1
|
Zhang H, Muhetarijiang M, Chen RJ, Hu X, Han J, Zheng L, Chen T. Mitochondrial Dysfunction: A Roadmap for Understanding and Tackling Cardiovascular Aging. Aging Dis 2024:AD.2024.0058. [PMID: 38739929 DOI: 10.14336/ad.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Cardiovascular aging is a progressive remodeling process constituting a variety of cellular and molecular alterations that are closely linked to mitochondrial dysfunction. Therefore, gaining a deeper understanding of the changes in mitochondrial function during cardiovascular aging is crucial for preventing cardiovascular diseases. Cardiac aging is accompanied by fibrosis, cardiomyocyte hypertrophy, metabolic changes, and infiltration of immune cells, collectively contributing to the overall remodeling of the heart. Similarly, during vascular aging, there is a profound remodeling of blood vessel structure. These remodeling present damage to endothelial cells, increased vascular stiffness, impaired formation of new blood vessels (angiogenesis), the development of arteriosclerosis, and chronic vascular inflammation. This review underscores the role of mitochondrial dysfunction in cardiac aging, exploring its impact on fibrosis and myocardial alterations, metabolic remodeling, immune response remodeling, as well as in vascular aging in the heart. Additionally, we emphasize the significance of mitochondria-targeted therapies in preventing cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Han Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mairedan Muhetarijiang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ryan J Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaosheng Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Han
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangrong Zheng
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Vanni E, Lindner K, Gavin AC, Montessuit C. Differential intracellular management of fatty acids impacts on metabolic stress-stimulated glucose uptake in cardiomyocytes. Sci Rep 2023; 13:14805. [PMID: 37684349 PMCID: PMC10491837 DOI: 10.1038/s41598-023-42072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Stimulation of glucose uptake in response to ischemic metabolic stress is important for cardiomyocyte function and survival. Chronic exposure of cardiomyocytes to fatty acids (FA) impairs the stimulation of glucose uptake, whereas induction of lipid droplets (LD) is associated with preserved glucose uptake. However, the mechanisms by which LD induction prevents glucose uptake impairment remain elusive. We induced LD with either tetradecanoyl phorbol acetate (TPA) or 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). Triacylglycerol biosynthesis enzymes were inhibited in cardiomyocytes exposed to FA ± LD inducers, either upstream (glycerol-3-phosphate acyltransferases; GPAT) or downstream (diacylglycerol acyltransferases; DGAT) of the diacylglycerol step. Although both inhibitions reduced LD formation in cardiomyocytes treated with FA and LD inducers, only DGAT inhibition impaired metabolic stress-stimulated glucose uptake. DGAT inhibition in FA plus TPA-treated cardiomyocytes reduced triacylglycerol but not diacylglycerol content, thus increasing the diacylglycerol/triacylglycerol ratio. In cardiomyocytes exposed to FA alone, GPAT inhibition reduced diacylglycerol but not triacylglycerol, thus decreasing the diacylglycerol/triacylglycerol ratio, prevented PKCδ activation and improved metabolic stress-stimulated glucose uptake. Changes in AMP-activated Protein Kinase activity failed to explain variations in metabolic stress-stimulated glucose uptake. Thus, LD formation regulates metabolic stress-stimulated glucose uptake in a manner best reflected by the diacylglycerol/triacylglycerol ratio.
Collapse
Affiliation(s)
- Ettore Vanni
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Karina Lindner
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, Geneva, Switzerland
| | - Anne-Claude Gavin
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, Geneva, Switzerland
| | - Christophe Montessuit
- Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland.
| |
Collapse
|
3
|
The Physiological Role of Irisin in the Regulation of Muscle Glucose Homeostasis. ENDOCRINES 2021; 2:266-283. [PMID: 35392577 PMCID: PMC8986094 DOI: 10.3390/endocrines2030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Irisin is a myokine that primarily targets adipose tissue, where it increases energy expenditure and contributes to the beneficial effects of exercise through the browning of white adipose tissue. As our knowledge has deepened in recent years, muscle has been found to be a major target organ for irisin as well. Several studies have attempted to characterize the role of irisin in muscle to improve glucose metabolism through mechanisms such as reducing insulin resistance. Although they are very intriguing reports, some contradictory results make it difficult to grasp the whole picture of the action of irisin on muscle. In this review, we attempted to organize the current knowledge of the role of irisin in muscle glucose metabolism. We discussed the direct effects of irisin on glucose metabolism in three types of muscle, that is, skeletal muscle, smooth muscle, and the myocardium. We also describe irisin’s effects on mitochondria and its interactions with other hormones. Furthermore, to consider the relationship between the irisin-induced improvement of glucose metabolism in muscle and systemic disorders of glucose metabolism, we reviewed the results from animal interventional studies and human clinical studies.
