1
|
Ding J, Qin S, Hou X, Zhang J, Yang M, Ma S, Zhu H, Feng Y, Yu F. Recent advances in emerging radiopharmaceuticals and the challenges in radiochemistry and analytical chemistry. Trends Analyt Chem 2025; 182:118053. [DOI: 10.1016/j.trac.2024.118053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Mikhail MAG, Kin T, Eto T, Tsukada K. Improved extraction efficiency of radioactive copper produced via accelerator neutrons method through phosphate buffer-enhanced column pre-treatment. Sci Rep 2024; 14:27132. [PMID: 39511320 PMCID: PMC11543818 DOI: 10.1038/s41598-024-76660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
We report a straightforward and robust method for isolating medical copper radioisotopes 64Cu and 67Cu, generated by an accelerator neutrons technique from natZn(n, x). This study reveals the key role of a phosphate buffer pre-treatment of the cation exchange column in the separation process. Incorporating the phosphate buffer into the column pre-treatment markedly enhances the retention of copper isotopes within the column throughout the separation procedure. This approach yields a remarkably high-purity radioactive copper sample with a high extraction efficiency of 94.4 (1.5) % of the initially produced copper, all within a relatively short experimental timeframe of approximately 5 h for 100 g of starting material. This single-step separation scheme is reproducible across a range of starting material target sizes, from small (10 g) to large (100 g). The copper radioisotopes obtained are suitable for use in pre-clinical studies. Thus, this approach offers a more effective means for routine preparation of copper radioisotopes.
Collapse
Affiliation(s)
- Mary Alfonse George Mikhail
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga Koen, Kasuga, 816-8580, Fukuoka, Japan.
| | - Tadahiro Kin
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga Koen, Kasuga, 816-8580, Fukuoka, Japan
| | - Taisei Eto
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga Koen, Kasuga, 816-8580, Fukuoka, Japan
| | - Kazuaki Tsukada
- Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki, 319-1195, Japan
| |
Collapse
|
3
|
Shinada M, Suzuki H, Hanyu M, Igarashi C, Matsumoto H, Takahashi M, Hihara F, Tachibana T, Sogawa C, Zhang MR, Higashi T, Sato H, Kurihara H, Yoshii Y, Doi Y. Trace Metal Impurities Effects on the Formation of [ 64Cu]Cu-diacetyl-bis( N4-methylthiosemicarbazone) ([ 64Cu]Cu-ATSM). Pharmaceuticals (Basel) 2023; 17:10. [PMID: 38275997 PMCID: PMC10821298 DOI: 10.3390/ph17010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
[64Cu]Cu-diacetyl-bis(N4-methylthiosemicarbazone) ([64Cu]Cu-ATSM) is a radioactive hypoxia-targeting therapeutic agent being investigated in clinical trials for malignant brain tumors. For the quality management of [64Cu]Cu-ATSM, understanding trace metal impurities' effects on the chelate formation of 64Cu and ATSM is important. In this study, we conducted coordination chemistry studies on metal-ATSM complexes. First, the effects of nonradioactive metal ions (Cu2+, Ni2+, Zn2+, and Fe2+) on the formation of [64Cu]Cu-ATSM were evaluated. When the amount of Cu2+ or Ni2+ added was 1.2 mol or 288 mol, equivalent to ATSM, the labeling yield of [64Cu]Cu-ATSM fell below 90%. Little effect was observed even when excess amounts of Zn2+ or Fe2+ were added to the ATSM. Second, these metals were reacted with ATSM, and chelate formation was measured using ultraviolet-visible (UV-Vis) absorption spectra. UV-Vis spectra showed a rapid formation of Cu2+ and the ATSM complex upon mixing. The rate of chelate formation by Ni2+ and ATSM was lower than that by Cu-ATSM. Zn2+ and Fe2+ showed much slower reactions with the ATSM than Ni2+. Trace amounts of Ni2+, Zn2+, and Fe2+ showed little effect on [64Cu]Cu-ATSM' quality, while the concentration of impurity Cu2+ must be controlled. These results can provide process management tools for radiopharmaceuticals.
Collapse
Affiliation(s)
- Mitsuhiro Shinada
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hisashi Suzuki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Masayuki Hanyu
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Chika Igarashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hiroki Matsumoto
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Masashi Takahashi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Fukiko Hihara
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Tomoko Tachibana
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Chizuru Sogawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Ming-Rong Zhang
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Tatsuya Higashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
| | - Hidemitsu Sato
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Hiroaki Kurihara
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Yukie Yoshii
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.S.); (M.H.); (C.I.); (H.M.); (F.H.); (C.S.); (M.-R.Z.); (T.H.)
- Kanagawa Cancer Center, Kanagawa 241-8515, Japan; (H.S.); (H.K.)
| | - Yoshihiro Doi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
| |
Collapse
|
4
|
Yoshii Y, Matsumoto H, Igarashi C, Tachibana T, Hihara F, Shinada M, Waki A, Yoshida S, Naito K, Ito K, Higashi T, Kurihara H, Ueno M. Process to Remove the Size Variants Contained in the Antibody-Chelator Complex PCTA-NCAB001 for Radiolabeling with Copper-64. Pharmaceuticals (Basel) 2023; 16:1341. [PMID: 37895812 PMCID: PMC10610008 DOI: 10.3390/ph16101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Understanding the physicochemical properties of antibody-drug conjugates is critical to assess their quality at manufacturing and monitor them during subsequent storage. For radiometal-antibody complexes, it is important to control the properties of the antibody-chelator conjugate to maintain the quality of the final product. We have been developing 64Cu-labeled anti-epidermal growth factor receptor antibody NCAB001 (64Cu-NCAB001) for the early diagnosis and therapy of pancreatic cancer with positron-emission tomography. Here, we characterized the larger size variants contained in the antibody-chelator conjugate PCTA-NCAB001 by multi-angle light scattering coupled with size-exclusion chromatography. Secondly, we developed a chromatographic method to remove these size variants. Lastly, we demonstrated the stability of PCTA-NCAB001 after the removal of size variants. Dimer and oligomers were identified in PCTA-NCAB001. These larger size variants, together with some smaller size variants, could be removed by hydrophobic interaction chromatography. The PCTA-NCAB001 product, after the removal of these size variants, could be stored at 4 °C for six months. The methods developed here can be applied to assure the quality of PCTA-NCAB001 and other antibody-drug conjugates to facilitate the development of antibody-radiometal conjugates for positron-emission tomography and radioimmunotherapy of malignant cancers.
Collapse
Affiliation(s)
- Yukie Yoshii
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.M.); (C.I.); (T.T.); (F.H.); (M.S.); (A.W.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Yokohama 241-8515, Japan;
| | - Hiroki Matsumoto
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.M.); (C.I.); (T.T.); (F.H.); (M.S.); (A.W.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Yokohama 241-8515, Japan;
| | - Chika Igarashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.M.); (C.I.); (T.T.); (F.H.); (M.S.); (A.W.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Yokohama 241-8515, Japan;
| | - Tomoko Tachibana
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.M.); (C.I.); (T.T.); (F.H.); (M.S.); (A.W.); (T.H.)
- Department of Biology, Graduate School of Science, Toho University, Chiba 274-8510, Japan
| | - Fukiko Hihara
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.M.); (C.I.); (T.T.); (F.H.); (M.S.); (A.W.); (T.H.)
| | - Mitsuhiro Shinada
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.M.); (C.I.); (T.T.); (F.H.); (M.S.); (A.W.); (T.H.)
- Department of Chemistry, Graduate School of Science, Toho University, Chiba 274-8510, Japan
| | - Atsuo Waki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.M.); (C.I.); (T.T.); (F.H.); (M.S.); (A.W.); (T.H.)
| | - Sei Yoshida
- Department of Research, NanoCarrier Co., Ltd., Tokyo 104-0031, Japan; (S.Y.); (K.N.)
| | - Kenichiro Naito
- Department of Research, NanoCarrier Co., Ltd., Tokyo 104-0031, Japan; (S.Y.); (K.N.)
| | - Kimiteru Ito
- Department of Diagnostic Radiology, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Tatsuya Higashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (H.M.); (C.I.); (T.T.); (F.H.); (M.S.); (A.W.); (T.H.)
