX expressing regions. Tumor uptake of [111In]In-DTPA-B9-ABDlow and [111In]In-DTPA-B9-ABDhigh, but not of [111In]In-DTPA-B9, could be visualized
with SPECT/CT imaging. In conclusion, [111In]In-DTPA-B9
has a high affinity to CAIX and shows specific targeting to CAIX in
head and neck cancer xenografts. The addition of ABD prolonged plasma
half-life, increased tumor uptake, and enabled SPECT/CT imaging. This
uptake was, however, partly CAIX- independent, precluding the ABD-tracers
for use in hypoxia quantification in this tumor type.
Collapse
Affiliation(s)
- Sanne A M van Lith
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Fokko J Huizing
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands.,Department of Radiation Oncology, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Gerben M Franssen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Bianca A W Hoeben
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands.,Department of Radiation Oncology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
| | - Jasper Lok
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Sofia Doulkeridou
- Department of Cell Biology, University of Utrecht, Utrecht, 3584 GE, The Netherlands
| | - Otto C Boerman
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | | | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
5
|
Liu J, Hong H, Shi J, Xie Y, Lu Z, Liu Z, Zhou Z, Bian Z, Huang Z, Wu Z. Dinitrophenol-mediated modulation of an anti-PD-L1 VHH for Fc-dependent effector functions and prolonged serum half-life. Eur J Pharm Sci 2021; 165:105941. [PMID: 34256102 DOI: 10.1016/j.ejps.2021.105941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/25/2021] [Accepted: 06/20/2021] [Indexed: 01/11/2023]
Abstract
Single-domain antibodies, VHHs or nanobodies, represent a promising set of alternatives to conventional therapeutic antibodies, gaining substantial attention in the field of cancer immunotherapy. However, inherent drawbacks of nanobodies such as fast clearance from blood circulation and lack of immune effector functions often led to unsatisfactory therapeutic efficacy. We previously reported that dinitrophenyl modification of an anti-EGFR VHH conferred Fc-dependent immune effector functions and elongated serum half-life on it through recruiting of hapten antibodies, resulting in improved immunotherapy efficacy in vivo. In the present work, we further tested the versatility of this approach in the case of an anti-PD-L1 blockade VHH (KN035). Site-specific dinitrophenyl conjugation did not impair the binding capacity of KN035 portion to PD-L1, but indirectly restored its immune effector functions, manifested by the observed antibody dependent cell-mediated cytotoxicity, antibody-dependent cellular phagocytosis and complement-dependent cytotoxicity against PD-L1 positive tumor cells. Significant delay of blood clearance of dinitrophenylated KN035 was evidenced by the prolonged half-life of ca. 22 h. This approach, using small hapten molecule conjugation, loaded additional antibody-mediated tumor killing mechanisms to PD-L1 blockade VHH and therefore improved efficacy is anticipated in the future in vivo therapeutic studies. Thus, our results underscore the power of this versatile approach for achieving desirable properties of VHH-based or similar therapeutics.
Collapse
Affiliation(s)
- Jinlong Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yuntian Xie
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhongkai Lu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhicheng Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zehua Bian
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Sotoudegan F, Sotoudegan F, Talebkhan Garoosi Y, Afshar SH, Barkhordari F, Davami F. Anti-Aβ-scFv-loaded polymeric nano-micelles with enhanced plasma stability. J Pharm Pharmacol 2021; 73:460-472. [PMID: 33793837 DOI: 10.1093/jpp/rgaa068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/23/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Immunotherapy using recombinant monoclonal antibodies specifically Anti-amyloid-beta (Anti-Aβ) scFv is envisaged as an appropriate therapeutic for Alzheimer through reduction of amyloid-beta aggregation. The solubilization of therapeutics using polymeric micelles facilitates an improved bioavailability and extended blood half-life. In this study, the optimum production condition for Anti-amyloid-beta (Anti-Aβ) scFv was obtained. To increase the stability of plasma, Anti-Aβ-loaded polymeric micelles were synthesized. METHODS Escherichia coli SHuffle expression strain was used and purified by Ni-NTA. Pluronics P85 and F127 micelles were used for the Anti-Aβ delivery and were characterized in terms of morphology, drug loading and drug release in phosphate buffer and artificial cerebrospinal fluid. The stability profile was quantified at 4°C over a 30 days storage period. The stability in human plasma was also evaluated. KEY FINDINGS Proteins expressed in SHuffle resulted in increased levels of protein expression and solubility. Low critical micelle concentration value and high micelle encapsulation efficiency (<200 nm) achieved via direct dissolution method. Anti-Aβ-loaded micelles were around 2.2-fold more stable than Anti-Aβ in plasma solution. A sustained in-vitro release of Anti-Aβ from micelles was observed. CONCLUSIONS Results confirmed that Pluronic-micelles pose benefits as a nano-carrier to increase the stability of Anti-Aβ scFvin in the plasma.