Collapse
|
4
|
Tekavec S, Sorčan T, Giacca M, Režen T. VLDL and HDL attenuate endoplasmic reticulum and metabolic stress in HL-1 cardiomyocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158713. [PMID: 32330663 DOI: 10.1016/j.bbalip.2020.158713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/06/2020] [Accepted: 04/13/2020] [Indexed: 11/17/2022]
Abstract
Lipoproteins have a vital role in the development of metabolic and cardiovascular diseases ranging from protective to deleterious effects on target tissues. VLDL has been shown to induce lipotoxic lipid accumulation and exert a variety of negative effects on cardiomyocytes. Lipotoxicity and endoplasmic reticulum (ER) stress are proposed to be the mediators of damaging effects of metabolic diseases on cardiovascular system. We treated cardiomyocytes with lipoproteins to evaluate the adaptability of these cells to metabolic stress induced by starvation and excess of lipoproteins, and to evaluate the effect of lipoproteins and lipid accumulation on ER stress. VLDL reversed metabolic stress induced by starvation, while HDL did not. VLDL induced dose-dependent lipid accumulation in cardiomyocytes, which however did not result in reduced cell viability or induction of ER stress. Moreover, VLDL or HDL pre-treatment reduced ER stress in cardiomyocytes induced by tunicamycin and palmitic acid as measured by the expression of ER stress markers, even in conditions of increased lipid accumulation. VLDL and HDL induced activation of pro-survival ERK1/2 in cardiomyocytes; however, this activation was not involved in the protection against ER stress. Additionally, we observed that LDLR and VLDLR are regulated differently by lipoproteins and cellular stress, as lipoproteins induced VLDLR protein independently of the level of lipid accumulation. We conclude that VLDL is not a priori detrimental for cardiomyocytes and can even have beneficial effects, enabling cell survival under starvation and attenuating ER stress.
Collapse
Affiliation(s)
- Sara Tekavec
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Sorčan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
5
|
The Pathogenic Role of Very Low Density Lipoprotein on Atrial Remodeling in the Metabolic Syndrome. Int J Mol Sci 2020; 21:ijms21030891. [PMID: 32019138 PMCID: PMC7037013 DOI: 10.3390/ijms21030891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrillation (AF) is the most common persistent arrhythmia, and can lead to systemic thromboembolism and heart failure. Aging and metabolic syndrome (MetS) are major risks for AF. One of the most important manifestations of MetS is dyslipidemia, but its correlation with AF is ambiguous in clinical observational studies. Although there is a paradoxical relationship between fasting cholesterol and AF incidence, the benefit from lipid lowering therapy in reduction of AF is significant. Here, we reviewed the health burden from AF and MetS, the association between two disease entities, and the metabolism of triglyceride, which is elevated in MetS. We also reviewed scientific evidence for the mechanistic links between very low density lipoproteins (VLDL), which primarily carry circulatory triglyceride, to atrial cardiomyopathy and development of AF. The effects of VLDL to atria suggesting pathogenic to atrial cardiomyopathy and AF include excess lipid accumulation, direct cytotoxicity, abbreviated action potentials, disturbed calcium regulation, delayed conduction velocities, modulated gap junctions, and sarcomere protein derangements. The electrical remodeling and structural changes in concert promote development of atrial cardiomyopathy in MetS and ultimately lead to vulnerability to AF. As VLDL plays a major role in lipid metabolism after meals (rather than fasting state), further human studies that focus on the effects/correlation of postprandial lipids to atrial remodeling are required to determine whether VLDL-targeted therapy can reduce MetS-related AF. On the basis of our scientific evidence, we propose a pivotal role of VLDL in MetS-related atrial cardiomyopathy and vulnerability to AF.