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Yokohama 241-8515, Japan;
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama 241-8515, Japan;
| |
Collapse
|
5
|
Hrynchak I, Cocioabă D, Fonseca AI, Leonte R, do Carmo SJC, Cornoiu R, Falcão A, Niculae D, Abrunhosa AJ. Antibody and Nanobody Radiolabeling with Copper-64: Solid vs. Liquid Target Approach. Molecules 2023; 28:4670. [PMID: 37375223 DOI: 10.3390/molecules28124670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Antibody and nanobody-based copper-64 radiopharmaceuticals are increasingly being proposed as theranostic tools in multiple human diseases. While the production of copper-64 using solid targets has been established for many years, its use is limited due to the complexity of solid target systems, which are available in only a few cyclotrons worldwide. In contrast, liquid targets, available in virtually in all cyclotrons, constitute a practical and reliable alternative. In this study, we discuss the production, purification, and radiolabeling of antibodies and nanobodies using copper-64 obtained from both solid and liquid targets. Copper-64 production from solid targets was performed on a TR-19 cyclotron with an energy of 11.7 MeV, while liquid target production was obtained by bombarding a nickel-64 solution using an IBA Cyclone Kiube cyclotron with 16.9 MeV on target. Copper-64 was purified from both solid and liquid targets and used to radiolabel NODAGA-Nb, NOTA-Nb, and DOTA-Trastuzumab conjugates. Stability studies were conducted on all radioimmunoconjugates in mouse serum, PBS, and DTPA. Irradiation of the solid target yielded 13.5 ± 0.5 GBq with a beam current of 25 ± 1.2 μA and an irradiation time of 6 h. On the other hand, irradiation of the liquid target resulted in 2.8 ± 1.3 GBq at the end of bombardment (EOB) with a beam current of 54.5 ± 7.8 μA and an irradiation time of 4.1 ± 1.3 h. Successful radiolabeling of NODAGA-Nb, NOTA-Nb, and DOTA-Trastuzumab with copper-64 from both solid and liquid targets was achieved. Specific activities (SA) obtained with the solid target were 0.11, 0.19, and 0.33 MBq/μg for NODAGA-Nb, NOTA-Nb, and DOTA-trastuzumab, respectively. For the liquid target, the corresponding SA values were 0.15, 0.12, and 0.30 MBq/μg. Furthermore, all three radiopharmaceuticals demonstrated stability under the testing conditions. While solid targets have the potential to produce significantly higher activity in a single run, the liquid process offers advantages such as speed, ease of automation, and the feasibility of back-to-back production using a medical cyclotron. In this study, successful radiolabeling of antibodies and nanobodies was achieved using both solid and liquid targets approaches. The radiolabeled compounds exhibited high radiochemical purity and specific activity, rendering them suitable for subsequent in vivo pre-clinical imaging studies.
Collapse
Affiliation(s)
- Ivanna Hrynchak
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diana Cocioabă
- Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Măgurele, Romania
- Faculty of Physics, Doctoral School of Physics, University of Bucharest, 077125 Bucharest, Romania
| | - Alexandra I Fonseca
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Radu Leonte
- Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Măgurele, Romania
| | - Sérgio J C do Carmo
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Roxana Cornoiu
- Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Măgurele, Romania
- Faculty of Chemical Engineering and Biotechnologies, Doctoral School of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Amílcar Falcão
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Dana Niculae
- Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Măgurele, Romania
| | - Antero J Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
6
|
Microfluidic Solvent Extraction of No-Carrier-Added 64Cu from Irradiated Zn target for Radiopharmaceutical Preparation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Production Review of Accelerator-Based Medical Isotopes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165294. [PMID: 36014532 PMCID: PMC9415084 DOI: 10.3390/molecules27165294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
The production of reactor-based medical isotopes is fragile, which has meant supply shortages from time to time. This paper reviews alternative production methods in the form of cyclotrons, linear accelerators and neutron generators. Finally, the status of the production of medical isotopes in China is described.
Collapse
|
8
|
Optimisation of parameters of complete nickel electrodeposition from acidic aqueous electrolytic baths prepared by dissolution of metal powder. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Hihara F, Matsumoto H, Yoshimoto M, Masuko T, Endo Y, Igarashi C, Tachibana T, Shinada M, Zhang MR, Kurosawa G, Sugyo A, Tsuji AB, Higashi T, Kurihara H, Ueno M, Yoshii Y. In Vitro Tumor Cell-Binding Assay to Select High-Binding Antibody and Predict Therapy Response for Personalized 64Cu-Intraperitoneal Radioimmunotherapy against Peritoneal Dissemination of Pancreatic Cancer: A Feasibility Study. Int J Mol Sci 2022; 23:5807. [PMID: 35628616 PMCID: PMC9146758 DOI: 10.3390/ijms23105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Peritoneal dissemination of pancreatic cancer has a poor prognosis. We have reported that intraperitoneal radioimmunotherapy using a 64Cu-labeled antibody (64Cu-ipRIT) is a promising adjuvant therapy option to prevent this complication. To achieve personalized 64Cu-ipRIT, we developed a new in vitro tumor cell-binding assay (64Cu-TuBA) system with a panel containing nine candidate 64Cu-labeled antibodies targeting seven antigens (EGFR, HER2, HER3, TfR, EpCAM, LAT1, and CD98), which are reportedly overexpressed in patients with pancreatic cancer. We investigated the feasibility of 64Cu-TuBA to select the highest-binding antibody for individual cancer cell lines and predict the treatment response in vivo for 64Cu-ipRIT. 64Cu-TuBA was performed using six human pancreatic cancer cell lines. For three cell lines, an in vivo treatment study was performed with 64Cu-ipRIT using high-, middle-, or low-binding antibodies in each peritoneal dissemination mouse model. The high-binding antibodies significantly prolonged survival in each mouse model, while low-and middle-binding antibodies were ineffective. There was a correlation between in vitro cell binding and in vivo therapeutic efficacy. Our findings suggest that 64Cu-TuBA can be used for patient selection to enable personalized 64Cu-ipRIT. Tumor cells isolated from surgically resected tumor tissues would be suitable for analysis with the 64Cu-TuBA system in future clinical studies.
Collapse
Affiliation(s)
- Fukiko Hihara
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Hiroki Matsumoto
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Mitsuyoshi Yoshimoto
- Division of Functional Imaging, National Cancer Center Hospital East, Chiba 277-8577, Japan;
| | - Takashi Masuko
- School of Pharmacy, Kindai University, Osaka 577-8502, Japan; (T.M.); (Y.E.)
| | - Yuichi Endo
- School of Pharmacy, Kindai University, Osaka 577-8502, Japan; (T.M.); (Y.E.)
| | - Chika Igarashi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Tomoko Tachibana
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Mitsuhiro Shinada
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
- Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Ming-Rong Zhang
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Gene Kurosawa
- International Center for Cell and Gene Therapy, Fujita Health University, Aichi 470-1192, Japan;
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Atsushi B. Tsuji
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Yukie Yoshii
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan;
(F.H.); (H.M.); (C.I.); (T.T.); (M.S.); (M.-R.Z.); (A.S.); (A.B.T.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| |
Collapse
|
10
|
Sugo Y, Ohira SI, Manabe H, Maruyama YH, Yamazaki N, Miyachi R, Toda K, Ishioka NS, Mori M. Highly Efficient Separation of Ultratrace Radioactive Copper Using a Flow Electrolysis Cell. ACS OMEGA 2022; 7:15779-15785. [PMID: 35571765 PMCID: PMC9096931 DOI: 10.1021/acsomega.2c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Preparing compounds containing the radioisotope 64Cu for use in positron emission tomography cancer diagnostics is an ongoing area of research. In this study, a highly efficient separation method to recover 64Cu generated by irradiating the target 64Ni with a proton beam was developed by employing a flow electrolysis cell (FE). This system consists of (1) applying a reduction potential for the selective adsorption of 64Cu from the target solution when dissolved in HCl and (2) recovering the 64Cu deposited onto the carbon working electrode by desorbing it from the FE during elution with 10 mmol/L HNO3, which applies an oxidation potential. The 64Cu was selectively eluted at approximately 30 min under a flow rate of 0.5 mL/min from the injection to recovery. The newly developed flow electrolysis system can separate the femtomolar level of ultratrace radioisotopes from the larger amount of target metals as an alternative to conventional column chromatography.
