1
|
Wang R, Wolterbeek HT, Denkova AG. Lead-212/Bismuth-212 In Vivo Generator Based on Ultrasmall Silver Telluride Nanoparticles. J Labelled Comp Radiopharm 2024. [PMID: 39147601 DOI: 10.1002/jlcr.4121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Radionuclide therapy employing alpha emitters holds great potential for personalized cancer treatment. However, certain challenges remain when designing alpha radiopharmaceuticals, including the lack of stability of used radioconjugates due to nuclear decay events. In this work, ultrasmall silver telluride nanoparticles with a core diameter of 2.1 nm were prepared and radiolabeled with lead-212 using a chelator-free method with a radiolabeling efficiency of 75%. The results from the in vitro radiochemical stability assay indicated a very high retention of bismuth-212 despite the internal conversion effects originating from the decay of 212Pb. To further evaluate the potential of the nanoparticles, they were radiolabeled with indium-111, and their cell uptake and subcellular distribution were determined in 2D U87 cells, showing accumulation in the nucleus. Although not intentional, it was observed that the indium-111-radiolabeled nanoparticles induced efficient tumor cell killing, which was attributed to the Auger electrons emitted by indium-111. Combining the results obtained in this work with other favorable properties such as fast renal clearance and the possibility to attach targeting vectors on the surface of the nanoparticles, all well-known from the literature, these ultra-small silver telluride nanoparticles provide exciting opportunities for the design of theragnostic radiopharmaceuticals.
Collapse
Affiliation(s)
- Runze Wang
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Hubert Th Wolterbeek
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Antonia G Denkova
- Applied Radiation and Isotopes, Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
2
|
Metebi A, Kauffman N, Xu L, Singh SK, Nayback C, Fan J, Johnson N, Diemer J, Grimm T, Zamiara M, Zinn KR. Pb-214/Bi-214-TCMC-Trastuzumab inhibited growth of ovarian cancer in preclinical mouse models. Front Chem 2024; 11:1322773. [PMID: 38333550 PMCID: PMC10850308 DOI: 10.3389/fchem.2023.1322773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024] Open
Abstract
Introduction: Better treatments for ovarian cancer are needed to eliminate residual peritoneal disease after initial debulking surgery. The present study evaluated Trastuzumab to deliver Pb-214/Bi-214 for targeted alpha therapy (TAT) for HER2-positive ovarian cancer in mouse models of residual disease. This study is the first report of TAT using a novel Radon-222 generator to produce short-lived Lead-214 (Pb-214, t1/2 = 26.8 min) in equilibrium with its daughter Bismuth-214 (Bi-214, t1/2 = 19.7 min); referred to as Pb-214/Bi-214. In this study, Pb-214/Bi-214-TCMC-Trastuzumab was tested. Methods: Trastuzumab and control IgG antibody were conjugated with TCMC chelator and radiolabeled with Pb-214/Bi-214 to yield Pb-214/Bi-214-TCMC-Trastuzumab and Pb-214/Bi-214-TCMC-IgG1. The decay of Pb-214/Bi-214 yielded α-particles for TAT. SKOV3 and OVAR3 human ovarian cancer cell lines were tested for HER2 levels. The effects of Pb-214/Bi-214-TCMC-Trastuzumab and appropriate controls were compared using clonogenic assays and in mice bearing peritoneal SKOV3 or OVCAR3 tumors. Mice control groups included untreated, Pb-214/Bi-214-TCMC-IgG1, and Trastuzumab only. Results and discussion: SKOV3 cells had 590,000 ± 5,500 HER2 receptors/cell compared with OVCAR3 cells at 7,900 ± 770. In vitro clonogenic assays with SKOV3 cells showed significantly reduced colony formation after Pb-214/Bi-214-TCMC-Trastuzumab treatment compared with controls. Nude mice bearing luciferase-positive SKOV3 or OVCAR3 tumors were treated with Pb-214/Bi-214-TCMC-Trastuzumab or appropriate controls. Two 0.74 MBq doses of Pb-214/Bi-214-TCMC-Trastuzumab significantly suppressed the growth of SKOV3 tumors for 60 days, without toxicity, compared with three control groups (untreated, Pb-214/Bi-214-TCMC-IgG1, or Trastuzumab only). Mice-bearing OVCAR3 tumors had effective therapy without toxicity with two 0.74 MBq doses of Pb-214/Bi-214-TCMC-trastuzumab or Pb-214/Bi-214-TCMC-IgG1. Together, these data indicated that Pb-214/Bi-214 from a Rn-222 generator system was successfully applied for TAT. Pb-214/Bi-214-TCMC-Trastuzumab was effective to treat mouse xenograft models. Advantages of Pb-214/Bi-214 from the novel generator systems include high purity, short half-life for fractioned therapy, and hourly availability from the Rn-222 generator system. This platform technology can be applied for a variety of cancer treatment strategies.
