1
|
Rodrigues Toledo C, Tantawy AA, Lima Fuscaldi L, Malavolta L, de Aguiar Ferreira C. EGFR- and Integrin α Vβ 3-Targeting Peptides as Potential Radiometal-Labeled Radiopharmaceuticals for Cancer Theranostics. Int J Mol Sci 2024; 25:8553. [PMID: 39126121 PMCID: PMC11313252 DOI: 10.3390/ijms25158553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The burgeoning field of cancer theranostics has witnessed advancements through the development of targeted molecular agents, particularly peptides. These agents exploit the overexpression or mutations of specific receptors, such as the Epidermal Growth Factor receptor (EGFR) and αVβ3 integrin, which are pivotal in tumor growth, angiogenesis, and metastasis. Despite the extensive research into and promising outcomes associated with antibody-based therapies, peptides offer a compelling alternative due to their smaller size, ease of modification, and rapid bioavailability, factors which potentially enhance tumor penetration and reduce systemic toxicity. However, the application of peptides in clinical settings has challenges. Their lower binding affinity and rapid clearance from the bloodstream compared to antibodies often limit their therapeutic efficacy and diagnostic accuracy. This overview sets the stage for a comprehensive review of the current research landscape as it relates to EGFR- and integrin αVβ3-targeting peptides. We aim to delve into their synthesis, radiolabeling techniques, and preclinical and clinical evaluations, highlighting their potential and limitations in cancer theranostics. This review not only synthesizes the extant literature to outline the advancements in peptide-based agents targeting EGFR and integrin αVβ3 but also identifies critical gaps that could inform future research directions. By addressing these gaps, we contribute to the broader discourse on enhancing the diagnostic precision and therapeutic outcomes of cancer treatments.
Collapse
Affiliation(s)
- Cibele Rodrigues Toledo
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
| | - Ahmed A. Tantawy
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Leonardo Lima Fuscaldi
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Carolina de Aguiar Ferreira
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Mendonça FF, Sobral DV, Durante ACR, Miranda ACC, Mejia J, de Paula Faria D, Marques FLN, de Barboza MF, Fuscaldi LL, Malavolta L. Assessment of bioactive peptides derived from laminin-111 as prospective breast cancer-targeting agents. Amino Acids 2024; 56:1. [PMID: 38285098 PMCID: PMC10824877 DOI: 10.1007/s00726-023-03379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/24/2023] [Indexed: 01/30/2024]
Abstract
Breast cancer remains a pressing public health issue primarily affecting women. Recent research has spotlighted bioactive peptides derived from laminin-111, implicated in breast tumor development. Remarkably, the sequences IKVAV, YIGSR, and KAFDITYVRLKF from the α1, β1, and γ1 chains, respectively, have garnered significant attention. This study aims to assess the potential of these radiolabeled peptides as targeting agents for breast cancer. The three peptides were synthesized using the Fmoc strategy, purified via reversed-phase high-performance liquid chromatography (RP-HPLC), and characterized through mass spectrometry. Iodine-131 (131I) radiolabeling was performed using the chloramine T method, exhibiting high radiochemical yield and stability for [131I]I-YIKVAV and [131I]I-YIGSR. Conversely, [131I]I-KAFDITYVRLKF demonstrated low radiochemical yield and stability and was excluded from the biological studies. The lipophilicity of the compounds ranged from - 2.12 to - 1.10. Serum protein binding assay for [131I]I-YIKVAV and [131I]I-YIGSR reached ≅ 48% and ≅ 25%, respectively. Affinity for breast cancer cells was evaluated using MDA-MB-231 and MCF-7 tumor cell lines, indicating the affinity of the radiopeptides with these tumor cells. Ex vivo biodistribution profiles of the radiopeptides were assessed in the MDA-MB-231 breast tumor animal model, revealing tumor tissue accumulation, supported by a high tumor-to-contralateral muscle ratio and autoradiography. These results signify the effective penetration of YIKVAV and YIGSR into tumor tissue. Therefore, the synthesized α1 and β1 peptide fragments exhibit favorable characteristics as potential breast cancer-targeting agents, promising future exploration as radiopharmaceuticals for breast cancer.