Collapse
Affiliation(s)
- Yumi Sugo
- Department
of Radiation-Applied Biology Research, Takasaki Advanced Radiation
Research Institute, National Institutes
for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Shin-Ichi Ohira
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Hinako Manabe
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Yo-hei Maruyama
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Naoaki Yamazaki
- Graduate
School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Ryoma Miyachi
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Kei Toda
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Noriko S. Ishioka
- Department
of Radiation-Applied Biology Research, Takasaki Advanced Radiation
Research Institute, National Institutes
for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Masanobu Mori
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| |
Collapse
|
11
|
Special radionuclide production activities – recent developments at QST and throughout Japan. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
National Institutes for Quantum Science and Technology (QST), formerly known as the National Institute of Radiological Sciences (NIRS), has been engaged in work on radiopharmaceutical science using cyclotrons since 1974. Eight pioneering researchers founded the basis of this field of research at NIRS, and to the present, many researchers and technicians have accumulated both scientific and technical achievements, as well as inherited the spirit of research. Besides, in recent years, we have developed production systems with AVF-930 cyclotron for various ‘non-standard’ radioisotopes applied in both diagnosis and therapy. Here, we review the past 50 years of our activities on radioisotope and radiopharmaceutical development, as well as more recent activities.
Collapse
|
12
|
Mou L, Martini P, Pupillo G, Cieszykowska I, Cutler CS, Mikołajczak R. 67Cu Production Capabilities: A Mini Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051501. [PMID: 35268600 PMCID: PMC8912090 DOI: 10.3390/molecules27051501] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023]
Abstract
Is the 67Cu production worldwide feasible for expanding preclinical and clinical studies? How can we face the ingrowing demands of this emerging and promising theranostic radionuclide for personalized therapies? This review looks at the different production routes, including the accelerator- and reactor-based ones, providing a comprehensive overview of the actual 67Cu supply, with brief insight into its use in non-clinical and clinical studies. In addition to the most often explored nuclear reactions, this work focuses on the 67Cu separation and purification techniques, as well as the target material recovery procedures that are mandatory for the economic sustainability of the production cycle. The quality aspects, such as radiochemical, chemical, and radionuclidic purity, with particular attention to the coproduction of the counterpart 64Cu, are also taken into account, with detailed comparisons among the different production routes. Future possibilities related to new infrastructures are included in this work, as well as new developments on the radiopharmaceuticals aspects.
Collapse
Affiliation(s)
- Liliana Mou
- Legnaro National Laboratories, National Institute for Nuclear Physics, Legnaro, 35020 Padova, Italy; (L.M.); (G.P.)
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; or
| | - Gaia Pupillo
- Legnaro National Laboratories, National Institute for Nuclear Physics, Legnaro, 35020 Padova, Italy; (L.M.); (G.P.)
| | - Izabela Cieszykowska
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland;
| | - Cathy S. Cutler
- Brookhaven National Laboratory, Collider Accelerator Department, Upton, NY 11973, USA;
| | - Renata Mikołajczak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland;
- Correspondence:
| |
Collapse
|
13
|
Kawamura K, Hashimoto H, Ohkubo T, Hanyu M, Ogawa M, Nengaki N, Arashi D, Kurihara Y, Fujishiro T, Togashi T, Sakai T, Muto M, Takei M, Ishii H, Saijo T, Matsumura T, Obokata N, Zhang MR. Automated radiosynthesis of [ 11 C]MTP38-a phosphodiesterase 7 imaging tracer-using [ 11 C]hydrogen cyanide for clinical applications. J Labelled Comp Radiopharm 2022; 65:140-146. [PMID: 35122288 DOI: 10.1002/jlcr.3965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/11/2022]
Abstract
We have developed 8-amino-3-(2S,5R-dimethyl-1-piperidyl)-[1,2,4]triazolo[4,3-a]pyrazine-5-[11 C]carbonitrile ([11 C]MTP38) as a PET tracer for the imaging of phosphodiesterase 7. For the fully automated production of [11 C]MTP38 routinely and efficiently for clinical applications, we determined the radiosynthesis procedure of [11 C]MTP38 using [11 C]hydrogen cyanide ([11 C]HCN) as a PET radiopharmaceutical. Radiosynthesis of [11 C]MTP38 was performed using an automated 11 C-labeling synthesizer developed in-house within 40 min after the end of irradiation. [11 C]MTP38 was obtained with a relatively high radiochemical yield (33 ± 5.5% based on [11 C]CO2 at the end of irradiation, decay-corrected, n = 15), radiochemical purity (>97%, n = 15), and molar activity (47 ± 12 GBq/μmol at the end of synthesis, n = 15). All the results of the quality control (QC) testing for the [11 C]MTP38 injection complied with our in-house QC and quality assurance specifications. We successfully automated the radiosynthesis of [11 C]MTP38 for clinical applications using an 11 C-labeling synthesizer and sterile isolator. Taken together, this protocol provides a new radiopharmaceutical [11 C]MTP38 suitable for clinical applications.
Collapse
Affiliation(s)
- Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroki Hashimoto
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takayuki Ohkubo
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,SHI Accelerator Service Ltd., Tokyo, Japan
| | - Masayuki Hanyu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,SHI Accelerator Service Ltd., Tokyo, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,SHI Accelerator Service Ltd., Tokyo, Japan
| | - Daisuke Arashi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,Tokyo Nuclear Services Ltd., Tokyo, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,SHI Accelerator Service Ltd., Tokyo, Japan
| | - Tomoya Fujishiro
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,Tokyo Nuclear Services Ltd., Tokyo, Japan
| | - Takahiro Togashi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,Tokyo Nuclear Services Ltd., Tokyo, Japan
| | - Toshiyuki Sakai
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,Tokyo Nuclear Services Ltd., Tokyo, Japan
| | - Masatoshi Muto
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.,Tokyo Nuclear Services Ltd., Tokyo, Japan
| | - Makoto Takei
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hideki Ishii
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takeaki Saijo
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Takehiko Matsumura
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Naoyuki Obokata
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
14
|
Characterization and Stabilization of a New 64Cu-Labeled Anti-EGFR Antibody NCAB001 for the Early Detection of Pancreatic Cancer with Positron Emission Tomography. Pharmaceutics 2021; 14:pharmaceutics14010067. [PMID: 35056963 PMCID: PMC8779674 DOI: 10.3390/pharmaceutics14010067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/20/2022] Open
Abstract
Early diagnosis of pancreatic cancer using current imaging modalities remains challenging. We have developed a new approach to identify tumor lesions ≥ 3 mm in the pancreas by positron emission tomography (PET) with a new intraperitoneally administered 64Cu-labeled anti-epidermal growth factor receptor (EGFR) antibody (encoded as NCAB001), called 64Cu-NCAB001 ipPET. Generally, in clinical research, a radiometal-antibody complex must be prepared immediately before use at the imaging site. To make 64Cu-NCAB001 ipPET available to daily clinical practices in a sustainable way, the NCAB001-chelator conjugate and 64Cu-NCAB001 must be characterized and stabilized. NCAB001 was manufactured under cGMP conditions. NCAB001 was conjugated with a bifunctional chelator (p-SCN-Bn-PCTA), and the antibody-chelator conjugate (PCTA-NCAB001) was characterized by LC/MS and ELISA. Thereafter, to effectively manufacture 64Cu-NCAB001, we developed a new formulation to stabilize PCTA-NCAB001 and 64Cu-NCAB001. An average of three PCTA chelators were conjugated per molecule of NCAB001. The relative binding potency of PCTA-NCAB001 was comparable to cetuximab. The formulation consisting of acetate buffer, glycine, and polysorbate-80 stabilized PCTA-NCAB001 for a year-long storage. Additionally, this formulation enabled the stabilization of 64Cu-NCAB001 for up to 24 h after radiolabeling with a sufficient radioactivity concentration for clinical use. These results may accelerate the future use of 64Cu-NCAB001 ipPET in clinical settings for the early diagnosis and treatment of pancreatic cancer.
Collapse
|
15
|
Electrochemical deposition of nickel from aqueous electrolytic baths prepared by dissolution of metallic powder. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05084-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA new method of preparation of aqueous electrolyte baths for electrochemical deposition of nickel targets for medical accelerators is presented. It starts with fast dissolution of metallic Ni powder in a HNO3-free solvent. Such obtained raw solution does not require additional treatment aimed to removal nitrates, such as the acid evaporation and Ni salt precipitation-dissolution. It is used directly for preparation of the nickel plating baths after dilution with water, setting up pH value and after possible addition of H3BO3. The pH of the baths ranges from alkaline to acidic. Deposition of 95% of ca. 50 mg of Ni dissolved in the bath takes ca. 3.5 h for the alkaline electrolyte while for the acidic solution it requires ca. 7 h. The Ni deposits obtained from the acidic bath are physically and chemically more stable and possess smoother and crack-free surfaces as compared to the coatings deposited from the alkaline bath. A method of estimation of concentration of H2O2 in the electrolytic bath is also proposed.