Collapse
Affiliation(s)
- Abdullah Metebi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
- Radiological Sciences Department, Taif University, Taif, Saudi Arabia
| | - Nathan Kauffman
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Lu Xu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Satyendra Kumar Singh
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Chelsea Nayback
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Jinda Fan
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Radiology, Michigan State University, East Lansing, MI, United States
| | | | | | | | | | - Kurt R. Zinn
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
- Radiology, Michigan State University, East Lansing, MI, United States
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Kvassheim M, Tornes AJK, Juzeniene A, Stokke C, Revheim MER. Imaging of 212Pb in mice with a clinical SPECT/CT. EJNMMI Phys 2023; 10:47. [PMID: 37603123 PMCID: PMC10442031 DOI: 10.1186/s40658-023-00571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
INTRODUCTION 212Pb is a promising radionuclide for targeted alpha therapy. Here, the feasibility of visualising the tumour uptake and biodistribution of 212Pb-NG001 in mice with a clinical SPECT/CT scanner was investigated. METHODS A mouse phantom with 212Pb was imaged with a clinical- and a preclinical SPECT/CT scanner. Different acquisition and reconstruction settings were investigated on the clinical system (Siemens Symbia Intevo Bold). Two athymic nude mice carrying PC-3 PIP prostate cancer tumours of 235-830 μl received 1.44 MBq of 212Pb-NG001 and were imaged 2, 6, and 24 h post-injection on the clinical SPECT/CT with a Medium Energy collimator and a 40% energy window centred on 79 keV. All acquisition times were 30 min, except the mouse imaging 24 h post-injection which was 60 min. After the final imaging, the organs were harvested and measured on a gamma counter to give an indication of how much activity was present in organs of interest at the last imaging time point. RESULTS Four volumes in the mouse phantom of ~ 300 μl with 246-303 kBq/ml of 212Pb were distinguishable on images acquired with the clinical SPECT/CT with a high number of reconstruction updates. With the preclinical SPECT, the same volumes were easily distinguished with 49 kBq/ml of 212Pb. Clinical SPECT/CT images of the mice revealed uptake in tumours and bladders 2 h after injection and in tumours containing down to approximately 15 kBq/ml at 6 and 24 h after injection. CONCLUSION Although the preclinical scanner should be used preferentially in biodistribution studies in mice, the clinical SPECT/CT confirmed uptake in small volumes (e.g. ~ 300 μl volume with ~ 250 kBq/ml). Regardless of system, the resolution and sensitivity limits should be carefully determined, otherwise false negative or too low uptakes can be wrongly interpreted.