Collapse
Affiliation(s)
- Fernanda Ferreira Mendonça
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Rua Dr. Cesareo Motta Jr. 61, Sao Paulo, CEP 01221-020, Brazil
| | - Danielle Vieira Sobral
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Rua Dr. Cesareo Motta Jr. 61, Sao Paulo, CEP 01221-020, Brazil
| | - Ana Claudia Ranucci Durante
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Rua Dr. Cesareo Motta Jr. 61, Sao Paulo, CEP 01221-020, Brazil
| | | | - Jorge Mejia
- Hospital Israelita Albert Einstein, Sao Paulo, 05521-200, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM-43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, 01246-903, Brazil
| | - Fabio Luiz Navarro Marques
- Laboratory of Nuclear Medicine (LIM-43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, 01246-903, Brazil
| | | | - Leonardo Lima Fuscaldi
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Rua Dr. Cesareo Motta Jr. 61, Sao Paulo, CEP 01221-020, Brazil
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Rua Dr. Cesareo Motta Jr. 61, Sao Paulo, CEP 01221-020, Brazil.
| |
Collapse
|
3
|
Fully Automated Macro- and Microfluidic Production of [ 68Ga]Ga-Citrate on mAIO ® and iMiDEV TM Modules. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030994. [PMID: 35164258 PMCID: PMC8838513 DOI: 10.3390/molecules27030994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022]
Abstract
68Ga-radionuclide has gained importance due to its availability via 68Ge/68Ga generator or cyclotron production, therefore increasing the number of 68Ga-based PET radiopharmaceuticals available in clinical practice. [68Ga]Ga-citrate PET has been shown to be prominent for detection of inflammation/infection of the musculoskeletal, gastrointestinal, respiratory, and cardiovascular systems. Automation and comparison between conventional and microfluidic production of [68Ga]Ga-citrate was performed using miniAllInOne® (Trasis) and iMiDEV™ (PMB-Alcen) synthetic modules. Fully automated procedures were elaborated for cGMP production of tracer. In order to facilitate the tracer approval as a radiopharmaceutical for clinical use, a new method for radiochemical identity determination by HPLC analysis to complement standard TLC radiochemical purity measurement was developed. The results showed higher radiochemical yields when using MCX cartridge on the conventional module mAIO®, while a PS-H+ cation exchanger was shown to be preferred for integration into the microfluidic cassette of iMiDEV™ module. In this study, the fully automated radiosynthesis of [68Ga]Ga-citrate using different synthesizers demonstrated reliable and reproducible radiochemical yields. In order to demonstrate the applicability of [68Ga]Ga-citrate, in vitro and in vivo studies were performed showing similar characteristics of the tracer obtained using macro- and microfluidic ways of production.
Collapse
|
4
|
Sobral DV, Fuscaldi LL, Durante ACR, Mendonça FF, de Oliveira LR, Miranda ACC, Mejia J, Montor WR, de Barboza MF, Malavolta L. Comparative Evaluation of Radiochemical and Biological Properties of 131I- and [99mTc]Tc(CO)3-Labeled RGD Analogues Planned to Interact with the αvβ3 Integrin Expressed in Glioblastoma. Pharmaceuticals (Basel) 2022; 15:ph15020116. [PMID: 35215229 PMCID: PMC8876959 DOI: 10.3390/ph15020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
Radiolabeled peptides with high specificity for overexpressed receptors in tumor cells hold great promise for diagnostic and therapeutic applications. In this work, we aimed at comparing the radiolabeling efficiency and biological properties of two different RGD analogs: GRGDYV and GRGDHV, labeled with iodine-131 (131I) and technetium-99m-tricarbonyl complex [99mTc][Tc(CO)3]+. Additionally, we evaluated their interaction with the αvβ3 integrin molecule, overexpressed in a wide variety of tumors, including glioblastoma. Both peptides were chemically synthesized, purified and radiolabeled with 131I and [99mTc][Tc(CO)3]+ using the chloramine-T and tricarbonyl methodologies, respectively. The stability, binding to serum proteins and partition coefficient were evaluated for both radioconjugates. In addition, the binding and internalization of radiopeptides to rat C6 glioblastoma cells and rat brain homogenates from normal animals and a glioblastoma-induced model were assessed. Finally, ex vivo biodistribution studies were carried out. Radiochemical yields between 95–98% were reached for both peptides under optimized radiolabeling conditions. Both peptides were stable for up to 24 h in saline solution and in human serum. In addition, the radiopeptides have hydrophilic characteristics and a percentage of binding to serum proteins around 35% and 50% for the [131I]I-GRGDYV and [99mTc]Tc(CO)3-GRGDHV fragments, respectively. Radiopeptides showed the capacity of binding and internalization both in cell culture (C6) and rat brain homogenates. Biodistribution studies corroborated the results obtained with brain homogenates and confirmed the different binding characteristics due to the exchange of radionuclides and the presence of the tricarbonyl complex. Thereby, the results showed that both radiopeptides might be considered for future clinical applications.