Collapse
|
16
|
Igarashi C, Yoshii Y, Tashima H, Iwao Y, Sakurai K, Hihara F, Tachibana T, Yoshida E, Wakizaka H, Akamatsu G, Yamaya T, Yoshimoto M, Matsumoto H, Zhang MR, Nagatsu K, Sugyo A, Tsuji AB, Higashi T. Usefulness of PET-guided surgery with 64Cu-labeled cetuximab for resection of intrapancreatic residual tumors in a xenograft mouse model of resectable pancreatic cancer. Nucl Med Commun 2021; 42:1112-1121. [PMID: 34100794 DOI: 10.1097/mnm.0000000000001442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In pancreatic cancer surgery, accurate identification and resection of intrapancreatic residual tumors are quite difficult. We have developed a novel open-typed PET system (called 'OpenPET'), which enables high-resolution PET-guided surgery in real time, and demonstrated that OpenPET-guided surgery with intraperitoneally administered 64Cu-labeled anti-epidermal growth factor receptor antibody cetuximab is useful to detect and resect primary pancreatic cancer. Here, we investigated applicability of OpenPET-guided surgery for unexpected residual intrapancreatic tumors and examined its survival benefit over conventional surgery. METHODS A mouse model with large (>1 cm) resectable pancreatic cancer of xPA-1-DC cells expressing red fluorescent protein was used. OpenPET-guided surgery was conducted 24 h after intraperitoneal administration of 64Cu-labeled cetuximab (7.4 MBq/mouse). For comparison, similar surgical procedures were conducted, and conventional tumor resection was attempted using only the naked eye (control). Survival rate after OpenPET-guided surgery was compared to that after control operations. RESULTS Intraoperative OpenPET guidance enabled detection and resection of small residual tumors. Ten residual tumor specimens (3-10 mm in diameter) were intraoperatively isolated with OpenPET guidance (n = 7 mice). All isolated specimens showed tumor RFP signals. No resection of tumor tissue was performed in control group because the tumor could not be clearly detected with the naked eye alone. Mice after OpenPET-guided surgery showed significantly longer survival rates than those in control group. CONCLUSIONS OpenPET-guided surgery with 64Cu-labeled-cetuximab enabled intraoperative identification and resection of intrapancreatic small residual tumors. This technology could be useful to prevent tumor residuals during surgery and improve pancreatic cancer survival.
Collapse
Affiliation(s)
| | - Yukie Yoshii
- Department of Molecular Imaging and Theranostics
| | - Hideaki Tashima
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Yuma Iwao
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | | | | | | | - Eiji Yoshida
- Department of Molecular Imaging and Theranostics
| | - Hidekatsu Wakizaka
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Go Akamatsu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Taiga Yamaya
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Mitsuyoshi Yoshimoto
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | | | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Kotaro Nagatsu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics
| | | | | |
Collapse
|
17
|
Evaluation of 64Cu-Labeled New Anti-EGFR Antibody NCAB001 with Intraperitoneal Injection for Early PET Diagnosis of Pancreatic Cancer in Orthotopic Tumor-Xenografted Mice and Nonhuman Primates. Pharmaceuticals (Basel) 2021; 14:ph14100950. [PMID: 34681174 PMCID: PMC8540406 DOI: 10.3390/ph14100950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023] Open
Abstract
Objectives: To improve the prognosis of pancreatic cancer, new imaging methods to identify tumor lesions at a size of <1 cm are urgently needed. To approach this clinical issue, we developed a new method to detect small tumor lesions in the pancreas (≥3 mm) by positron emission tomography (PET) using an intraperitoneally (ip)-administered 64Cu-labeled new anti-epidermal growth factor receptor (EGFR) antibody (encoded as NCAB001), called 64Cu-NCAB001 ipPET. Methods: NCAB001 was manufactured under cGMP conditions and labeled with 64Cu. The radiochemical and biological properties of 64Cu-NCAB001 were evaluated. Tumor uptake of an ip-administered 64Cu-NCAB001 in mice with orthotopic pancreatic tumor xPA1-DC xenografts was also evaluated. Pharmacokinetics and radiation dosimetry were examined using PET images acquired after the ip administration of 64Cu-NCAB001 into cynomolgus monkeys with pharmacologic safety monitoring. Results: Radio-chromatography, cell-binding assays, and biodistribution of 64Cu-NCAB001 in mice were identical to those of our previous data with clinically available cetuximab. Small tumor lesions in the pancreas (≥3 mm) of mice could be identified by 64Cu-NCAB001 ipPET. The ip administration of 64Cu-NCAB001 into monkeys was safely conducted using ultrasound imaging. PET images in monkeys showed that ip-administered 64Cu-NCAB001 was distributed throughout the intraperitoneal cavity for up to 6 h and cleared thereafter. Most of the radioactivity was distributed in the liver and the large intestine. The radioactivity around the pancreas became negligible 24 h after administration. The estimated human effective dose was 0.0174 mSv/MBq. Conclusion: Our data support the initiation of clinical trials of 64Cu-NCAB001 ipPET to transfer this promising tool for the early diagnosis of pancreatic cancers.
Collapse
|
18
|
Mieszkowska M, Grdeń M. Electrochemical deposition of nickel targets from aqueous electrolytes for medical radioisotope production in accelerators: a review. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04950-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThis paper reviews reported methods of the electrochemical deposition of nickel layers which are used as target materials for accelerator production of medical radioisotopes. The review focuses on the electrodeposition carried out from aqueous electrolytes. It describes the main challenges related to the preparation of suitable Ni target layers, such as work with limited amounts of expensive isotopically enriched nickel; electrodeposition of sufficiently thick, smooth and free of cracks layers; and recovery of unreacted Ni isotopes from the irradiated targets and from used electrolytic baths.
Collapse
|
19
|
64Cu-labeled minibody D2101 visualizes CDH17-positive gastric cancer xenografts with short waiting time. Nucl Med Commun 2021; 41:688-695. [PMID: 32371673 DOI: 10.1097/mnm.0000000000001203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We previously reported In-labeled anti-cadherin17 (CDH17) IgG visualized CDH17-positive gastric cancer xenografts. Unfortunately, a long waiting time was required to obtain high-contrast images due to long blood retention (blood half-life: 26 h). To accelerate blood clearance, we have developed anti-CDH17 minibody (D2101 minibody) and evaluated the pharmacokinetics in gastric cancer mouse models. METHODS Two different single chain Fvs (scFvs), D2101 mutant and D2111, were developed from each parental IgG. The binding ability to CDH17 and stability in plasma were evaluated. D2101 minibody, constructed based on D2101 mutant scFv, was labeled with Cu (Cu-D2101 minibody), and the in-vitro and in-vivo properties were evaluated by cell ELISA, biodistribution experiments, and PET imaging in mice bearing CDH17-positive AGS and CDH17-negative MKN74 tumors. RESULTS D2101 mutant and D2111 scFvs showed similar affinities to CDH17. D2101 mutant scFv was more stable than D2111 scFv in plasma. No loss of binding affinity of the D2101 minibody by chelate conjugation and radiolabeling procedures was observed. The biodistribution of Cu-D2101 minibody showed high uptake in AGS tumors and low uptake in MKN74. The blood half-life of Cu-D2101 minibody was 6.5 h. Improved blood clearance of Cu-D2101 minibody provided high tumor-to-blood ratios compared with the previous results of parental IgG in AGS xenograft mice. PET studies showed consistent results with biodistribution studies. CONCLUSIONS Cu-D2101 minibody exhibited higher tumor-to-blood ratios at earlier time points than those of the radiolabeled parental IgG. Cu-D2101 minibody has potential as an immunoimaging agent for CDH17-positive tumors.
