1
|
Liu YL, Xu JJ, Han LR, Liu XF, Lin MH, Wang Y, Xiao Z, Huang YK, Ren P, Huang X. Meranzin Hydrate Improves Depression-Like Behaviors and Hypomotility via Ghrelin and Neurocircuitry. Chin J Integr Med 2022; 29:490-499. [PMID: 35881212 DOI: 10.1007/s11655-022-3308-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate whether meranzin hydrate (MH) can alleviate depression-like behavior and hypomotility similar to Chaihu Shugan Powder (CSP), and further explore the potential common mechanisms. METHODS Totally 120 Spraque-Dawley rats were randomly divided into 5-8 groups including sham, vehicle, fluoxetine (20 mg/kg), mosapride (10 mg/kg), CSP (30 g/kg), MH (9.18 mg/kg), [D-Lys3]-GHRP-6 (Dlys, 0.5 mg/kg), and MH+Dlys groups by a random number table, 8 rats in each group. And 32 mice were randomly divided into wild-type, MH (18 mg/kg), growth hormone secretagogue receptor-knockout (GHSR-KO), and GHSR+MH groups, 8 mice in each group. The forced swimming test (FST), open field test (OFT), tail suspension test (TST), gastric emptying (GE) test, and intestinal transit (IT) test were used to assess antidepressant and prokinetic (AP) effects after drug single administration for 30 min with absorbable identification in rats and mice, respectively. The protein expression levels of brain-derived neurotrophic factor (BDNF) and phosphorylated mammalian target of rapamycin (p-mTOR) in the hippocampus of rats were evaluated by Western blot. The differences in functional brain changes were determined via 7.0 T functional magnetic resonance imaging-blood oxygen level-dependent (fMRI-BOLD). RESULTS MH treatment improved depression-like behavior (FST, OFT) and hypomotility (GE, IT) in the acute forced swimming (FS) rats (all P<0.05), and the effects are similar to the parent formula CSP. The ghrelin antagonist [D-Lys3]-GHRP-6 inhibited the effect of MH on FST and GE (P<0.05). Similarly, MH treatment also alleviated depression-like behavior (FST, TST) in the wild-type mice, however, no effects were found in the GHSR KO mice. Additionally, administration of MH significantly stimulated BDNF and p-mTOR protein expressions in the hippocampus (both P<0.01), which were also prevented by [D-Lys3]-GHRP-6 (P<0.01). Besides, 3 main BOLD foci following acute FS rats implicated activity in hippocampus-thalamus-basal ganglia (HTB) circuits. The [D-Lys3]-GHRP-6 synchronously inhibited BOLD HTB foci. As expected, prokinetic mosapride only had effects on the thalamus and basal ganglia, but not on the hippocampus. Within the HTB, the hippocampus is implicated in depression and FD. CONCLUSIONS MH accounts for part of AP effects of parent formula CSP in acute FS rats, mainly via ghrelin-related shared regulation coupled to BOLD signals in brain areas. This novel functionally connection of HTB following acute stress, treatment, and regulation highlights anti-depression unified theory.
Collapse
Affiliation(s)
- Ya-Lin Liu
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jian-Jun Xu
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin-Ran Han
- Department of Outpatient, Xuzhou Central Hospital, Xuzhou, Shangdong Province, 221000, China
| | - Xiang-Fei Liu
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mu-Hai Lin
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Wang
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhe Xiao
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun-Ke Huang
- Department of Obstetrics and Gynecology, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Ping Ren
- Department of Geriatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xi Huang
- Institute of Traditional Chinese Medicine-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Effect of Electroacupuncture on Reuptake of Serotonin via miRNA-16 Expression in a Rat Model of Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7124318. [PMID: 31929820 PMCID: PMC6942800 DOI: 10.1155/2019/7124318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
The current study aimed to investigate the effects and mechanisms of electroacupuncture (EA) treatment applied to Bai hui (GV20) and Yin tang (GV29) acupoints (1 mA, 2 Hz, continuous wave, 20 minutes) for 28 days in a rat model of chronic unpredictable mild stress (CUMS) on reuptake of serotonin (5-hydroxytryptamine (5-HT)) and miRNA-16 levels in the hippocampus and serum. Rats were housed in individual cages, and CUMS was used to establish a rat model of depression. After EA treatment for 4 weeks, behavioral changes and indices including 5-HT transporter (SERT), 5-HT, and miRNA-16 levels in the hippocampus and serum were examined. The EA treatment significantly improved base levels of sucrose preference and exploratory behavior and significantly decreased SERT protein and mRNA expression in the hippocampus of depressed rats. Significantly increased 5-HT levels were observed, and miRNA-16 levels were significantly decreased in the hippocampus and serum of depressed rats. In conclusion, the antidepressant effects of EA treatment may be affected via inhibition of 5-HT reuptake, upregulation of 5-HT levels, and inhibition of miRNA-16 expression in the hippocampus and serum.