Collapse
Affiliation(s)
- Farnaz Sotoudegan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Farzaneh Sotoudegan
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sahar H Afshar
- Faculty of Pharmacy International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Gómez J, Sierra D, Cárdenas C, Guzmán F. Bio-organometallic Peptide Conjugates: Recent Advances in Their Synthesis and Prospects for Biomedical Application. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200309093938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
One area of organometallic chemistry that has attracted great interest in recent
years is the syntheses, characterization and study of organometallic complexes conjugated
to biomolecules with different steric and electronic properties as potential therapeutic
agents against cancer and malaria, as antibiotics and as radiopharmaceuticals. This minireview
focuses on the unique structural diversity that has recently been discovered in α-
amino acids and the reactions of metallocene complexes with peptides having different
chemical behavior and potential medical applications. Replacing α-amino acids with metallocene
fragments is an effective way of selectively influencing the physicochemical,
structural, electrochemical and biological properties of the peptides. Consequently, research
in the field of bioorganometallic chemistry offers the opportunity to develop bioactive
metal compounds as an innovative and promising approach in the search for pharmacological control of
different diseases.
Collapse
Affiliation(s)
- Johana Gómez
- Nucleo de Biotecnologia Curauma, Pontificia Universidad Catolica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| | - Diego Sierra
- Instituto de Quimica y Bioquimica, Facultad de Ciencias, Universidad de Valparaiso, Av. Gran Bretana 1111, Valparaíso, Chile
| | - Constanza Cárdenas
- Nucleo de Biotecnologia Curauma, Pontificia Universidad Catolica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| | - Fanny Guzmán
- Nucleo de Biotecnologia Curauma, Pontificia Universidad Catolica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| |
Collapse
|
8
|
Crowe JS, Roberts KJ, Carlton TM, Maggiore L, Cubitt MF, Ray KP, Donnelly MC, Wahlich JC, Humphreys JI, Robinson JR, Whale GA, West MR. Oral delivery of the anti-tumor necrosis factor α domain antibody, V565, results in high intestinal and fecal concentrations with minimal systemic exposure in cynomolgus monkeys. Drug Dev Ind Pharm 2018; 45:387-394. [DOI: 10.1080/03639045.2018.1542708] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- J. Scott Crowe
- VHsquared Ltd., Babraham, UK
- VHsquared Ltd., Wellcome Sanger Institute, Hinxton, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ilovich O, Qutaish M, Hesterman JY, Orcutt K, Hoppin J, Polyak I, Seaman M, Abu-Yousif AO, Cvet D, Bradley DP. Dual-Isotope Cryoimaging Quantitative Autoradiography: Investigating Antibody–Drug Conjugate Distribution and Payload Delivery Through Imaging. J Nucl Med 2018; 59:1461-1466. [DOI: 10.2967/jnumed.118.207753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/19/2018] [Indexed: 12/24/2022] Open
|
10
|
Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer's disease. J Control Release 2017; 260:61-77. [PMID: 28549949 DOI: 10.1016/j.jconrel.2017.05.019] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 12/20/2022]
Abstract
In this modern era, with the help of various advanced technologies, medical science has overcome most of the health-related issues successfully. Though, some diseases still remain unresolved due to various physiological barriers. One such condition is Alzheimer; a neurodegenerative disorder characterized by progressive memory impairment, behavioral abnormalities, mood swing and disturbed routine activities of the person suffering from. It is well known to all that the brain is entirely covered by a protective layer commonly known as blood brain barrier (BBB) which is responsible to maintain the homeostasis of brain by restricting the entry of toxic substances, drug molecules, various proteins and peptides, small hydrophilic molecules, large lipophilic substances and so many other peripheral components to protect the brain from any harmful stimuli. This functionally essential structure creates a major hurdle for delivery of any drug into the brain. Still, there are some provisions on BBB which facilitate the entry of useful substances in the brain via specific mechanisms like passive diffusion, receptor-mediated transcytosis, carrier-mediated transcytosis etc. Another important factor for drug transport is the selection of a suitable drug delivery systems like, liposome, which is a novel drug carrier system offering a potential approach to resolving this problem. Its unique phospholipid bilayer structure (similar to physiological membrane) had made it more compatible with the lipoidal layer of BBB and helps the drug to enter the brain. The present review work focused on various surface modifications with functional ligand (like lactoferrin, transferrin etc.) and carrier molecules (such as glutathione, glucose etc.) on the liposomal structure to enhance its brain targeting ability towards the successful treatment of Alzheimer disease.