Collapse
|
20
|
Jin ZH, Tsuji AB, Degardin M, Sugyo A, Obara S, Wakizaka H, Nagatsu K, Hu K, Zhang MR, Dumy P, Boturyn D, Higashi T. Radiotheranostic Agent 64Cu-cyclam-RAFT-c(-RGDfK-) 4 for Management of Peritoneal Metastasis in Ovarian Cancer. Clin Cancer Res 2020; 26:6230-6241. [PMID: 32933998 DOI: 10.1158/1078-0432.ccr-20-1205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Ovarian cancer peritoneal metastases (OCPMs) are a pathophysiologically heterogeneous group of tumors that are rarely curable. αVβ3 integrin (αVβ3) is overexpressed on tumoral neovessels and frequently on ovarian cancer cells. Here, using two clinically relevant αVβ3-positive OCPM mouse models, we studied the theranostic potential of an αVβ3-specific radiopeptide, 64Cu-cyclam-RAFT-c(-RGDfK-)4 (64Cu-RaftRGD), and its intra- and intertumoral distribution in relation to the tumor microenvironment. EXPERIMENTAL DESIGN αVβ3-expressing peritoneal and subcutaneous models of ovarian carcinoma (IGR-OV1 and NIH:OVCAR-3) were established in nude mice. 64Cu-RaftRGD was administered either intravenously or intraperitoneally. We performed intratumoral distribution (ITD) studies, PET/CT imaging and quantification, biodistribution assay and radiation dosimetry, and therapeutic efficacy and toxicity studies. RESULTS Intraperitoneal administration was an efficient route for targeting 64Cu-RaftRGD to OCPMs with excellent tumor penetration. Using the fluorescence surrogate, Cy5.5-RaftRGD, in our unique high-resolution multifluorescence analysis, we found that the ITD of 64Cu-RaftRGD was spatially distinct from, but complementary to, that of hypoxia. 64Cu-RaftRGD-based PET enabled clear visualization of multiple OCPM deposits and ascites and biodistribution analysis demonstrated an inverse correlation between tumor uptake and tumor size (1.2-17.2 mm). 64Cu-RaftRGD at a radiotherapeutic dose (148 MBq/0.357 nmol) showed antitumor activities by inhibiting tumor cell proliferation and inducing apoptosis, with negligible toxicity. CONCLUSIONS Collectively, these results demonstrate the all-in-one potential of 64Cu-RaftRGD for imaging guided radiotherapy of OCPM by targeting both tumoral neovessels and cancerous cells. On the basis of the ITD finding, we propose that pairing αVβ3- and hypoxia-targeted radiotherapies could improve therapeutic efficacy by overcoming the heterogeneity of ITD encountered with single-agent treatments.
Collapse
Affiliation(s)
- Zhao-Hui Jin
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | | | - Aya Sugyo
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Satoshi Obara
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hidekatsu Wakizaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kotaro Nagatsu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kuan Hu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron, École Nationale Supérieure de Chimie de Montpellier, Université de Montpellier, Montpellier, France
| | | | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
21
|
Svedjehed J, Kutyreff CJ, Engle JW, Gagnon K. Automated, cassette-based isolation and formulation of high-purity [ 61Cu]CuCl 2 from solid Ni targets. EJNMMI Radiopharm Chem 2020; 5:21. [PMID: 33151400 PMCID: PMC7644601 DOI: 10.1186/s41181-020-00108-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A need for improved, cassette-based automation of 61Cu separation from irradiated Ni targets was identified given the growing interest in theranostics, and generally lengthy separation chemistries for 64Cu/64Ni, upon which 61Cu chemistry is often based. METHODS A method for separating 61Cu from irradiated natNi targets was therefore developed, with provision for target recycling. Following deuteron irradiation, electroplated natNi targets were remotely transferred from the cyclotron and dissolved in acid. The dissolved target solution was then transferred to an automated FASTlab chemistry module, where sequential TBP and TK201 (Triskem) resins isolated the [61Cu]CuCl2, removed Ni, Co, and Fe, and concentrated the product into a formulation suitable for anticipated radiolabelling reactions. RESULTS 61Cu saturation yields of 190 ± 33 MBq/μA from energetically thick natNi targets were measured. The average, decay-corrected, activity-based dissolution efficiency was 97.5 ± 1.4% with an average radiochemical yield of 90.4 ± 3.2% (N = 5). The isolated activity was collected approximately 65 min post end of bombardment in ~ 2 mL of 0.06 M HCl (HCl concentration was verified by titration). Quality control of the isolated [61Cu]CuCl2 (N = 5) measured 58Co content of (8.3 ± 0.6) × 10- 5% vs. 61Cu by activity, Ni separation factors ≥ (2.2 ± 1.8) × 106, EoB molar activities 85 ± 23 GBq/μmol and NOTA-based EoB apparent molar activities of 31 ± 8 MBq/nmol and 201 MBq/nmol for the 30 min and 3.3 h (N = 1) irradiations, respectively. CONCLUSION High purity 61Cu was produced with the developed automated method using a single-use, cassette-based approach. It was also applicable for 64Cu, as demonstrated with a single proof-of-concept 64Ni target production run.
Collapse
Affiliation(s)
- Johan Svedjehed
- Cyclotrons and TRACERcenter, GE Healthcare, GEMS PET Systems AB, Uppsala, Sweden
| | - Christopher J Kutyreff
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan W Engle
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine Gagnon
- Cyclotrons and TRACERcenter, GE Healthcare, GEMS PET Systems AB, Uppsala, Sweden.
| |
Collapse
|
22
|
Pasquali M, Martini P, Shahi A, Jalilian AR, Osso JA, Boschi A. Copper-64 based radiopharmaceuticals for brain tumors and hypoxia imaging. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:371-381. [PMID: 33026209 DOI: 10.23736/s1824-4785.20.03285-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The most common and aggressive primary malignancy of the central nervous system is Glioblastoma that, as a wide range of malignant solid tumor, is characterized by extensive hypoxic regions. A great number of PET radiopharmaceuticals have been developed for the identification of hypoxia in solid tumors, among these, we find copper-based tracers. The aim of the current review paper was to provide an overview of radiocopper compounds applied for preclinical and clinical research in brain tumors and hypoxia imaging or therapy. EVIDENCE ACQUISITION Copper offers a wide variety of isotopes, useful for nuclear medicine applications, but only 64Cu and 67Cu are under the spotlight of the scientific community since being good candidates for theranostic applications. Between the two, 64Cu availability and production cost have attracted more interest of the scientific community. EVIDENCE SYNTHESIS In order to better understand the application of copper-bis thiosemicarbazones in hypoxia imaging, an overview of the role of hypoxia in cancer, existing non-imaging and imaging techniques for hypoxia identification and promising future avenues regarding hypoxia is necessary. Different proposed uptake mechanisms of [64Cu][Cu(ATSM)] inside the cell will be discussed and other 64Cu-based tracers for brain tumors described. CONCLUSIONS Among radio copper compounds [64Cu][Cu(ATSM)] is the most studied radiopharmaceutical for imaging and treatment of brain tumors. Experimental evidence suggested that [64Cu][Cu(ATSM)] could be more appropriately considered as a marker of over-reduced intracellular state rather than a pure hypoxia agent. Moreover, preliminary clinical data suggested that [64Cu]CuCl<inf>2</inf> can be a potentially useful diagnostic agent for malignancies of the central nervous system (CNS).
Collapse
Affiliation(s)
- Micol Pasquali
- National Institute of Nuclear Physics, National Laboratories of Legnaro, Padua, Italy
| | - Petra Martini
- National Institute of Nuclear Physics, National Laboratories of Legnaro, Padua, Italy.,Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Arman Shahi
- Faculty of Science, McMaster University, Hamilton, Canada
| | - Amir R Jalilian
- Department of Nuclear Science and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Joao A Osso
- Department of Nuclear Science and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Alessandra Boschi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy -
| |
Collapse
|
23
|
Bolzati C, Duatti A. The emerging value of 64Cu for molecular imaging and therapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:329-337. [PMID: 33026210 DOI: 10.23736/s1824-4785.20.03292-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Along with other novel metallic radionuclides, copper-64 (64Cu) is currently being investigated as an alternative option to the gallium-68 (68Ga) and lutetium-177 (177Lu) radiopharmaceuticals widely used for targeting somatostatin receptors, expressed by neuroendocrine tumors (NETs), and recently prostate specific membrane antigen (PSMA), expressed by prostate cancer cells. This interest is mostly driven by the peculiar nuclear properties of 64Cu that make it an almost ideal example of theranostic radionuclide. In fact, 64Cu emits both low-energy positrons, β- particles and a swarm of Auger electrons. This combination of different emissions may allow to collect high-resolution PET images, but also to use the same radiopharmaceutical for eliciting a therapeutic effect. Another unique behavior of 64Cu originates from the fundamental biological role played in organisms by the ionic forms of the copper element, which is naturally involved in a multitude of cellular processes including cell replication. These intrinsic biological characteristics has led to the discovery that 64Cu, under its simplest dicationic form Cu2+, is able to specifically target a variety of cancerous cells and to detect the onset of a metastatic process in its initial stage. This short review reports an outline of the status of 64Cu radiopharmaceuticals and of the most relevant results that are constantly disclosed by preclinical and investigational clinical studies.