Collapse
Affiliation(s)
- Monika Kvassheim
- Division of Radiology and Nuclear Medicine, Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Anna Julie Kjøl Tornes
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- ARTBIO AS, Oslo, Norway
| | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Caroline Stokke
- Division of Radiology and Nuclear Medicine, Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Mona-Elisabeth R Revheim
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Larsen SG, Graf W, Mariathasan AB, Sørensen O, Spasojevic M, Goscinski MA, Selboe S, Lundstrøm N, Holtermann A, Revheim ME, Bruland ØS. First experience with 224Radium-labeled microparticles (Radspherin®) after CRS-HIPEC for peritoneal metastasis in colorectal cancer (a phase 1 study). Front Med (Lausanne) 2023; 10:1070362. [PMID: 36936230 PMCID: PMC10016379 DOI: 10.3389/fmed.2023.1070362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/23/2023] [Indexed: 03/05/2023] Open
Abstract
Background Peritoneal metastasis (PM) from colorectal cancer carries a dismal prognosis despite extensive cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC). With a median time to recurrence of 11-12 months, there is a need for novel therapies. Radspherin® consists of the α-emitting radionuclide radium-224 (224Ra), which has a half-life of 3.6 days and is adsorbed to a suspension of biodegradable calcium carbonate microparticles that are designed to give short-range radiation to the serosal peritoneal surface linings, killing free-floating and/or tumor cell clusters that remain after CRS-HIPEC. Methods A first-in-human phase 1 study (EudraCT 2018-002803-33) was conducted at two specialized CRS-HIPEC centers. Radspherin® was administered intraperitoneally 2 days after CRS-HIPEC. Dose escalation at increasing activity dose levels of 1-2-4-7-MBq, a split-dose repeated injection, and expansion cohorts were used to evaluate the safety and tolerability of Radspherin®. The aim was to explore the recommended dose and biodistribution using gamma-camera imaging. The results from the planned safety interim analysis after the completion of the dose-limiting toxicity (DLT) period of 30 days are presented. Results Twenty-three patients were enrolled: 14 in the dose escalation cohort, three in the repeated cohort, and six in the expansion cohort. Of the 23 enrolled patients, seven were men and 16 were women with a median age of 64 years (28-78). Twelve patients had synchronous PM stage IV and 11 patients had metachronous PM [primary stage II; (6) and stage III; (5)], with a disease-free interval of 15 months (3-30). The peritoneal cancer index was median 7 (3-19), operation time was 395 min (194-515), and hospital stay was 12 days (7-37). A total of 68 grade 2 adverse events were reported for 17 patients during the first 30 days; most were considered related to CRS and/or HIPEC. Only six of the TEAEs were evaluated as related to Radspherin®. One TEAE, anastomotic leakage, was reported as grade 3. Accordion ≥3 grade events occurred in a total of four of the 23 patients: reoperation due to anastomotic leaks (two) and drained abscesses (two). No DLT was documented at the 7 MBq dose level that was then defined as the recommended dose. The biodistribution of Radspherin® showed a relatively even peritoneal distribution. Conclusion All dose levels of Radspherin® were well tolerated, and DLT was not reached. No deaths occurred, and no serious adverse events were considered related to Radspherin®.Clinical Trial Registration: Clinicaltrials.gov, NCT03732781.
Collapse
Affiliation(s)
- Stein Gunnar Larsen
- Department of Gastroenterological Surgery, Section for Surgical Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- *Correspondence: Stein Gunnar Larsen,
| | - Wilhelm Graf
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Uppsala Academic Hospital, Uppsala, Sweden
| | - Anthony Burton Mariathasan
- Department of Gastroenterological Surgery, Section for Surgical Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Olaf Sørensen
- Department of Gastroenterological Surgery, Section for Surgical Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Milan Spasojevic
- Department of Gastroenterological Surgery, Section for Surgical Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Mariusz Adam Goscinski
- Department of Gastroenterological Surgery, Section for Surgical Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Silje Selboe
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Nadja Lundstrøm
- Uppsala Academic Hospital, Uppsala, Sweden
- Department of Nuclear Medicine, Uppsala, Sweden
| | - Anne Holtermann
- Department of Gastroenterological Surgery, Section for Surgical Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind Sverre Bruland
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Oncoinvent AS, Oslo, Norway
| |
Collapse
|
5
|
Kvassheim M, Revheim MER, Stokke C. Quantitative SPECT/CT imaging of lead-212: a phantom study. EJNMMI Phys 2022; 9:52. [PMID: 35925521 PMCID: PMC9352840 DOI: 10.1186/s40658-022-00481-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Background Lead-212 (212Pb) is a promising radionuclide for targeted therapy, as it decays to α-particle emitter bismuth-212 (212Bi) via β-particle emission. This extends the problematic short half-life of 212Bi. In preparation for upcoming clinical trials with 212Pb, the feasibility of quantitative single photon-emission computed tomography/computed tomography (SPECT/CT) imaging of 212Pb was studied, with the purpose to explore the possibility of individualised patient dosimetric estimation. Results Both acquisition parameters (combining two different energy windows and two different collimators) and iterative reconstruction parameters (varying the iterations x subsets between 10 × 1, 15 × 1, 30 × 1, 30 × 2, 30 × 3, 30 × 4, and 30 × 30) were investigated to evaluate visual quality and quantitative uncertainties based on phantom images. Calibration factors were determined using a homogeneous phantom and were stable when the total activity imaged exceeded 1 MBq for all the imaging protocols studied, but they increased sharply as the activity decayed below 1 MBq. Both a 20% window centred on 239 keV and a 40% window on 79 keV, with dual scatter windows of 5% and 20%, respectively, could be used. Visual quality at the lowest activity concentrations was improved with the High Energy collimator and the 79 keV energy window. Fractional uncertainty in the activity quantitation, including uncertainties from calibration factors and small volume effects, in spheres of 2.6 ml in the NEMA phantom was 16–21% for all protocols with the 30 × 4 filtered reconstruction except the High Energy collimator with the 239 keV energy window. Quantitative analysis was possible both with and without filters, but the visual quality of the images improved with a filter. Conclusions Only minor differences were observed between the imaging protocols which were all determined suitable for quantitative imaging of 212Pb. As uncertainties generally decreased with increasing iterative updates in the reconstruction and recovery curves did not converge with few iterations, a high number of reconstruction updates are recommended for quantitative imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00481-z.