Collapse
|
11
|
Cantante C, Lourenço S, Morais M, Leandro J, Gano L, Silva N, Leandro P, Serrano M, Henriques AO, Andre A, Cunha-Santos C, Fontes C, Correia JDG, Aires-da-Silva F, Goncalves J. Albumin-binding domain from Streptococcus zooepidemicus protein Zag as a novel strategy to improve the half-life of therapeutic proteins. J Biotechnol 2017; 253:23-33. [PMID: 28549690 DOI: 10.1016/j.jbiotec.2017.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 11/28/2022]
Abstract
Recombinant antibody fragments belong to the promising class of biopharmaceuticals with high potential for future therapeutic applications. However, due to their small size they are rapidly cleared from circulation. Binding to serum proteins can be an effective approach to improve pharmacokinetic properties of short half-life molecules. Herein, we have investigated the Zag albumin-binding domain (ABD) derived from Streptococcus zooepidemicus as a novel strategy to improve the pharmacokinetic properties of therapeutic molecules. To validate our approach, the Zag ABD was fused with an anti-TNFα single-domain antibody (sdAb). Our results demonstrated that the sdAb-Zag fusion protein was highly expressed and specifically recognizes human, rat and mouse serum albumins with affinities in the nanomolar range. Moreover, data also demonstrated that the sdAb activity against the therapeutic target (TNFα) was not affected when fused with Zag ABD. Importantly, the Zag ABD increased the sdAb half-life ∼39-fold (47min for sdAb versus 31h for sdAb-Zag). These findings demonstrate that the Zag ABD fusion is a promising approach to increase the half-life of small recombinant antibodies molecules without affecting their therapeutic efficacy. Moreover, the present study strongly suggests that the Zag ABD fusion strategy can be potentially used as a universal method to improve the pharmokinetics properties of many others therapeutics proteins and peptides in order to improve their dosing schedule and clinical effects.
Collapse
Affiliation(s)
- Cátia Cantante
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Maurício Morais
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - João Leandro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Nuno Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Paula Leandro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Ana Andre
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa,1300-477 Lisbon, Portugal
| | - Catarina Cunha-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos Fontes
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa,1300-477 Lisbon, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Frederico Aires-da-Silva
- Technophage, SA, 1649-028 Lisbon, Portugal; CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa,1300-477 Lisbon, Portugal.
