1
|
Grman M, Balis P, Berenyiova A, Svajdlenkova H, Tomasova L, Cacanyiova S, Rostakova Z, Waczulikova I, Chovanec M, Domínguez-Álvarez E, Ondrias K, Misak A. Products of Selenite/Thiols Interaction Have Reducing Properties, Cleave Plasmid DNA and Decrease Rat Blood Pressure and Tension of Rat Mesenteric Artery. Biol Trace Elem Res 2025; 203:903-929. [PMID: 38676879 PMCID: PMC11750908 DOI: 10.1007/s12011-024-04196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Selenium compounds exert their antioxidant activity mostly when the selenium atom is incorporated into selenoproteins. In our work, we tested the possibility that selenite itself interacts with thiols to form active species that have reducing properties. Therefore, we studied the reduction of 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazol-1-yloxy-3-oxide radical (•cPTIO), damage of plasmid DNA (pDNA), modulation of rat hemodynamic parameters and tension of isolated arteries induced by products of interaction of selenite with thiols. We found that the products of selenite interaction with thiols had significant reducing properties that could be attributed mainly to the selenide and that selenite had catalytic properties in the access of thiols. The potency of thiols to reduce •cPTIO in the interaction with selenite was cysteine > homocysteine > glutathione reduced > N-acetylcysteine. Thiol/selenite products cleaved pDNA, with superoxide dismutase enhancing these effects suggesting a positive involvement of superoxide anion in the process. The observed •cPTIO reduction and pDNA cleavage were significantly lower when selenomethionine was used instead of selenite. The products of glutathione/selenite interaction affected several hemodynamic parameters including rat blood pressure decrease. Notably, the products relaxed isolated mesenteric artery, which may explain the observed decrease in rat blood pressure. In conclusion, we found that the thiol/selenite interaction products exhibited significant reducing properties which can be used in further studies of the treatment of pathological conditions caused by oxidative stress. The results of decreased rat blood pressure and the tension of mesenteric artery may be perspective in studies focused on cardiovascular disease and their prevention.
Collapse
Affiliation(s)
- Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | - Peter Balis
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovak Republic
| | - Andrea Berenyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovak Republic
| | - Helena Svajdlenkova
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41, Bratislava, Slovak Republic
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15, Bratislava, Slovak Republic
| | - Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | - Sona Cacanyiova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71, Bratislava, Slovak Republic
| | - Zuzana Rostakova
- Institute of Measurement Science, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04, Bratislava, Slovak Republic
| | - Iveta Waczulikova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, 842 48, Bratislava, Slovak Republic
| | - Miroslav Chovanec
- Cancer Research Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | | | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic
| | - Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovak Republic.
| |
Collapse
|
2
|
Guo Q, Cai J, Qu Q, Cheang I, Shi J, Pang H, Li X. Association of Blood Trace Elements Levels with Cardiovascular Disease in US Adults: a Cross-Sectional Study from the National Health and Nutrition Examination Survey 2011-2016. Biol Trace Elem Res 2024; 202:3037-3050. [PMID: 37891364 DOI: 10.1007/s12011-023-03913-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
We aimed to explore the overall association between trace elements and cardiovascular disease (CVD) and its types in humans. A total of 5101 participants' blood samples from the 2011-2016 National Health and Nutrition Examination Survey were included. Biochemical data were collected from laboratory tests conducted at mobile screening centers. After assessing linearity, weighted logistic regression estimated the association between trace elements and various CVD types. Weighted quantile sum (WQS) regression and quantile-based g-computation (Qgcomp) evaluated the overall relationship between biological trace elements and CVD types. After fully adjusting for confounding factors, the odds ratios of overall CVD morbidity corresponding to the second, third, and fourth quartiles of higher selenium (Se) concentration were 0.711 (95% CI, 0.529-0.956, p = 0.024), 0.734 (95% CI, 0.546-0.987, p = 0.041), and 0.738 (95% CI, 0.554-0.983, p = 0.038), respectively. Moreover, an increase in the concentration of copper (Cu) was associated with an increased risk of stroke (95% CI, 1.012-1.094, p = 0.01), heart failure (95% CI, 1.001-1.095, p = 0.046), and heart attack (95% CI, 1.001-1.083, p = 0.046). As the concentration of trace elements in the body increased, there was a significant positive association between Cu and CVD prevalence. On the other hand, Se and zinc were negatively associated with CVD prevalence. A nonlinear relationship between Se and CVD was found, and an appropriate Se intake may reduce the risk of CVD. Cu levels positively correlated with CVD risk. However, prospective cohort studies are warranted to confirm the causal effects of the micronutrients on CVD and its types.