Collapse
Affiliation(s)
- Monika Kvassheim
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Mona-Elisabeth R Revheim
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Caroline Stokke
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Kokov KV, Egorova BV, German MN, Klabukov ID, Krasheninnikov ME, Larkin-Kondrov AA, Makoveeva KA, Ovchinnikov MV, Sidorova MV, Chuvilin DY. 212Pb: Production Approaches and Targeted Therapy Applications. Pharmaceutics 2022; 14:pharmaceutics14010189. [PMID: 35057083 PMCID: PMC8777968 DOI: 10.3390/pharmaceutics14010189] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Over the last decade, targeted alpha therapy has demonstrated its high effectiveness in treating various oncological diseases. Lead-212, with a convenient half-life of 10.64 h, and daughter alpha-emitter short-lived 212Bi (T1/2 = 1 h), provides the possibility for the synthesis and purification of complex radiopharmaceuticals with minimum loss of radioactivity during preparation. As a benefit for clinical implementation, it can be milked from a radionuclide generator in different ways. The main approaches applied for these purposes are considered and described in this review, including chromatographic, solution, and other techniques to isolate 212Pb from its parent radionuclide. Furthermore, molecules used for lead’s binding and radiochemical features of preparation and stability of compounds labeled with 212Pb are discussed. The results of preclinical studies with an estimation of therapeutic and tolerant doses as well as recently initiated clinical trials of targeted radiopharmaceuticals are presented.
Collapse
Affiliation(s)
- Konstantin V. Kokov
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Bayirta V. Egorova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: or
| | - Marina N. German
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Ilya D. Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Center, 249036 Obninsk, Russia;
| | - Michael E. Krasheninnikov
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Antonius A. Larkin-Kondrov
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Kseniya A. Makoveeva
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Michael V. Ovchinnikov
- Laboratory of Peptide Synthesis, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (M.V.O.); (M.V.S.)
| | - Maria V. Sidorova
- Laboratory of Peptide Synthesis, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (M.V.O.); (M.V.S.)