Collapse
Affiliation(s)
| | - Adriano Duatti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy -
| |
Collapse
|
24
|
Immuno-OpenPET: a novel approach for early diagnosis and image-guided surgery for small resectable pancreatic cancer. Sci Rep 2020; 10:4143. [PMID: 32157106 PMCID: PMC7064510 DOI: 10.1038/s41598-020-61056-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) has a poor prognosis owing to difficulties in the diagnosis of resectable PC at early stages. Several clinical studies have indicated that the detection and surgery of small resectable PC (<1 cm) can significantly improve survival; however, imaging diagnosis and accurate resection of small PC remain challenging. Here, we report the feasibility of "immuno-OpenPET" as a novel approach enabling not only early diagnosis but also image-guided surgery, using a small (<1 cm) resectable PC orthotopic xenograft mouse model. For immuno-OpenPET, we utilized our original OpenPET system, which enables high-resolution positron emission tomography (PET) imaging with depth-of-interaction detectors, as well as real-time image-guided surgery, by arranging the detectors to create an open space for surgery and accelerating the image reconstruction process by graphics processing units. For immuno-OpenPET, 64Cu-labeled anti-epidermal growth factor receptor antibody cetuximab was intraperitoneally administered into mice. It clearly identified PC tumors ≥3 mm. In contrast, neither OpenPET with intravenous-administered 64Cu-cetuximab nor intraperitoneal/intravenous-administered 18F-FDG (a traditional PET probe) could detect PC in this model. Immuno-OpenPET-guided surgery accurately resected small PC in mice and achieved significantly prolonged survival. This technology could provide a novel diagnostic and therapeutic strategy for small resectable PC to improve patient survival.
Collapse
|
25
|
Ohya T, Nagatsu K, Hanyu M, Minegishi K, Zhang MR. Simple separation of 67Cu from bulk zinc by coprecipitation using hydrogen sulfide gas and silver nitrate. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-3168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
Copper-67 (67Cu), a feasible radionuclide for diagnosis and radiotherapy, is commercially generated from a bulk zinc (Zn) target using the 68Zn(p, 2p)67Cu and 68Zn(γ, p)67Cu nuclear reactions. Because it uses a large amount of zinc, the separation is complex – requiring a combination of three ion exchange columns – and is time-consuming (about 1 day). We developed a quick and easy separation method referred to as “double coprecipitation” using H2S gas and silver nitrate as coprecipitation agents in place of ion exchange columns. We compared this method with a conventional separation method using three ion exchange columns (AG50W-X8, AG1-X8, and Chelex-100) for a natural zinc (natZn) target irradiated by a proton beam. The product quality and the recovery rate with the new method were competitive with the conventional method, and the total operation time was reduced from 1 day to <3 h.
Collapse
Affiliation(s)
- Tomoyuki Ohya
- Department of Radiopharmaceuticals Development , National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) , 4-9-1 Anagawa, Inage-ku , Chiba 263-8555 , Japan
| | - Kotaro Nagatsu
- National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) , 4-9-1 Anagawa, Inage-ku , Chiba 263-8555 , Japan
| | - Masayuki Hanyu
- National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) , 4-9-1 Anagawa, Inage-ku , Chiba 263-8555 , Japan
| | - Katsuyuki Minegishi
- National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) , 4-9-1 Anagawa, Inage-ku , Chiba 263-8555 , Japan
| | - Ming-Rong Zhang
- National Institutes for Quantum and Radiological Science and Technology (NIRS-QST) , 4-9-1 Anagawa, Inage-ku , Chiba 263-8555 , Japan
| |
Collapse
|
26
|
Yoshii Y, Matsumoto H, Yoshimoto M, Oe Y, Zhang MR, Nagatsu K, Sugyo A, Tsuji AB, Higashi T. 64Cu-Intraperitoneal Radioimmunotherapy: A Novel Approach for Adjuvant Treatment in a Clinically Relevant Preclinical Model of Pancreatic Cancer. J Nucl Med 2019; 60:1437-1443. [PMID: 30850497 PMCID: PMC6785796 DOI: 10.2967/jnumed.118.225045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/20/2019] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer (PC) has a very poor prognosis. Surgery is the primary treatment for patients with resectable PC; however, local recurrence, hepatic metastasis, and peritoneal dissemination often occur even after extensive surgery. Adjuvant chemotherapy, typically with gemcitabine, has been used clinically but with only a modest survival benefit. To achieve a better outcome, we investigated the efficacy of 64Cu-intraperitoneal radioimmunotherapy (ipRIT) with 64Cu-labeled antiepidermal growth factor receptor antibody cetuximab as an adjuvant treatment after PC surgery using an orthotopic xenografted mouse model. Methods: The efficacy of adjuvant 64Cu-ipRIT was investigated in a human PC mouse model harboring orthotopic xenografts of xPA-1-DC cells. To reproduce the clinical situation, PC xenografts were surgically resected when pancreatic tumors were readily visible but not metastatic tumors. Increasing doses of 64Cu-cetuximab were intraperitoneally injected, and the mice were monitored for toxicity to determine the safe therapeutic dose. For adjuvant 64Cu-ipRIT, the day after tumor resection, the mice were intraperitoneally administered 22.2 MBq of 64Cu-PCTA-cetuximab and the survival was compared with that in surgery-only controls. For comparison, adjuvant chemotherapy with gemcitabine was also examined using the same model. Results: The mouse model not only developed primary tumors in the pancreas but also subsequently reproduced local recurrence, hepatic metastasis, and peritoneal dissemination after surgery, which is similar to the manifestations that occur with human PC. Adjuvant 64Cu-ipRIT with 64Cu-labeled cetuximab after surgery effectively suppressed local recurrence, hepatic metastasis, and peritoneal dissemination in this model. Significant improvement of the survival with minimal toxicity was achieved by adjuvant 64Cu-ipRIT compared with that in control mice that underwent surgery only. Adjuvant chemotherapy with gemcitabine nominally prolonged the survival, but the effect was not statistically significant. Conclusion:64Cu-ipRIT with cetuximab can be an effective adjuvant therapy after PC surgery.
Collapse
Affiliation(s)
- Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Mitsuyoshi Yoshimoto
- Division of Functional Imaging, National Cancer Center Hospital East, Chiba, Japan
| | - Yoko Oe
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kotaro Nagatsu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Aya Sugyo
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
27
|
Matsumoto H, Igarashi C, Kaneko E, Hashimoto H, Suzuki H, Kawamura K, Zhang MR, Higashi T, Yoshii Y. Process development of [64Cu]Cu-ATSM: efficient stabilization and sterilization for therapeutic applications. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06738-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Mikolajczak R, van der Meulen NP, Lapi SE. Radiometals for imaging and theranostics, current production, and future perspectives. J Labelled Comp Radiopharm 2019; 62:615-634. [PMID: 31137083 DOI: 10.1002/jlcr.3770] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
The aim of this review is to make the reader familiar with currently available radiometals, their production modes, capacities, and quality concerns related to their medical use, as well as new emerging radiometals and irradiation technologies from the perspective of their diagnostic and theranostic applications. Production methods of 177 Lu serve as an example of various issues related to the production yield, specific activity, radionuclidic and chemical purity, and production economy. Other radiometals that are currently used or explored for potential medical applications, with particular focus on their theranostic value, are discussed. Using radiometals for diagnostic imaging and therapy is on the rise. The high demand for radiometals for medical use prompts investigations towards using alternative irradiation reactions, while using existing nuclear reactors and accelerator facilities. This review discusses these production capacities and what is necessary to cover the growing demand for theranostic nuclides.
