1
|
Suwattananuruk P, Yaset S, Chotipanich C, Moldes-Anaya A, Sundset R, Berzaghi R, Figenschau S, Claes S, Schols D, Rojsitthisak P, Kranz M, Vajragupta O. Radiosynthesis and preclinical evaluation of a 68Ga-labeled tetrahydroisoquinoline-based ligand for PET imaging of C-X-C chemokine receptor type 4 in an animal model of glioblastoma. EJNMMI Radiopharm Chem 2024; 9:61. [PMID: 39162901 PMCID: PMC11335985 DOI: 10.1186/s41181-024-00290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND This study aimed to develop a novel positron emission tomography (PET) tracer, [68Ga]Ga-TD-01, for CXCR4 imaging. To achieve this goal, the molecular scaffold of TIQ15 was tuned by conjugation with the DOTA chelator to make it suitable for 68Ga radiolabeling. METHODS A bifunctional chelator was prepared by conjugating the amine group of TIQ15 with p-NCS-Bz-DOTA, yielding TD-01, with a high yield (68.92%). TD-01 was then radiolabeled with 68Ga using 0.1 M ammonium acetate at 60 °C for 10 min. A 1-h dynamic small animal PET/MRI study of the labeled compound in GL261-luc2 tumor-bearing mice was performed, and brain tumor uptake was assessed. Blocking studies involved pre-administration of TIQ15 (10 mg/kg) 10 min before the PET procedure started. RESULTS [68Ga]Ga-TD-01 exhibited a radiochemical yield (RCY) of 36.33 ± 1.50% (EOS), with a radiochemical purity > 99% and a molar activity of 55.79 ± 1.96 GBq/µmol (EOS). The radiotracer showed in vitro stability in PBS and human plasma for over 4 h. Biodistribution studies in healthy animals revealed favorable kinetics for subsequent PET pharmacokinetic modeling with low uptake in the brain and moderate uptake in lungs, intestines and spleen. Elimination could be assigned to a renal-hepatic pathway as showed by high uptake in kidneys, liver, and urinary bladder. Importantly, [68Ga]Ga-TD-01 uptake in glioblastoma (GBM)-bearing mice significantly decreased upon competition with TIQ15, with a baseline tumor-to-background ratios > 2.5 (20 min p.i.), indicating high specificity. CONCLUSION The newly developed CXCR4 PET tracer, [68Ga]Ga-TD-01, exhibited a high binding inhibition for CXCR4, excellent in vitro stability, and favorable pharmacokinetics, suggesting that the compound is a promising candidate for full in vivo characterization of CXCR4 expression in GBM, with potential for further development as a tool in cancer diagnosis.
Collapse
Affiliation(s)
- Piyapan Suwattananuruk
- Department of Food and Pharmaceutical Chemistry and Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sukanya Yaset
- National Cyclotron and PET Centre, Chulabhorn Hospital, Bangkok, Thailand
| | | | | | - Rune Sundset
- PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Nuclear Medicine and Radiation Biology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Rodrigo Berzaghi
- Department of Clinical Medicine, Nuclear Medicine and Radiation Biology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Stine Figenschau
- Department of Clinical Medicine, Nuclear Medicine and Radiation Biology Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sandra Claes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Louvain, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Louvain, Belgium
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry and Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Mathias Kranz
- PET Imaging Center, University Hospital of North Norway, Tromsø, Norway.
- Department of Clinical Medicine, Nuclear Medicine and Radiation Biology Research Group, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Opa Vajragupta
- Department of Food and Pharmaceutical Chemistry and Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
2
|
Silberbauer LR, Rischka L, Vraka C, Hartmann AM, Godbersen GM, Philippe C, Pacher D, Nics L, Klöbl M, Unterholzner J, Stimpfl T, Wadsak W, Hahn A, Hacker M, Rujescu D, Kasper S, Lanzenberger R, Gryglewski G. ABCB1 variants and sex affect serotonin transporter occupancy in the brain. Mol Psychiatry 2022; 27:4502-4509. [PMID: 36071112 PMCID: PMC7613909 DOI: 10.1038/s41380-022-01733-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022]
Abstract
Strategies to personalize psychopharmacological treatment promise to improve efficacy and tolerability. We measured serotonin transporter occupancy immediately after infusion of the widely prescribed P-glycoprotein substrate citalopram and assessed to what extent variants of the ABCB1 gene affect drug target engagement in the brain in vivo. A total of 79 participants (39 female) including 31 patients with major depression and 48 healthy volunteers underwent two PET/MRI scans with the tracer [11C]DASB and placebo-controlled infusion of citalopram (8 mg) in a cross-over design. We tested the effect of six ABCB1 single nucleotide polymorphisms and found lower SERT occupancy in ABCB1 rs2235015 minor allele carriers (n = 26, MAF = 0.18) compared to major allele homozygotes (t73 = 2.73, pFWE < 0.05) as well as in men compared to women (t73 = 3.33, pFWE < 0.05). These effects were robust to correction for citalopram plasma concentration, age and diagnosis. From occupancy we derived the ratio of occupied to unoccupied SERT, because in theory this measure is equal to the product of drug affinity and concentration at target sites. A model combining genotype with basic clinical variables, predicted that, at the same dosage, occupied to unoccupied SERT ratio was -14.48 ± 5.38% lower in rs2235015 minor allele carriers, +19.10 ± 6.95% higher in women, -4.83 ± 2.70% lower per 10 kg bodyweight, and -2.68 ± 3.07% lower per 10 years of age. Our results support the exploration of clinical algorithms with adjustment of initial citalopram dosing and highlight the potential of imaging-genetics for precision pharmacotherapy in psychiatry.