| | - Dmitry Y. Chuvilin
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| |
Collapse
|
7
|
Xie T, Park JS, Zhuo W, Zaidi H. Development of a nonhuman primate computational phantom for radiation dosimetry. Med Phys 2019; 47:736-744. [DOI: 10.1002/mp.13936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 01/27/2023] Open
Affiliation(s)
- Tianwu Xie
- Institute of Radiation Medicine Fudan University 2094 Xietu Road Shanghai 200032China
- Department of Medical Imaging and Information Sciences Geneva University Hospital Geneva Switzerland
| | - Jin Seo Park
- Department of Anatomy Dongguk University School of Medicine Gyeongju Korea
| | - Weihai Zhuo
- Institute of Radiation Medicine Fudan University 2094 Xietu Road Shanghai 200032China
| | - Habib Zaidi
- Department of Medical Imaging and Information Sciences Geneva University Hospital Geneva Switzerland
- Geneva Neuroscience Center Geneva University Geneva Switzerland
- Department of Nuclear Medicine and Molecular Imaging University of Groningen University Medical Center Groningen Groningen Netherlands
- Department of Nuclear Medicine University of Southern Denmark DK‐500Odense Denmark
| |
Collapse
|
8
|
Safety and Outcome Measures of First-in-Human Intraperitoneal α Radioimmunotherapy With 212Pb-TCMC-Trastuzumab. Am J Clin Oncol 2019; 41:716-721. [PMID: 27906723 PMCID: PMC5449266 DOI: 10.1097/coc.0000000000000353] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE One-year monitoring of patients receiving intraperitoneal (IP) Pb-TCMC-trastuzumab to provide long-term safety and outcome data. A secondary objective was to study 7 tumor markers for correlation with outcome. METHODS Eighteen patients with relapsed intra-abdominal human epidermal growth factor receptor-2 expressing peritoneal metastases were treated with a single IP infusion of Pb-TCMC-trastuzumab, delivered <4 h after 4 mg/kg IV trastuzumab. Seven tumor markers were studied for correlation with outcome. RESULTS Six dose levels (7.4, 9.6, 12.6, 16.3, 21.1, 27.4 MBq/m) were well tolerated with early possibly agent-related adverse events being mild, transient, and not dose dependent. These included asymptomatic, abnormal laboratory values. No late renal, liver, cardiac, or other toxicity was noted up to 1 year. There were no clinical signs or symptoms of an immune response to Pb-TCMC-trastuzumab, and assays to detect an immune response to this conjugate were negative for all tested. Tumor marker studies in ovarian cancer patients showed a trend of decreasing Cancer antigen 72-4 (CA 72-4) aka tumor-associated glycoprotein 72 (TAG-72) and tumor growth with increasing administered radioactivity. Other tumor markers, including carbohydrate antigen (CA125), human epididymis protein 4 (HE-4), serum amyloid A (SAA), mesothelin, interleukin-6 (IL-6), and carcinoembryonic antigen (CEA) did not correlate with imaging outcome. CONCLUSIONS IP Pb-TCMC-trastuzumab up to 27 MBq/m seems safe for patients with peritoneal carcinomatosis who have failed standard therapies. Serum TAG-72 levels better correlated to imaging changes in ovarian cancer patients than the more common tumor marker, CA125.
Collapse
|
9
|
Abstract
Radiometals possess an exceptional breadth of decay properties and have been applied to medicine with great success for several decades. The majority of current clinical use involves diagnostic procedures, which use either positron-emission tomography (PET) or single-photon imaging to detect anatomic abnormalities that are difficult to visualize using conventional imaging techniques (e.g., MRI and X-ray). The potential of therapeutic radiometals has more recently been realized and relies on ionizing radiation to induce irreversible DNA damage, resulting in cell death. In both cases, radiopharmaceutical development has been largely geared toward the field of oncology; thus, selective tumor targeting is often essential for efficacious drug use. To this end, the rational design of four-component radiopharmaceuticals has become popularized. This Review introduces fundamental concepts of drug design and applications, with particular emphasis on bifunctional chelators (BFCs), which ensure secure consolidation of the radiometal and targeting vector and are integral for optimal drug performance. Also presented are detailed accounts of production, chelation chemistry, and biological use of selected main group and rare earth radiometals.