| | - Joao Goncalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
12
|
Spang P, Herrmann C, Roesch F. Bifunctional Gallium-68 Chelators: Past, Present, and Future. Semin Nucl Med 2016; 46:373-94. [DOI: 10.1053/j.semnuclmed.2016.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Abstract
OBJECTIVE To develop a novel and potent fusion inhibitor of HIV infection based on a rational strategy for synthetic antibody library construction. DESIGN The reduced molecular weight of single-domain antibodies (sdAbs) allows targeting of cryptic epitopes, the most conserved and critical ones in the context of HIV entry. Heavy-chain sdAbs from camelids are particularly suited for this type of epitope recognition because of the presence of long and flexible antigen-binding regions [complementary-determining regions (CDRs)]. METHODS We translated camelid CDR features to a rabbit light-chain variable domain (VL) and constructed a library of minimal antibody fragments with elongated CDRs. Additionally to elongation, CDRs' variability was restricted to binding favorable amino acids to potentiate the selection of high-affinity sdAbs. The synthetic library was screened against a conserved, hidden, and crucial-to-fusion sequence on the heptad-repeat 1 (HR1) region of the HIV-1 envelope glycoprotein. RESULTS Two anti-HR1 VLs, named F63 and D104, strongly inhibited laboratory-adapted HIV-1 infectivity. F63 also inhibited infectivity of HIV-1 and HIV-2 primary isolates similarly to the Food and Drug Administration-approved fusion inhibitor T-20 and HIV-1 strains resistant to T-20. Moreover, epitope mapping of F63 revealed a novel target sequence within the highly conserved hydrophobic pocket of HR1. F63 was also capable of interacting with viral and cell lipid membrane models, a property previously associated with T-20's inhibitory mechanism. CONCLUSION In summary, to our best knowledge, we developed the first potent and broad VL sdAb fusion inhibitor of HIV infection. Our study also gives insights into engineering strategies that could be explored to enhance the development of antiviral drugs.
Collapse
|
14
|
Bihari Z, Vultos F, Fernandes C, Gano L, Santos I, Correia JDG, Buglyó P. Synthesis, characterization and biological evaluation of a (67)Ga-labeled (η(6)-Tyr)Ru(η(5)-Cp) peptide complex with the HAV motif. J Inorg Biochem 2016; 160:189-97. [PMID: 26907798 DOI: 10.1016/j.jinorgbio.2016.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/21/2016] [Accepted: 02/10/2016] [Indexed: 12/28/2022]
Abstract
Heterobimetallic complexes with the evolutionary, well-preserved, histidyl-alanyl-valinyl (HAV) sequence for cadherin targeting, an organometallic Ru core with anticancer activity and a radioactive moiety for imaging may hold potential as theranostic agents for cancer. Visible-light irradiation of the HAVAY-NH2 pentapeptide in the presence of [(η(5)-Cp)Ru(η(6)-naphthalene)](+) resulted in the formation of a full sandwich type complex, (η(6)-Tyr-RuCp)-HAVAY-NH2 in aqueous solution, where the metal ion is connected to the Tyr (Y) unit of the peptide. Conjugation of this complex to 2,2'-(7-(1-carboxy-4-((4-isothiocyanatobenzyl)amino)-4-oxobutyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (NODA-GA) and subsequent metalation of the resulting product with stable ((nat)Ga) and radioactive ((67)Ga) isotope yielded (nat)Ga/(67)Ga-NODA-GA-[(η(6)-Tyr-RuCp)-HAVAY-NH2]. The non-radioactive compounds were characterized by NMR spectroscopy and Mass Spectrometry. The cellular uptake and cytotoxicity of the radioactive and non-radioactive complexes, respectively, were evaluated in various human cancer cell lines characterized by different levels of N- or E-cadherins expression. Results from these studies indicate moderate cellular uptake of the radioactive complexes. However, the inhibition of the cell proliferation was not relevant.
Collapse
Affiliation(s)
- Zsolt Bihari
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O.Box 21, Hungary
| | - Filipe Vultos
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Célia Fernandes
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Isabel Santos
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O.Box 21, Hungary.
| |
Collapse
|
15
|
Rotman M, Welling MM, van den Boogaard ML, Moursel LG, van der Graaf LM, van Buchem MA, van der Maarel SM, van der Weerd L. Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake. Nucl Med Biol 2015; 42:695-702. [PMID: 25960433 DOI: 10.1016/j.nucmedbio.2015.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
|
16
|
Rotman M, Welling MM, Bunschoten A, de Backer ME, Rip J, Nabuurs RJ, Gaillard PJ, van Buchem MA, van der Maarel SM, van der Weerd L. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer's disease. J Control Release 2015; 203:40-50. [PMID: 25668771 DOI: 10.1016/j.jconrel.2015.02.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
|