Collapse
Affiliation(s)
- Renata Mikolajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
| | | | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
29
|
van der Meulen NP, Hasler R, Blanc A, Farkas R, Benešová M, Talip Z, Müller C, Schibli R. Implementation of a new separation method to produce qualitatively improved 64
Cu. J Labelled Comp Radiopharm 2019; 62:460-470. [DOI: 10.1002/jlcr.3730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Nicholas P. van der Meulen
- Laboratory of Radiochemistry; Paul Scherrer Institute; Villigen-PSI Switzerland
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Roger Hasler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Alain Blanc
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Renata Farkas
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
- Department of Chemistry and Applied Biosciences; ETH Zurich; Zurich Switzerland
| | - Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
- Department of Chemistry and Applied Biosciences; ETH Zurich; Zurich Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
- Department of Chemistry and Applied Biosciences; ETH Zurich; Zurich Switzerland
| |
Collapse
|
30
|
Ohya T, Minegishi K, Suzuki H, Nagatsu K, Fukada M, Hanyu M, Zhang MR. Development of a remote purification apparatus with disposable evaporator for the routine production of high-quality 64Cu for clinical use. Appl Radiat Isot 2019; 146:127-132. [DOI: 10.1016/j.apradiso.2019.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 10/27/2022]
|
31
|
Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Appl Radiat Isot 2019; 144:64-79. [DOI: 10.1016/j.apradiso.2018.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/12/2018] [Accepted: 11/22/2018] [Indexed: 11/24/2022]
|
32
|
|
33
|
The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discov Today 2018; 23:1489-1501. [DOI: 10.1016/j.drudis.2018.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/02/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
|
34
|
Yoshii Y, Yoshimoto M, Matsumoto H, Tashima H, Iwao Y, Takuwa H, Yoshida E, Wakizaka H, Yamaya T, Zhang MR, Sugyo A, Hanadate S, Tsuji AB, Higashi T. Integrated treatment using intraperitoneal radioimmunotherapy and positron emission tomography-guided surgery with 64Cu-labeled cetuximab to treat early- and late-phase peritoneal dissemination in human gastrointestinal cancer xenografts. Oncotarget 2018; 9:28935-28950. [PMID: 29989003 PMCID: PMC6034757 DOI: 10.18632/oncotarget.25649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/03/2018] [Indexed: 02/03/2023] Open
Abstract
Peritoneal dissemination is a common cause of death from gastrointestinal cancers and is difficult to treat using current therapeutic options, particularly late-phase disease. Here, we investigated the feasibility of integrated therapy using 64Cu-intraperitoneal radioimmunotherapy (ipRIT), alone or in combination with positron emission tomography (PET)-guided surgery using a theranostic agent (64Cu-labeled anti-epidermal growth factor receptor antibody cetuximab) to treat early- and late-phase peritoneal dissemination in mouse models. In this study, we utilized the OpenPET system, which has open space for conducting surgery while monitoring objects at high resolution in real time, as a novel approach to make PET-guided surgery feasible. 64Cu-ipRIT with cetuximab inhibited tumor growth and prolonged survival with little toxicity in mice with early-phase peritoneal dissemination of small lesions. For late-phase peritoneal dissemination, a combination of 64Cu-ipRIT for down-staging and subsequent OpenPET-guided surgery for resecting large tumor masses effectively prolonged survival. OpenPET clearly detected tumors (≥3 mm in size) behind other organs in the peritoneal cavity and was useful for confirming the presence or absence of residual tumors during an operation. These findings suggest that integrated 64Cu therapy can serve as a novel treatment strategy for peritoneal dissemination.
Collapse
Affiliation(s)
- Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mitsuyoshi Yoshimoto
- Division of Functional Imaging, National Cancer Center Hospital East, Chiba, Japan
| | | | - Hideaki Tashima
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yuma Iwao
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroyuki Takuwa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Eiji Yoshida
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hidekatsu Wakizaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Taiga Yamaya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Aya Sugyo
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sayaka Hanadate
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
35
|
Jin ZH, Tsuji AB, Degardin M, Sugyo A, Yoshii Y, Nagatsu K, Zhang MR, Fujibayashi Y, Dumy P, Boturyn D, Higashi T. Uniform intratumoral distribution of radioactivity produced using two different radioagents, 64Cu-cyclam-RAFT-c(-RGDfK-) 4 and 64Cu-ATSM, improves therapeutic efficacy in a small animal tumor model. EJNMMI Res 2018; 8:54. [PMID: 29923139 PMCID: PMC6008272 DOI: 10.1186/s13550-018-0407-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Background The present study proposed a new concept for targeted radionuclide therapy (TRT) to improve the intratumoral distribution of radioactivity using two different radiopharmaceuticals. We examined the efficacy of a combination of a tetrameric cyclic Arg-Gly-Asp (cRGD) peptide-based radiopharmaceutical, 64Cu-cyclam-RAFT-c(-RGDfK-)4 (64Cu-RaftRGD, an αVβ3 integrin [αVβ3] tracer), and 64Cu-diacetyl-bis (N4-methylthiosemicarbazone) (64Cu-ATSM, a supposed tracer for hypoxic metabolism) in a small animal tumor model. Results Mice with subcutaneous αVβ3-positive U87MG glioblastoma xenografts were used. The intratumoral distribution of a near-infrared dye, Cy5.5-labeled RAFT-c(-RGDfK-)4 (Cy5.5-RaftRGD), 64Cu-RaftRGD, and 64Cu-ATSM was visualized by fluorescence imaging and autoradiography of the co-injected Cy5.5-RaftRGD with 64Cu-RaftRGD or 64Cu-ATSM at 3 h postinjection. Mice were treated with a single intravenous dose of the vehicle solution (control), 18.5 or 37 MBq of 64Cu-RaftRGD or 64Cu-ATSM, or a combination (18.5 MBq of each agent). The tumor volume, tumor cell proliferation, body weight, survival, and tumor and organ uptake of radiopharmaceuticals were assessed. It was shown that Cy5.5-RaftRGD colocalized with 64Cu-RaftRGD and could be used as a surrogate for the radioactive agent. The intratumoral distribution of Cy5.5-RaftRGD and 64Cu-ATSM was discordant and nearly complementary, indicating a more uniform distribution of radioactivity achievable with the combined use of 64Cu-RaftRGD and 64Cu-ATSM. Neither 64Cu-RaftRGD nor 64Cu-ATSM showed significant effects on tumor growth at 18.5 MBq. The combination of both (18.5 MBq each) showed sustained inhibitory effects against tumor growth and tumor cell proliferation and prolonged the survival of the mice, compared to that by either single agent at 37 MBq. Interestingly, the uptake of the combination by the tumor was higher than that of 64Cu-RaftRGD alone, but lower than that of 64Cu-ATSM alone. The kidneys showed the highest uptake of 64Cu-RaftRGD, whereas the liver exhibited the highest uptake of 64Cu-ATSM. No obvious adverse effects were observed in all treated mice. Conclusions The combination of 64Cu-RaftRGD and 64Cu-ATSM achieved an improved antitumor effect owing to the more uniform intratumoral distribution of radioactivity. Thus, combining different radiopharmaceuticals to improve the intratumoral distribution would be a promising concept for more effective and safer TRT. Electronic supplementary material The online version of this article (10.1186/s13550-018-0407-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhao-Hui Jin
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan.
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Mélissa Degardin
- Département de Chimie Moléculaire-UMR CNRS 5250, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France
| | - Aya Sugyo
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Kotaro Nagatsu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Yasuhisa Fujibayashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Pascal Dumy
- IBMM, UMR-5247, Université de Montpellier, CNRS, École Nationale Supérieure de Chimie de Montpellier, 34296, Montpellier Cedex 5, France
| | - Didier Boturyn
- Département de Chimie Moléculaire-UMR CNRS 5250, Université Grenoble Alpes, 38041, Grenoble Cedex 9, France
| | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| |
Collapse
|
36
|
Fiedler L, Kellner M, Oos R, Böning G, Ziegler S, Bartenstein P, Zeidler R, Gildehaus FJ, Lindner S. Fully Automated Production and Characterization of 64 Cu and Proof-of-Principle Small-Animal PET Imaging Using 64 Cu-Labelled CA XII Targeting 6A10 Fab. ChemMedChem 2018; 13:1230-1237. [PMID: 29667369 DOI: 10.1002/cmdc.201800130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/09/2018] [Indexed: 01/26/2023]
Abstract
64 Cu is a cyclotron-produced radionuclide which offers, thanks to its characteristic decay scheme, the possibility of combining positron emission tomography (PET) investigations with radiotherapy. We evaluated the Alceo system from Comecer SpA to automatically produce 64 Cu for radiolabelling purposes. We established a 64 Cu production routine with high yields and radionuclide purity in combination with excellent operator radiation protection. The carbonic anhydrase XII targeting 6A10 antibody Fab fragment was successfully radiolabelled with the produced 64 Cu, and proof-of-principle small-animal PET experiments on mice bearing glioma xenografts were performed. We obtained a high tumor-to-contralateral muscle ratio, which encourages further in vivo investigations of the radioconjugate regarding a possible application in diagnostic tumor imaging.