Collapse
|
6
|
Chronic AICAR treatment prevents metabolic changes in cardiomyocytes exposed to free fatty acids. Pflugers Arch 2019; 471:1219-1234. [PMID: 31152240 DOI: 10.1007/s00424-019-02285-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/27/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023]
Abstract
The stimulation of glucose transport by metabolic stress is an important determinant of myocardial susceptibility to ischemia and reperfusion injury. Stimulation of glucose transport is markedly impaired in cardiomyocytes chronically exposed to excess free fatty acids (FFA), as occurs in vivo in type 2 diabetes. To determine whether chronic low-grade activation of AMP-activated kinase (AMPK) improves substrate metabolism in cardiomyocytes exposed to FFA, isolated cultured cardiomyocytes were exposed for 7 days to FFA ± the AMPK agonist 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Glucose transport and glycolysis were then measured during acute metabolic stress provoked by oligomycin. Chronic treatment with AICAR improved basal and oligomycin-stimulated glucose transport in FFA-exposed but not in control cardiomyocytes. Similarly, basal and oligomycin-stimulated glycolysis was reduced in FFA-exposed cardiomyocytes but restored by chronic AICAR treatment. Conversely, fatty acid oxidation was increased in FFA-exposed cardiomyocytes and reduced by chronic AICAR treatment. Chronic AICAR treatment induced in FFA-exposed cardiomyocytes the biogenesis of numerous lipid droplets. Curiously, whereas acute treatment of cardiomyocytes with AICAR increased phosphorylation of the AMPKα subunit on T172, a classical marker of AMPK activation, chronic AICAR treatment almost completely obliterated T172 phosphorylation. However, phosphorylation of the AMPK target protein raptor on S792 was reduced in FFA-exposed cardiomyocytes but restored by AICAR treatment. In conclusion, chronic AICAR treatment induces a metabolic shift in FFA-exposed cardiomyocytes, characterized by improved glucose transport and glycolysis and redirection of fatty acids towards neutral storage. Such metabolic changes in vivo could protect the hearts of patients with type 2 diabetes against ischemia-reperfusion injury.
Collapse
|
7
|
Viglino C, Khoramdin B, Praplan G, Montessuit C. Pleiotropic Effects of Chronic Phorbol Ester Treatment to Improve Glucose Transport in Insulin-Resistant Cardiomyocytes. J Cell Biochem 2017; 118:4716-4727. [PMID: 28513986 DOI: 10.1002/jcb.26139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 05/16/2017] [Indexed: 11/08/2022]
Abstract
Stimulation of glucose transport is an important determinant of myocardial susceptibility to ischemia and reperfusion. Stimulation of glucose transport is markedly impaired in cardiomyocytes exposed to free fatty acids (FFA). Deactivation of the Focal Adhesion Kinase (FAK) by FFA contributes to glucose transport impairment, and could be corrected by chronic treatment with the phorbol ester TPA. However, TPA must have effects in addition to FAK reactivation to restore stimulated glucose transport. Chronic treatment with TPA improved basal and stimulated glucose transport in FFA-exposed, but not in control cardiomyocytes. Chronic FFA exposure induced the activation of PKCδ and PKCϵ. TPA markedly downregulated the expression of PKCα, PKCδ, and PKCϵ, suggesting that PKCδ or PKCϵ activation could contribute to inhibition of glucose transport by FFA. Rottlerin, a specific PKCδ inhibitor, improved glucose transport in FFA-exposed cardiomyocytes; and PKCδ was reduced in the particulate fraction of FFA + TPA-exposed cardiomyocytes. TPA also activated Protein Kinase D 1(PKD1) in FFA-exposed cardiomyocytes, as assessed by autophosphorylation of PKD1 on Y916. Pharmaceutical inhibition of PKD1 only partially prevented the improvement of glucose transport by TPA. Chronic TPA treatment also increased basal and stimulated glycolysis and favored accumulation of lipid droplets in FFA-exposed cardiomyocytes. In conclusion, basal and stimulated glucose transport in cardiomyocytes is reduced by chronic FFA exposure, but restored by concomitant treatment with a phorbol ester. The mechanism of action of phorbol esters may involve downregulation of PKCδ, activation of PKD1 and a general switch from fatty acid to glucose metabolism. J. Cell. Biochem. 9999: 4716-4727, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christelle Viglino
- Division of Cardiology, Department of Medical Specialties, University of Geneva School of Medicine, Geneva, Switzerland
| | - Bahareh Khoramdin
- Division of Cardiology, Department of Medical Specialties, University of Geneva School of Medicine, Geneva, Switzerland
| | - Guillaume Praplan
- Division of Cardiology, Department of Medical Specialties, University of Geneva School of Medicine, Geneva, Switzerland
| | - Christophe Montessuit
- Division of Cardiology, Department of Medical Specialties, University of Geneva School of Medicine, Geneva, Switzerland.,Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|