Collapse
Affiliation(s)
- Leo R. Silberbauer
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Lucas Rischka
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Annette M. Hartmann
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Godber Mathis Godbersen
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Daniel Pacher
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Thomas Stimpfl
- grid.22937.3d0000 0000 9259 8492Clinical Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria ,grid.499898.dCenter for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Andreas Hahn
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- grid.22937.3d0000 0000 9259 8492Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria. .,Child Study Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Philippe C, Klebermass EM, Balber T, Kulterer OC, Zeilinger M, Egger G, Dumanic M, Herz CT, Kiefer FW, Scheuba C, Scherer T, Fürnsinn C, Vraka C, Pallitsch K, Spreitzer H, Wadsak W, Viernstein H, Hacker M, Mitterhauser M. Discovery of melanin-concentrating hormone receptor 1 in brown adipose tissue. Ann N Y Acad Sci 2021; 1494:70-86. [PMID: 33502798 PMCID: PMC8248337 DOI: 10.1111/nyas.14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 12/23/2020] [Indexed: 11/26/2022]
Abstract
Although extensive research on brown adipose tissue (BAT) has stimulated optimism in the battle against obesity and diabetes, BAT physiology and organ crosstalk are not fully understood. Besides BAT, melanin‐concentrating hormone (MCH) and its receptor (MCHR1) play an important role in energy homeostasis. Because of the link between hypothalamic MCH neurons and sympathetic BAT activation via β‐adrenoceptors, we investigated the expression and physiological role of the MCHR1 in BAT. MCHR1 was detected in rodent and human BAT with RT‐qPCR and western blot analyses. In vivo imaging in rats used the glucose analog [18F]FDG and the MCHR1‐tracer [11C]SNAP‐7941. We found that the β3‐adrenoceptor (ADRB3) agonist CL316,243 increased [11C]SNAP‐7941 uptake in BAT. Additionally, a pharmacological concentration of SNAP‐7941—a low‐affinity ADRB3 ligand—stimulated [18F]FDG uptake, reflecting BAT activation. In cultured human adipocytes, CL316,243 induced MCHR1 expression, further supporting a direct interaction between MCHR1 and ADRB3. These findings characterized MCHR1 expression in rodent and human BAT for the first time, including in vitro and in vivo data demonstrating a link between MCHR1 and the β3‐adrenergic system. The presence of MCHR1 in BAT emphasizes the role of BAT in energy homeostasis and may help uncover treatment approaches for obesity.