Collapse
Affiliation(s)
- Luise Fiedler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Markus Kellner
- Helmholtz-Zentrum München, German Research Center for Environmental Health, Research Group Gene Vectors, Marchioninistrasse 25, 81377, Munich, Germany
| | - Rosel Oos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Reinhard Zeidler
- Helmholtz-Zentrum München, German Research Center for Environmental Health, Research Group Gene Vectors, Marchioninistrasse 25, 81377, Munich, Germany.,Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|
37
|
Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, Zhang MR. Small-scale production of 67 Cu for a preclinical study via the 64 Ni(α, p) 67 Cu channel. Nucl Med Biol 2018; 59:56-60. [DOI: 10.1016/j.nucmedbio.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
|
38
|
Synowiecki MA, Perk LR, Nijsen JFW. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm Chem 2018; 3:3. [PMID: 29503860 PMCID: PMC5824710 DOI: 10.1186/s41181-018-0038-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
The global network of cyclotrons has expanded rapidly over the last decade. The bulk of its industrial potential is composed of small medical cyclotrons with a proton energy below 20 MeV for radionuclides production. This review focuses on the recent developments of novel medical radionuclides produced by cyclotrons in the energy range of 3 MeV to 20 MeV. The production of the following medical radionuclides will be described based on available literature sources: Tc-99 m, I-123, I-124, Zr-89, Cu-64, Ga-67, Ga-68, In-111, Y-86 and Sc-44. Remarkable developments in the production process have been observed in only some cases. More research is needed to make novel radionuclide cyclotron production available for the medical industry.
Collapse
Affiliation(s)
- Mateusz Adam Synowiecki
- Radboudumc, Radboud Translational Medicine B.V, Geert Grooteplein 21 (route 142), 6525EZ Nijmegen, The Netherlands
| | - Lars Rutger Perk
- Radboudumc, Radboud Translational Medicine B.V, Geert Grooteplein 21 (route 142), 6525EZ Nijmegen, The Netherlands
| | - J. Frank W. Nijsen
- Radboudumc, Dept. of Radiology and Nuclear Medicine, Geert Grooteplein-Zuid 10, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
39
|
Yoshii Y, Matsumoto H, Yoshimoto M, Zhang MR, Oe Y, Kurihara H, Narita Y, Jin ZH, Tsuji AB, Yoshinaga K, Fujibayashi Y, Higashi T. Multiple Administrations of 64Cu-ATSM as a Novel Therapeutic Option for Glioblastoma: a Translational Study Using Mice with Xenografts. Transl Oncol 2017; 11:24-30. [PMID: 29154146 PMCID: PMC5697999 DOI: 10.1016/j.tranon.2017.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma is the most aggressive malignant brain tumor in humans and is difficult to cure using current treatment options. Hypoxic regions are frequently found in glioblastoma, and increased levels of hypoxia are associated with poor clinical outcomes of glioblastoma patients. Hypoxia plays important roles in the progression and recurrence of glioblastoma because of drug delivery deficiencies and induction of hypoxia-inducible factor-1α in tumor cells, which lead to poor prognosis. We focused on a promising hypoxia-targeted internal radiotherapy agent, 64Cu-diacetyl-bis (N4-methylthiosemicarbazone) (64Cu-ATSM), to address the need for additional treatment for glioblastoma. This compound can target the overreduced state under hypoxic conditions within tumors. Clinical positron emission tomography studies using radiolabeled Cu-ATSM have shown that Cu-ATSM accumulates in glioblastoma and its uptake is associated with high hypoxia-inducible factor-1α expression. To evaluate the therapeutic potential of this agent for glioblastoma, we examined the efficacy of 64Cu-ATSM in mice bearing U87MG glioblastoma tumors. Administration of single dosage (18.5, 37, 74, 111, and 148 MBq) and multiple dosages (37 MBq × 4) of 64Cu-ATSM was investigated. Single administration of 64Cu-ATSM in high-dose groups dose-dependently inhibited tumor growth and prolonged survival, with slight and reverse signs of adverse events. Multiple dosages of 64Cu-ATSM remarkably inhibited tumor growth and prolonged survival. By splitting the dose of 64Cu-ATSM, no adverse effects were observed. Our findings indicate that multiple administrations of 64Cu-ATSM have effective antitumor effects in glioblastoma without side effects, indicating its potential for treating this fatal disease.
Collapse
Affiliation(s)
- Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| | - Hiroki Matsumoto
- Research Centre, Nihon Medi-Physics Co., Ltd., Sodegaura 299-0266, Japan
| | - Mitsuyoshi Yoshimoto
- Division of Functional Imaging, National Cancer Center Hospital East, 277-8577, Kashiwa, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yoko Oe
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, National Cancer Center Hospital, 104-0045, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 104-0045, Tokyo, Japan
| | - Zhao-Hui Jin
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Keiichiro Yoshinaga
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yasuhisa Fujibayashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
40
|
Yoshii Y, Yoshimoto M, Matsumoto H, Furukawa T, Zhang MR, Inubushi M, Tsuji AB, Fujibayashi Y, Higashi T, Saga T. 64Cu-ATSM internal radiotherapy to treat tumors with bevacizumab-induced vascular decrease and hypoxia in human colon carcinoma xenografts. Oncotarget 2017; 8:88815-88826. [PMID: 29179478 PMCID: PMC5687648 DOI: 10.18632/oncotarget.21323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022] Open
Abstract
Bevacizumab, an anti-vascular endothelial growth factor (VEGF) antibody, is an antiangiogenic agent clinically used for various cancers. However, repeated use of this agent leads to tumor-decreased vascularity and hypoxia with activation of an HIF-1 signaling pathway, which results in drug delivery deficiency and induction of malignant behaviors in tumors. Here, we developed a novel strategy to treat tumors with bevacizumab-induced vascular decrease and hypoxia using 64Cu-diacetyl-bis (N4-methylthiosemicarbazone) (64Cu-ATSM), a potential theranostic agent, which possesses high tissue permeability and can target over-reduced conditions under hypoxia in tumors, with a human colon carcinoma HT-29 tumor-bearing mouse model. The long-term treatment with bevacizumab caused decreased blood vessel density and activation of an HIF-1 signaling pathway; increased uptake of 64Cu-ATSM was also observed despite limited blood vessel density in HT-29 tumors. In vivo high-resolution SPECT/PET/CT imaging confirmed reduced vascularity and increased proportion of 64Cu-ATSM uptake areas within the bevacizumab-treated tumors. 64Cu-ATSM therapy was effective to inhibit tumor growth and prolong survival of the bevacizumab-treated tumor-bearing mice without major adverse effects. In conclusion, 64Cu-ATSM therapy effectively enhanced anti-tumor effects in tumors with bevacizumab-induced vascular decrease and hypoxia. 64Cu-ATSM therapy could represent a novel approach as an add-on to antiangiogenic therapy.
Collapse
Affiliation(s)
- Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mitsuyoshi Yoshimoto
- Division of Functional Imaging, National Cancer Center Hospital East, Kashiwa, Japan
| | | | - Takako Furukawa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masayuki Inubushi
- Department of Nuclear Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuhisa Fujibayashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tatsuya Higashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tsuneo Saga
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Department of Diagnostic Radiology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
41
|
Establishing Reliable Cu-64 Production Process: From Target Plating to Molecular Specific Tumor Micro-PET Imaging. Molecules 2017; 22:molecules22040641. [PMID: 28420176 PMCID: PMC6154658 DOI: 10.3390/molecules22040641] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 12/04/2022] Open
Abstract
Copper-64 is a useful radioisotope for positron emission tomography (PET). Due to the wide range of applications, the demand of 64Cu with low metallic impurities is increasing. Here we report a simple method for the efficient production of high specific activity 64Cu using a cyclotron for biomedical application. We designed new equipment based on the plating of enriched 64Ni as the target, and used automated ion exchange chromatography to purify copper-64 efficiently after irradiation and dissolution of the target in good radiochemical and chemical yield and purity. The 64Cu radionuclide produced using 99.32% enriched 64Ni with a density of 61.4 ± 5.0 mg/cm2, reaching a total radioactivity greater than 200 mCi, with specific activity up to 5.6 GBq/μmoL. It was further incorporated into modified monoclonal antibody DOTA-rituximab to synthesize 64Cu-DOTA-rituximab, which was used successfully for micro-PET imaging.
Collapse
|
42
|
67Cu-Radiolabeling of a multimeric RGD peptide for αVβ3 integrin-targeted radionuclide therapy. Nucl Med Commun 2017; 38:347-355. [DOI: 10.1097/mnm.0000000000000646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|