2
|
Silva JC, Bavestrello M, Gazzola V, Spinella G, Pane B, Grasselli E, Demori I, Canesi L, Emionite L, Cilli M, Buschiazzo A, Sambuceti G, Pitta IR, Pitta MG, Perego P, Palombo D, Abdalla DSP. Ischemia-reperfusion damage is attenuated by GQ-11, a peroxisome proliferator-activated receptor (PPAR)-α/γ agonist, after aorta clamping in rats. Life Sci 2022; 297:120468. [DOI: 10.1016/j.lfs.2022.120468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
|
3
|
Iglesias J, Morales L, Barreto GE. Metabolic and Inflammatory Adaptation of Reactive Astrocytes: Role of PPARs. Mol Neurobiol 2016; 54:2518-2538. [PMID: 26984740 DOI: 10.1007/s12035-016-9833-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/04/2016] [Indexed: 01/10/2023]
Abstract
Astrocyte-mediated inflammation is associated with degenerative pathologies such as Alzheimer's and Parkinson's diseases and multiple sclerosis. The acute inflammation and morphological and metabolic changes that astrocytes develop after the insult are known as reactive astroglia or astrogliosis that is an important response to protect and repair the lesion. Astrocytes optimize their metabolism to produce lactate, glutamate, and ketone bodies in order to provide energy to the neurons that are deprived of nutrients upon insult. Firstly, we review the basis of inflammation and morphological changes of the different cell population implicated in reactive gliosis. Next, we discuss the more active metabolic pathways in healthy astrocytes and explain the metabolic response of astrocytes to the insult in different pathologies and which metabolic alterations generate complications in these diseases. We emphasize the role of peroxisome proliferator-activated receptors isotypes in the inflammatory and metabolic adaptation of astrogliosis developed in ischemia or neurodegenerative diseases. Based on results reported in astrocytes and other cells, we resume and hypothesize the effect of peroxisome proliferator-activated receptor (PPAR) activation with ligands on different metabolic pathways in order to supply energy to the neurons. The activation of selective PPAR isotype activity may serve as an input to better understand the role played by these receptors on the metabolic and inflammatory compensation of astrogliosis and might represent an opportunity to develop new therapeutic strategies against traumatic brain injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- José Iglesias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| | - Ludis Morales
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
- Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
4
|
Han YH, Kwon SY, Kim J, Na CJ, Choi S, Min JJ, Bom HS, Kim YC, Oh IJ, Chae HJ, Lim ST, Sohn MH, Jeong HJ. A phase II clinical trial to investigate the effect of pioglitazone on (18)F-FDG uptake in malignant lesions. EJNMMI Res 2015; 5:50. [PMID: 26408008 PMCID: PMC4583556 DOI: 10.1186/s13550-015-0128-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/13/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We found that (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) uptake in malignant lesion was enhanced, and it was decreased in the inflammatory lesion after the use of peroxisome proliferator activated receptor-γ (PPAR-γ) agonist in our previous preclinical study. The purpose of this study was to investigate the effect of PPAR-γ agonist on malignant lesions in clinical (18)F-FDG positron emission tomography/computed tomography (PET/CT) imaging. METHODS Forty-three patients were enrolled in this prospective study. We received the approval for the investigator-initiated trials for a phase II human clinical trial from the Korean Food and Drug Administration. On the first day, (18)F-FDG PET/CT images were acquired from patients without administration of pioglitazone (PIO), which is a PPAR-γ agonist. On the next day, (18)F-FDG PET/CT images were acquired once again from the same patients after administration of PIO. We measured the (18)F-FDG uptake in malignant lesions or inflammatory lesions from two (18)F-FDG PET/CT images. Four different PET parameters were used to compare between the two studies: SUVmax, SUVmean, average activity over 30 % of the isocontour (isocontour, Bq/mL), and isocontour-mediastinal activity (Bq/mL). Additionally, we classified the patients into two groups: the responder or non-responder group according to the presence of PIO effect on skeletal muscle. Furthermore, PET parameters of malignant lesions were analyzed based on the type of malignancy and were compared with those of inflammatory lesions. RESULTS All four PET parameters of malignant lesions in the responder group showed increasing patterns after the use of PIO. In the subgroup analysis, the similar pattern was observed in gastrointestinal cancer. In hepatobiliary and pancreatic cancer, SUVmean and isocontour showed statistically significant increase in the presence of PIO. On the other hand, in the non-responder group, all four PET parameters showed decreasing patterns in both malignant and inflammatory lesions after the use of PIO. There was no statistically significant difference in PET parameters of malignant lesions in the non-responder group. CONCLUSIONS In this study, we found that PIO had the potential to increase (18)F-FDG uptake of malignant lesions in the patients who showed PIO effect on skeletal muscle. Contrary to our preclinical studies, clinical results had limitations to evaluate malignant lesions in non-responder group. Further larger-scale studies are necessary to elucidate the potential role of PIO on (18)F-FDG uptake in malignant or inflammatory lesions. TRIAL REGISTRATION The test for safety and effectiveness of the new efficacy of Pioglitazone to diagnose the malignant tumor and inflammation in F-18 FDG positron emission tomography (PET) study, 12029.
Collapse
Affiliation(s)
- Yeon-Hee Han
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Cyclotron Research Center, Molecular Imaging and Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea.
| | - Seong Young Kwon
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeonnam, Republic of Korea.
| | - Jeonghun Kim
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Cyclotron Research Center, Molecular Imaging and Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea.
| | - Chang Ju Na
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Cyclotron Research Center, Molecular Imaging and Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea.
| | - Sehun Choi
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Cyclotron Research Center, Molecular Imaging and Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea.
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeonnam, Republic of Korea.
| | - Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeonnam, Republic of Korea.
| | - Young-Chul Kim
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeonnam, Republic of Korea.
| | - In-Jae Oh
- Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeonnam, Republic of Korea.
| | - Han-Jung Chae
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea.
| | - Seok Tae Lim
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Cyclotron Research Center, Molecular Imaging and Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea.
| | - Myung-Hee Sohn
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Cyclotron Research Center, Molecular Imaging and Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea.
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Cyclotron Research Center, Molecular Imaging and Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea.
| |
Collapse
|