Collapse
Affiliation(s)
- Qixin Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Jingshan Cai
- Department of Cardiology, Suzhou University Clinical Testing Center, Affiliated First People's Hospital, Suzhou, China
| | - Qiang Qu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Jinjin Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China
| | - Hui Pang
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, China.
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, China.
| |
Collapse
|
3
|
Lei Y, Sun W, Xu T, Shan J, Gao M, Lin H. Selenomethionine modulates the JAK2 / STAT3 / A20 pathway through oxidative stress to alleviate LPS-induced pyroptosis and inflammation in chicken hearts. Biochim Biophys Acta Gen Subj 2024; 1868:130564. [PMID: 38272191 DOI: 10.1016/j.bbagen.2024.130564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Selenium (Se) is involved in many physiopathologic processes in humans and animals and is strongly associated with the development of heart disease. Lipopolysaccharides (LPS) are cell wall components of gram-negative bacteria that are present in large quantities during environmental pollution. To investigate the mechanism of LPS-induced cardiac injury and the efficacy of the therapeutic effect of SeMet on LPS, a chicken model supplemented with selenomethionine (SeMet) and/or LPS treatment, as well as a primary chicken embryo cardiomyocyte model with the combined effect of SeMet / JAK2 inhibitor (INCB018424) and/or LPS were established in this experiment. CCK8 kit, Trypan blue staining, DCFH-DA staining, oxidative stress kits, immunofluorescence staining, LDH kit, real-time fluorescence quantitative PCR, and western blot were used. The results proved that LPS exposure led to ROS explosion, hindered the antioxidant system, promoted the expression of the JAK2 pathway, and increased the expression of genes involved in the pyroptosis pathway, inflammatory factors, and heat shock proteins (HSPs). Upon co-treatment with SeMet and LPS, SeMet reduced LPS-induced pyroptosis and inflammation and restored the expression of HSPs by inhibiting the ROS burst and modulating the antioxidant capacity. Co-treatment with INCB018424 and LPS resulted in inhibited of the JAK2 pathway, attenuating pyroptosis, inflammation, and high expression of HSPs. Thus, LPS induced pyroptosis, inflammation, and changes in HSPs activity by activating of the JAK2 / STAT3 / A20 signaling axis in chicken hearts. Moreover, SeMet has a positive effect on LPS-induced injury. This work further provides a theoretical basis for treating cardiac injury by SeMet.
Collapse
Affiliation(s)
- Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Jiang Y, Dong B, Jiao X, Shan J, Fang C, Zhang K, Li D, Xu C, Zhang Z. Nano‑selenium alleviates the pyroptosis of cardiovascular endothelial cells in chicken induced by decabromodiphenyl ether through ERS-TXNIP-NLRP3 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170129. [PMID: 38242456 DOI: 10.1016/j.scitotenv.2024.170129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Decabromodiphenyl ether (BDE-209) is one of the most widely used flame retardants that can infect domestic and wildlife through contaminated feed. Nano‑selenium (Nano-Se) has the advantage of enhancing the anti-oxidation of cells. Nonetheless, it remains uncertain whether Nano-Se can alleviate vascular Endothelial cells damage caused by BDE-209 exposure in chickens. Therefore, we established a model with 60 1-day-old chickens, and administered BDE-209 intragastric at a ratio of 400 mg/kg bw/d, and mixed Nano-Se intervention at a ratio of 1 mg/kg in the feed. The results showed that BDE-209 could induce histopathological and ultrastructural changes. Additionally, exposure to BDE-209 led to cardiovascular endoplasmic reticulum stress (ERS), oxidative stress and thioredoxin-interacting protein (TXNIP)-pyrin domain-containing protein 3 (NLRP3) pathway activation, ultimately resulting in pyroptosis. Using the ERS inhibitor 4-PBA in Chicken arterial endothelial cells (PAECs) can significantly reverse these changes. The addition of Nano-Se can enhance the body's antioxidant capacity, inhibit the activation of NLRP3 inflammasome, and reduce cellular pyroptosis. These results suggest that Nano-Se can alleviate the pyroptosis of cardiovascular endothelial cells induced by BDE-209 through ERS-TXNIP-NLRP3 pathway. This study provides new insights into the toxicity of BDE-209 in the cardiovascular system and the therapeutic effects of Nano-Se.