Collapse
|
3
|
Systemic delivery and SPECT/CT in vivo imaging of 125I-labelled oncolytic adenoviral mutants in models of pancreatic cancer. Sci Rep 2019; 9:12840. [PMID: 31492884 PMCID: PMC6731255 DOI: 10.1038/s41598-019-49150-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Early phase clinical trials have demonstrated good therapeutic index for oncolytic adenoviruses in patients with solid tumours when administered intratumorally, resulting in local tumour elimination. Entrapment and binding of adenovirus to erythrocytes, blood factors, and neutralising antibodies have prevented efficient systemic delivery and targeting of distant lesions in the clinic. We previously generated the novel replication-selective Ad-3∆-A20T to improve tumour targeting by increasing the viral dose at distant sites. Here, we developed a protocol to directly radiolabel the virus for rapid and sensitive detection by single-photon emitted computed tomography (SPECT/CT) providing a convenient method for determining biodistribution following intravenous administration in murine models. Longitudinal whole-body scans, demonstrated efficient viral uptake in pancreatic Suit-2 and Panc04.03 xenografts with trace amounts of 125I-Ad-3∆-A20T up to 48 h after tail vein delivery. Hepatic and splenic radioactivity decreased over time. Analysis of tissues harvested at the end of the study, confirmed potency and selectivity of mutant viruses. Ad-3∆-A20T-treated animals showed higher viral genome copy numbers and E1A gene expression in tumors than in liver and spleen compared to Ad5wt. Our direct radiolabeling approach, allows for immediate screening of novel oncolytic adenoviruses and selection of optimal viral genome alterations to generate improved mutants.
Collapse
|
4
|
Sun M, Xiao H, Hong H, Zhang A, Zhang Y, Liu Y, Zhu L, Kung HF, Qiao J. Rapid screening of nine unradiolabeled candidate compounds as PET brain imaging agents using cassette-wave microdosing and LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1121:28-38. [PMID: 31100605 DOI: 10.1016/j.jchromb.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 11/17/2022]
Abstract
The R&D of PET imaging agents is a complex system engineering, simplifying screening steps and increasing screening efficiency have become popular issues. The purpose of this study is to develop a new screening procedure using cassette-wave microdosing and LC-MS/MS to enhance the screening throughput of unradiolabeled candidate compounds as PET imaging agents. Nine compounds were divided into 3 sets and made into 3 cassettes. Fifteen rats were randomly divided into 3 groups, and every animal received three intravenous bolus injections at three different time points; the doses were at microdose levels. This dosing approach takes advantage of temporal and spatial differences and is likened to an input wave; therefore, this approach was named cassette-wave microdosing. The samples of different brain regions such as the hypothalamus, striatum, hippocampus, cortex, cerebellum and the remainder of the brain were detected by LC-MS/MS analysis. The research potential of the compounds as PET imaging agents is evaluated in terms of brain biodistribution data. The screening method is rapid, highly efficient, reliable and reduces animal usage. Additionally, it can shorten the evaluation process of radiopharmaceuticals and enhance the screening throughput of PET radiopharmaceuticals without the use of radioactive agents.
Collapse
Affiliation(s)
- Mingyue Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Hao Xiao
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Haiyan Hong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Aili Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yan Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yajing Liu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hank F Kung
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| |
Collapse
|