Collapse
Affiliation(s)
- Thomas I Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
10
|
Kasten BB, Gangrade A, Kim H, Fan J, Ferrone S, Ferrone CR, Zinn KR, Buchsbaum DJ. 212Pb-labeled B7-H3-targeting antibody for pancreatic cancer therapy in mouse models. Nucl Med Biol 2017; 58:67-73. [PMID: 29413459 DOI: 10.1016/j.nucmedbio.2017.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
Abstract
INTRODUCTION We recently validated monoclonal antibody (mAb) 376.96 as an effective carrier for targeted α-particle radioimmunotherapy (RIT) with 212Pb in ovarian cancer mouse models. In this study, we tested the binding of radiolabeled mAb 376.96 to human pancreatic ductal adenocarcinoma (PDAC) cells and localization in xenografts in immune-deficient mice and evaluated 212Pb-labeled 376.96 (212Pb-376.96) for PDAC therapy. METHODS In vitro Scatchard assays assessed the specific binding of 212Pb-376.96 to human PDAC3 adherent differentiated cells and non-adherent cancer initiating cells (CICs) dissociated from tumorspheres. In vitro clonogenic assays were used to measure the proliferation of adherent PDAC3 cells and CIC-enriched tumorspheres treated with 212Pb-376.96 or the irrelevant isotype-matched 212Pb-F3-C25. Mice bearing patient derived pancreatic cancer Panc039 xenografts were i.v. injected with 0.17-0.70 MBq 212Pb-376.96 or isotype control 212Pb-F3-C25, and used for biodistribution and tumor growth inhibition studies. Mice bearing orthotopic PDAC3 xenografts were i.v. co-injected with 99mTc-376.96 and 125I-F3-C25 and used for biodistribution studies. RESULTS 212Pb-376.96 specifically bound to PDAC3 adherent and dissociated tumorsphere CICs; Kd values averaged 9.0 and 21.7 nM, respectively, with 104-105 binding sites/cell. 212Pb-376.96 inhibited the clonogenic survival of PDAC3 cells or CICs dissociated from tumorspheres 3-6 times more effectively than isotype-matched control 212Pb-F3-C25. Panc039 s.c. tumors showed significantly higher uptake of 212Pb-376.96 (14.0 ± 2.1% ID/g) compared to 212Pb-F3-C25 (6.5 ± 0.9% ID/g, p < .001) at 24 h after dosing. Orthotopic PDAC3 tumors showed significantly higher uptake of 99mTc-376.96 (6.4 ± 1.8% ID/g) compared to 125I-F3-C25 (3.9 ± 0.9% ID/g, p < .05) at 24 h after dosing. Panc039 tumor growth was significantly inhibited by 212Pb-376.96 compared to 212Pb-F3-C25 or non-treated control tumors (p < .05). CONCLUSION Our results provide evidence for the efficacy of B7-H3 targeted RIT against preclinical models of pancreatic ductal adenocarcinoma (PDAC) and support future studies with 212Pb-376.96 in combination with chemotherapy to potentiate efficacy against PDAC.
Collapse
Affiliation(s)
- Benjamin B Kasten
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Abhishek Gangrade
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jinda Fan
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kurt R Zinn
- Institute for Quantitative Health Science and Engineering, Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Milenic DE, Baidoo KE, Kim YS, Barkley R, Brechbiel MW. Comparative studies on the therapeutic benefit of targeted α-particle radiation therapy for the treatment of disseminated intraperitoneal disease. Dalton Trans 2017; 46:14591-14601. [PMID: 28675216 PMCID: PMC5664163 DOI: 10.1039/c7dt01819c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Identification of the appropriate combination of radionuclide, target and targeting vehicle is critical for successful radioimmunotherapy. For the treatment of disseminated peritoneal diseases such as pancreatic or ovarian cancer, α-emitting radionuclides have been proposed for targeted radiation therapy. This laboratory has taken a systematic approach investigating targeted α-radiation therapy, allowing comparisons to now be made between 211At, 227Th, 213Bi and 212Pb. Herein, trastuzumab radiolabeled with 211At and 227Th was evaluated for therapeutic efficacy in the LS-174T i.p. tumor model. A dose escalation study was conducted with each radioimmunoconjugate (RIC). Therapeutic benefit was realized with 211At-trastuzumab with doses of 20, 30 and 40 μCi. At doses >40 μCi, toxicity was observed with greater weight loss and 2-fold higher decrease in the platelet counts. Following a second study comparing the effect of 20, 30 and 40 μCi of 211At-trastuzumab, 30 μCi was selected as the dose for future studies. A parallel study was performed evaluating 0.25, 0.5, 1.0, 2.0 and 5.0 μCi of 227Th-trastuzumab. The 0.5 and 1.0 μCi injected dose resulted in a therapeutic response; a lower degree of weight loss was experienced by the mice in the 0.5 μCi cohort. When the data is normalized for comparing 211At, 227Th, 213Bi and 212Pb, the choice of radionuclide for RIT is perhaps not entirely based on simple therapeutic efficacy, other factors may play a role in choosing the "right" radionuclide.