Collapse
Affiliation(s)
- Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Eva-Maria Klebermass
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Theresa Balber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Oana C Kulterer
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Markus Zeilinger
- Faculty of Engineering, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.,Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Monika Dumanic
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Carsten T Herz
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christian Scheuba
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Helmut Spreitzer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine - CBmed GmbH, Graz, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| |
Collapse
|
4
|
Philippe C, Zeilinger M, Dumanic M, Pichler F, Fetty L, Vraka C, Balber T, Wadsak W, Pallitsch K, Spreitzer H, Lanzenberger R, Hacker M, Mitterhauser M. SNAPshots of the MCHR1: a Comparison Between the PET-Tracers [ 18F]FE@SNAP and [ 11C]SNAP-7941. Mol Imaging Biol 2019; 21:257-268. [PMID: 29948643 PMCID: PMC6449294 DOI: 10.1007/s11307-018-1212-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The melanin-concentrating hormone receptor 1 (MCHR1) has become an important pharmacological target, since it may be involved in various diseases, such as diabetes, insulin resistance, and obesity. Hence, a suitable positron emission tomography radiotracer for the in vivo assessment of the MCHR1 pharmacology is imperative. The current paper contrasts the extensive in vitro, in vivo, and ex vivo assessments of the radiotracers [18F]FE@SNAP and [11C]SNAP-7941 and provides comprehensive information about their biological and physicochemical properties. Furthermore, it examines their suitability for first-in-man imaging studies. PROCEDURES Kinetic real-time cell-binding studies with [18F]FE@SNAP and [11C]SNAP-7941 were conducted on adherent Chines hamster ovary (CHO-K1) cells stably expressing the human MCHR1 and MCHR2. Small animal imaging studies on mice and rats were performed under displacement and baseline conditions, as well as after pretreatment with the P-glycoprotein/breast cancer resistant protein inhibitor tariquidar. After the imaging studies, detailed analyses of the ex vivo biodistribution were performed. Ex vivo metabolism was determined in rat blood and brain and analyzed at various time points using a quantitative radio-HPLC assay. RESULTS [11C]SNAP-7941 demonstrates high uptake on CHO-K1-hMCHR1 cells, whereas no uptake was detected for the CHO-K1-hMCHR2 cells. In contrast, [18F]FE@SNAP evinced binding to CHO-K1-hMCHR1 and CHO-K1-hMCHR2 cells. Imaging studies with [18F]FE@SNAP and [11C]SNAP-7941 showed an increased brain uptake after tariquidar pretreatment in mice, as well as in rats, and exhibited a significant difference between the time-activity curves of the baseline and blocking groups. Biodistribution of both tracers demonstrated a decreased uptake after displacement. [11C]SNAP-7941 revealed a high metabolic stability in rats, whereas [18F]FE@SNAP was rapidly metabolized. CONCLUSIONS Both radiotracers demonstrate appropriate imaging properties for the MCHR1. However, the pronounced metabolic stability as well as superior selectivity and affinity of [11C]SNAP-7941 underlines the decisive superiority over [18F]FE@SNAP.
Collapse
Affiliation(s)
- Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Markus Zeilinger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Faculty of Engineering, University of Applied Sciences Wiener Neustadt, Neustadt, Austria
| | - Monika Dumanic
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Florian Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Faculty of Engineering, University of Applied Sciences Wiener Neustadt, Neustadt, Austria
| | - Lukas Fetty
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Radiotherapy, Division of Medical Physics, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Theresa Balber
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Inorganic Chemistry, University of Vienna, Vienna, Austria
- CBmed, Graz, Austria
| | | | - Helmut Spreitzer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
| |
Collapse
|
5
|
Balber T, Benčurová K, Kiefer FW, Kulterer OC, Klebermass EM, Egger G, Tran L, Wagner KH, Viernstein H, Pallitsch K, Spreitzer H, Hacker M, Wadsak W, Mitterhauser M, Philippe C. In vitro Radiopharmaceutical Evidence for MCHR1 Binding Sites in Murine Brown Adipocytes. Front Endocrinol (Lausanne) 2019; 10:324. [PMID: 31244769 PMCID: PMC6581027 DOI: 10.3389/fendo.2019.00324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/03/2019] [Indexed: 12/29/2022] Open
Abstract
[11C]SNAP-7941 and its radiofluorinated, fluoro-ethyl derivative [18F]FE@SNAP have been developed as the first positron emission tomography tracers for melanin-concentrating hormone receptor 1 (MCHR1) imaging. Accumulation of these MCHR1 PET-tracers in rat brown adipose tissue (BAT) in vivo provided first indication of MCHR1 expression in rodent BAT. To rule out off-target binding, affinity of both MCHR1 ligands toward adrenergic beta-3 receptors (ADRB3) was examined. Further, specific binding of [11C]SNAP-7941 to brown adipocytes and effects of MCHR1 ligands on brown adipocyte activation were investigated. SNAP-7941 and FE@SNAP evinced to be highly selective toward MCHR1. [11C]SNAP-7941 binding to brown adipocytes was shown to be mainly MCHR1-specific. This data strongly indicates MCHR1 expression in rodent BAT and moreover, a peripheral, anti-obesity effect of MCHR1 antagonists directly exerted in BAT is proposed. Moreover, MCHR1 expression in murine brown adipocytes was confirmed by protein and mRNA analysis. We conclude that MCHR1 PET imaging contributes to basic research in endocrinology by elucidating the involvement of the MCH system in peripheral tissues, such as BAT.
Collapse
Affiliation(s)
- Theresa Balber
- Division of Nuclear Medicine, Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Katarína Benčurová
- Division of Nuclear Medicine, Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Florian Wolfgang Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Oana Cristina Kulterer
- Division of Nuclear Medicine, Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Eva-Maria Klebermass
- Division of Nuclear Medicine, Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Helmut Spreitzer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine – CBmed, GmbH, Graz, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- *Correspondence: Markus Mitterhauser
| | - Cécile Philippe
- Division of Nuclear Medicine, Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|