Collapse
Affiliation(s)
- Yangyang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Bowen Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xing Jiao
- China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China
| | - Jianhua Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Cheng Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaixuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Di Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chenchen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
5
|
He KX, Xu L, Ning JZ, Cheng F. MiR-195-5p is involved in testicular ischemia/reperfusion injury by directly targeting PELP1 and regulating spermatogonia pyroptosis. Int Immunopharmacol 2023; 121:110427. [PMID: 37290329 DOI: 10.1016/j.intimp.2023.110427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Ischemia/reperfusion injury (IRI), which is characterized by testicular torsion and causes permanent impairment of spermatogenic function, is linked with pyroptosis. Studies have implicated endogenous small non-coding RNAs in IRI development across various organs. In this study, we elucidated the mechanism underlying miR-195-5p's action in regulating pyroptosis in testicular IRI. METHODS We established two models, namely a testicular torsion/ detorsion (T/D) mouse model and an oxygen-glucose deprivation/reperfusion (OGD/R)-treated germ cell model. Hematoxylin and eosin staining was performed to evaluate the testicular ischemic injury. The expression of pyroptosis-related proteins and reactive oxygen species production in testis tissues were detected using Western blotting, quantitative real-time PCR, malondialdehyde and superoxide dismutase assay kits and immunohistochemistry. Cell viability and cytotoxicity were evaluated using CCK-8 and LDH assays, whereas expression patterns of inflammatory proteins were measured using ELISA, immunofluorescence, and western blot assays. miR-195-5p interaction with PELP1 was validated by conducting the luciferase enzyme reporter test. RESULTS Pyroptosis-related proteins NLRP3, GSDMD, IL-1β, and IL-18 were significantly upregulated following testicular IRI. A similar pattern was observed in the OGD/R model. miR-195-5p was significantly downregulated in mouse IRI testis tissue and OGD/R-treated GC-1 cells. Notably, miR-195-5p downregulation promoted whereas its upregulation attenuated pyroptosis in OGD/R-treated GC-1 cells. Furthermore, we found that PELP1 is a miR-195-5p target. miR-195-5p attenuated pyroptosis in GC-1 cells by inhibiting PELP1 expression during OGD/R, and this protective effect was blocked upon miR-195-5p downregulation. Collectively, these results indicated that miR-195-5p inhibits testicular IRI-induced pyroptosis by targeting PELP1, suggesting that it has the potential to serve as a novel target for the future development of therapies for testicular torsion.
Collapse
Affiliation(s)
- Kai-Xiang He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Lizhe Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China.
| |
Collapse
|
6
|
Dabravolski SA, Sukhorukov VN, Melnichenko AA, Khotina VA, Orekhov AN. The Role of Selenium in Atherosclerosis Development, Progression, Prevention and Treatment. Biomedicines 2023; 11:2010. [PMID: 37509649 PMCID: PMC10377679 DOI: 10.3390/biomedicines11072010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Selenium is an essential trace element that is essential for various metabolic processes, protection from oxidative stress and proper functioning of the cardiovascular system. Se deficiency has long been associated with multiple cardiovascular diseases, including endemic Keshan's disease, common heart failure, coronary heart disease, myocardial infarction and atherosclerosis. Through selenoenzymes and selenoproteins, Se is involved in numerous crucial processes, such as redox homeostasis regulation, oxidative stress, calcium flux and thyroid hormone metabolism; an unbalanced Se supply may disrupt these processes. In this review, we focus on the importance of Se in cardiovascular health and provide updated information on the role of Se in specific processes involved in the development and pathogenesis of atherosclerosis (oxidative stress, inflammation, endothelial dysfunction, vascular calcification and vascular cell apoptosis). We also discuss recent randomised trials investigating Se supplementation as a potential therapeutic and preventive agent for atherosclerosis treatment.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Alexandra A Melnichenko
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Victoria A Khotina
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| |
Collapse
|
7
|