Collapse
Affiliation(s)
- Diane E Milenic
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD, USA.
| | | | | | | | | |
Collapse
|
12
|
Targeted α-Particle Radiation Therapy of HER1-Positive Disseminated Intraperitoneal Disease: An Investigation of the Human Anti-EGFR Monoclonal Antibody, Panitumumab. Transl Oncol 2017; 10:535-545. [PMID: 28577439 PMCID: PMC5458064 DOI: 10.1016/j.tranon.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 11/29/2022] Open
Abstract
Identifying molecular targets and an appropriate targeting vehicle, i.e., monoclonal antibodies (mAb) and their various forms, for radioimmunotherapy (RIT) remains an active area of research. Panitumumab, a fully human and less immunogenic mAb that binds to the epidermal growth factor receptor (Erb1; HER1), was evaluated for targeted α-particle radiation therapy using 212Pb, an in vivo α generator. A single dose of 212Pb-panitumumab administered to athymic mice bearing LS-174T intraperitoneal (i.p.) tumor xenografts was found to have greater therapeutic efficacy when directly compared with 212Pb-trastuzumab, which binds to HER2. A dose escalation study determined a maximum effective working dose of 212Pb-panitumumab to be 20 μCi with a median survival of 35 days versus 25 days for the untreated controls. Pretreatment of tumor-bearing mice with paclitaxel and gemcitabine 24 hours prior to injection of 212Pb-pantiumumab at 10 or 20 μCi resulted in the greatest enhanced therapeutic response at the higher dose with median survivals of 106 versus 192 days, respectively. The greatest therapeutic impact, however, was observed in the animals that were treated with topotecan 24 hours prior to RIT and then again 24 hours after RIT; the best response from this combination was also obtained with the lower 10-μCi dose of 212Pb-panitumumab (median survival >280 days). In summary, 212Pb-panitumumab is an excellent candidate for the treatment of HER1-positive disseminated i.p. disease. Furthermore, the potentiation of the therapeutic impact of 212Pb-pantiumumab by chemotherapeutics confirms and validates the importance of developing a multimodal therapy regimen.
Collapse
|
13
|
Westrøm S, Generalov R, Bønsdorff TB, Larsen RH. Preparation of 212Pb-labeled monoclonal antibody using a novel 224Ra-based generator solution. Nucl Med Biol 2017; 51:1-9. [PMID: 28486098 DOI: 10.1016/j.nucmedbio.2017.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/06/2017] [Accepted: 04/15/2017] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Alpha-emitting radionuclides have gained considerable attention as payloads for cancer targeting molecules due to their high cytotoxicity. One attractive radionuclide for this purpose is 212Pb, which by itself is a β-emitter, but acts as an in vivo generator for its short-lived α-emitting daughters. The standard method of preparing 212Pb-labeled antibodies requires handling and evaporation of strong acids containing high radioactivity levels by the end user. An operationally easier and more rapid process could be useful since the 10.6h half-life of 212Pb puts time constraints on the preparation protocol. In this study, an in situ procedure for antibody labeling with 212Pb, using a solution of the generator nuclide 224Ra, is proposed as an alternative protocol for preparing 212Pb-radioimmunoconjugates. METHODS Radium-224, the generator radionuclide of 212Pb, was extracted from its parent nuclide, 228Th. Lead-212-labeling of the TCMC-chelator conjugated monoclonal antibody trastuzumab was carried out in a solution containing 224Ra in equilibrium with progeny. Subsequently, the efficiency of separating the 212Pb-radioimmunoconjugate from 224Ra and other unconjugated daughter nuclides in the solution using either centrifugal separation or a PD-10 desalting size exclusion column was evaluated and compared. RESULTS Radiolabeling with 212Pb in 224Ra-solutions was more than 90% efficient after only 30min reaction time at TCMC-trastuzumab concentrations from 0.15mg/mL and higher. Separation of 212Pb-labeled trastuzumab from 224Ra using a PD-10 column was clearly superior to centrifugal separation. This method allowed recovery of approximately 75% of the 212Pb-antibody-conjugate in the eluate, and the remaining amount of 224Ra was only 0.9±0.8% (n=7). CONCLUSIONS The current work demonstrates a novel method of producing 212Pb-based radioimmunoconjugates from a 224Ra-solution, which may be simpler and less time-consuming for the end user compared with the method established for use in clinical trials of 212Pb-TCMC-trastuzumab.