Collapse
Affiliation(s)
- Danielle V. Sobral
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01221-020, Brazil; (D.V.S.); (L.L.F.); (F.F.M.); (L.R.d.O.); (W.R.M.)
| | - Leonardo L. Fuscaldi
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01221-020, Brazil; (D.V.S.); (L.L.F.); (F.F.M.); (L.R.d.O.); (W.R.M.)
| | - Ana Claudia R. Durante
- Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (A.C.R.D.); (A.C.C.M.); (J.M.); (M.F.d.B.)
| | - Fernanda F. Mendonça
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01221-020, Brazil; (D.V.S.); (L.L.F.); (F.F.M.); (L.R.d.O.); (W.R.M.)
| | - Larissa R. de Oliveira
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01221-020, Brazil; (D.V.S.); (L.L.F.); (F.F.M.); (L.R.d.O.); (W.R.M.)
| | - Ana Cláudia C. Miranda
- Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (A.C.R.D.); (A.C.C.M.); (J.M.); (M.F.d.B.)
| | - Jorge Mejia
- Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (A.C.R.D.); (A.C.C.M.); (J.M.); (M.F.d.B.)
| | - Wagner R. Montor
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01221-020, Brazil; (D.V.S.); (L.L.F.); (F.F.M.); (L.R.d.O.); (W.R.M.)
| | - Marycel F. de Barboza
- Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (A.C.R.D.); (A.C.C.M.); (J.M.); (M.F.d.B.)
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01221-020, Brazil; (D.V.S.); (L.L.F.); (F.F.M.); (L.R.d.O.); (W.R.M.)
- Correspondence: ; Tel./Fax: +55-11-3367-7790
| |
Collapse
|
5
|
Standardization of the [ 68Ga]Ga-PSMA-11 Radiolabeling Protocol in an Automatic Synthesis Module: Assessments for PET Imaging of Prostate Cancer. Pharmaceuticals (Basel) 2021; 14:ph14050385. [PMID: 33918987 PMCID: PMC8142994 DOI: 10.3390/ph14050385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a glycoprotein present in the prostate, that is overexpressed in prostate cancer (PCa). Recently, PSMA-directed radiopharmaceuticals have been developed, allowing the pinpointing of tumors with the Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) imaging techniques. The aim of the present work was to standardize and validate an automatic synthesis module-based radiolabeling protocol for [68Ga]Ga-PSMA-11, as well as to produce a radiopharmaceutical for PET imaging of PCa malignancies. [68Ga]Ga-PSMA-11 was evaluated to determine the radiochemical purity (RCP), stability in saline solution and serum, lipophilicity, affinity to serum proteins, binding and internalization to lymph node carcinoma of the prostate (LNCaP) cells, and ex vivo biodistribution in mice. The radiopharmaceutical was produced with an RCP of 99.06 ± 0.10%, which was assessed with reversed-phase high-performance liquid chromatography (RP-HPLC). The product was stable in saline solution for up to 4 h (RCP > 98%) and in serum for up to 1 h (RCP > 95%). The lipophilicity was determined as -3.80 ± 0.15, while the serum protein binding (SPB) was <17%. The percentages of binding to LNCaP cells were 4.07 ± 0.51% (30 min) and 4.56 ± 0.46% (60 min), while 19.22 ± 2.73% (30 min) and 16.85 ± 1.34% (60 min) of bound material was internalized. High accumulation of [68Ga]Ga-PSMA-11 was observed in the kidneys, spleen, and tumor, with a tumor-to-contralateral-muscle ratio of >8.5 and a tumor-to-blood ratio of >3.5. In conclusion, an automatic synthesis module-based radiolabeling protocol for [68Ga]Ga-PSMA-11 was standardized and the product was evaluated, thus verifying its characteristics for PET imaging of PCa tumors in a clinical environment.
Collapse
|