Wang L, Yang F, Hu M, Chen G, Wang Y, Xue H, Fu D, Bai H, Hu G, Cao H. GPX4 utilization by selenium is required to alleviate cadmium-induced ferroptosis and pyroptosis in sheep kidney. ENVIRONMENTAL TOXICOLOGY 2023; 38:962-974. [PMID: 36655595 DOI: 10.1002/tox.23740] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), a persistent and harmful heavy metal in the environment, can accumulate in the kidneys and cause nephrotoxicity. Selenium (Se) is a beneficial natural element that alleviates the toxicity of Cd. To ascertain the relationship between the protective mechanism of Se against Cd nephrotoxicity and ferroptosis and pyroptosis, we randomly divided 48 sheep into four groups and treated them with Cd chloride and/or sodium selenite for 50 days. The data confirmed that Cd apparently resulted in impaired kidney histology and function, depletion of GSH and nicotinamide adenine dinucleotide phosphate contents and CAT and SOD activities, elevation of MDA level, as well as the reduction in selenoprotein mRNA (GPX1, GPX4, TXNRD1, SELP) levels and GPX4 protein level and immunofluorescence intensity. Meanwhile, Cd induced ferroptosis by causing iron overload, up-regulating PTGS2, NCOA4, TFR1, and LC3B mRNA levels and PTGS2 and LC3B-II/LC3B-I protein levels, reducing SLC7A11 and FTH1 mRNA and protein levels, and enhancing the immunofluorescence co-localization of FTH1/LC3B. Moreover, it was also found that Cd triggered pyroptosis, which was evidenced by the increase of NLRP3 immunohistochemical positive signal, GSDMD-N immunofluorescence intensity, IL-1β and IL-18 release and the levels of pyroptosis-related mRNA (NLRP3, ASC, Caspase-1, GSDMD, IL-1β and IL-18) and proteins (NLRP3, Caspase-1p20, GSDMD-N, IL-1β and IL-18). Notably, Se increased the expression level of GPX4 and the transcription factors TFAP2c and SP1, and ameliorated Cd-induced changes in aforementioned factors. In conclusion, GPX4 utilization by Se might be required to alleviate Cd-induced ferroptosis and pyroptosis in sheep kidney.
Collapse
Affiliation(s)
- Li Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mingwen Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guiping Chen
- Department of Agriculture and Rural Affairs of Jiangxi Province, Jiangxi Provincial Agricultural Ecology and Resource Protection Station, Nanchang, Jiangxi, China
| | - Yun Wang
- Jiangxi Biotech Vocational College, Department of Animal Science and Technology, Nanchang, Jiangxi, China
| | - Haotian Xue
- Jiangxi Biotech Vocational College, Department of Animal Science and Technology, Nanchang, Jiangxi, China
| | | | - He Bai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Detopoulou P, Letsiou S, Nomikos T, Karagiannis A, Pergantis SA, Pitsavos C, Panagiotakos DB, Antonopoulou S. Selenium, Selenoproteins and 10-year Cardiovascular Risk: Results from the ATTICA Study. Curr Vasc Pharmacol 2023; 21:346-355. [PMID: 37526183 DOI: 10.2174/1570161121666230731142023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/05/2023] [Accepted: 06/22/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Selenium (Se) is an essential trace element that is involved in several pathophysiological functions. The relationship of Se with cardiovascular disease remains inconclusive, especially regarding the role of different selenospecies. OBJECTIVE The present study assessed the levels of Se distribution in plasma selenoproteins, namely glutathione peroxidase 3 (GPx3), selenoprotein P (SelP) and selenoalbumin (SeAlb) and total Se in selenoproteins in relation to 10-year cardiovascular risk in the ATTICA prospective study. METHODS A sub-sample from the ATTICA Study's database, consisting of 278 subjects (114 women and 164 men) with data on Se and selenoproteins levels, was considered. SeGPx3, SelP, and SeAlb in human plasma were simultaneously determined by high-performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) at baseline. The duration of the follow-up was 8.74 ±2.36 years (mean± standard deviation) and cardiovascular outcomes were recorded. Cox proportional hazards models were applied with total Se or selenoprotein Se as independent variables adjusted for several covariates. RESULTS Total Se in selenoproteins was positively related to 10-year relative risk of cardiovascular disease (Hazard Ratios of 3rd vs 2nd tertile 10.02, 95% CI:1.15, 92.34). Subjects with high Se but low SeGPx3, as identified by discordant percentiles in the distribution of SeGPx3 and Se, had a higher cardiovascular risk. CONCLUSION The differentiated effects of circulating selenoproteins on cardiovascular disease risk in the present study, suggest the importance of redox regulation by specific selenoproteins.
Collapse
Affiliation(s)
- Paraskevi Detopoulou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Sophia Letsiou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Alexandros Karagiannis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | | | - Christos Pitsavos
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Demosthenes B Panagiotakos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Smaragdi Antonopoulou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| |
Collapse
|