Collapse
Affiliation(s)
- Sara Westrøm
- Oncoinvent AS, Oslo, Norway; Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Roy H Larsen
- Oncoinvent AS, Oslo, Norway; Sciencons AS, Oslo, Norway.
| |
Collapse
|
14
|
Kasten BB, Arend RC, Katre AA, Kim H, Fan J, Ferrone S, Zinn KR, Buchsbaum DJ. B7-H3-targeted 212Pb radioimmunotherapy of ovarian cancer in preclinical models. Nucl Med Biol 2017; 47:23-30. [PMID: 28104527 DOI: 10.1016/j.nucmedbio.2017.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Novel therapies that effectively kill both differentiated cancer cells and cancer initiating cells (CICs), which are implicated in causing chemotherapy-resistance and disease recurrence, are needed to reduce the morbidity and mortality of ovarian cancer. These studies used monoclonal antibody (mAb) 376.96, which recognizes a B7-H3 epitope expressed on ovarian cancer cells and CICs, as a carrier molecule for targeted α-particle radioimmunotherapy (RIT) in preclinical models of human ovarian cancer. METHODS mAb 376.96 was conjugated to the chelate 2-(4-isothiocyanotobenzyl)-1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamoylmethyl)-cyclododecane (TCMC) and radiolabeled with 212Pb, a source of α-particles. In vitro Scatchard assays determined the specific binding of 212Pb-376.96 to adherent differentiated or non-adherent CIC-enriched ES-2 and A2780cp20 ovarian cancer cells. Adherent ovarian cancer cells and non-adherent CIC-enriched tumorspheres treated in vitro with 212Pb-376.96 or the irrelevant isotype-matched 212Pb-F3-C25 were assessed for clonogenic survival. Mice bearing i.p. ES-2 or A2780cp20 xenografts were injected i.p. with 0.17-0.70MBq 212Pb-376.96 or 212Pb-F3-C25 and were used for in vivo imaging, ex vivo biodistribution, and therapeutic survival studies. RESULTS 212Pb-376.96 was obtained in high yield and purity (>98%); Kd values ranged from 10.6-26.6nM for ovarian cancer cells, with 104-105 binding sites/cell. 212Pb-376.96 inhibited the clonogenic survival of ovarian cancer cells up to 40 times more effectively than isotype-matched control 212Pb-F3-C25; combining 212Pb-376.96 with carboplatin significantly decreased clonogenic survival compared to either agent alone. In vivo imaging and biodistribution analysis 24h after i.p. injection of 212Pb-376.96 showed high peritoneal retention and tumor tissue accumulation (28.7% ID/g in ES-2 ascites, 73.1% ID/g in A2780cp20 tumors); normal tissues showed lower and comparable uptake for 212Pb-376.96 and 212Pb-F3-C25. Tumor-bearing mice treated with 212Pb-376.96 alone or combined with carboplatin survived 2-3 times longer than mice treated with 212Pb-F3-C25 or non-treated controls. CONCLUSION These results support additional RIT studies with 212Pb-376.96 for future evaluation in patients with ovarian cancer.
Collapse
Affiliation(s)
- Benjamin B Kasten
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL.
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL
| | - Ashwini A Katre
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Jinda Fan
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kurt R Zinn
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
15
|
Wood V, Ackerman NL. Cherenkov light production from the α-emitting decay chains of 223Ra, 212Pb, and 149Tb for Cherenkov Luminescence Imaging. Appl Radiat Isot 2016; 118:354-360. [PMID: 27771446 DOI: 10.1016/j.apradiso.2016.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/24/2016] [Accepted: 10/11/2016] [Indexed: 01/12/2023]
Abstract
Cherenkov Luminescence Imaging (CLI) is a new method to image radioactive therapeutic and diagnostic agents, primarily in preclinical studies. This study used Geant4 and Python to generate the predicted Cherenkov light production as a function of time for a set of isotopic chains of interest for targeted alpha therapy: 223Ra, 212Pb, and 149Tb. All are shown to produce substantial Cherenkov light, though time delays between initial decays and the production of Cherenkov light requires caution in interpreting CLI.
Collapse
Affiliation(s)
- V Wood
- Department of Physics and Astronomy, Agnes Scott College, 141 E College Ave, Decatur, GA, 30030 United States
| | - N L Ackerman
- Department of Physics and Astronomy, Agnes Scott College, 141 E College Ave, Decatur, GA, 30030 United States.
| |
Collapse
|