1
|
Pozzo E, Yedigaryan L, Giarratana N, Wang CC, Garrido GM, Degreef E, Marini V, Rinaldi G, van der Veer BK, Sassi G, Eelen G, Planque M, Fanzani A, Koh KP, Carmeliet P, Yustein JT, Fendt SM, Uyttebroeck A, Sampaolesi M. miR-449a/miR-340 reprogram cell identity and metabolism in fusion-negative rhabdomyosarcoma. Cell Rep 2025; 44:115171. [PMID: 39799567 DOI: 10.1016/j.celrep.2024.115171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/15/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs). In this study, we identify miRNAs impacting FN-RMS cell identity, revealing miR-449a and miR-340 as major regulators of the cell cycle and p53 signaling. Through miR-eCLIP technology, we demonstrate that miR-449a and miR-340 directly target transcripts involved in glycolysis and mitochondrial pyruvate transport, inhibiting the mitochondrial pyruvate carrier (MPC) complex. Pharmacological MPC inhibition induces a similar metabolic shift, reducing metastatic potential and leading to cell cycle exit. Overall, miR-449 and miR-340 orchestrate FN-RMS cell identity, positioning MPC inhibition as a strategy to shift FN-RMS cells toward a non-tumorigenic, quiescent state.
Collapse
Affiliation(s)
- Enrico Pozzo
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Nefele Giarratana
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Chao-Chi Wang
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Gabriel Miró Garrido
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Ewoud Degreef
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Bernard K van der Veer
- Laboratory of Stem Cell and Developmental Epigenetics, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Gabriele Sassi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Clinical and Experimental Endocrinology (CEE), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kian Peng Koh
- Laboratory of Stem Cell and Developmental Epigenetics, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Jason T Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, USA
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Anne Uyttebroeck
- Department of Pediatric Hemato-Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Yu J, Youngson NA, Laybutt DR, Morris MJ, Leigh SJ. Complementary yet divergent effects of exercise and an exercise mimetic on microbiome in high-fat diet-induced obesity. Physiol Genomics 2024; 56:136-144. [PMID: 38009223 DOI: 10.1152/physiolgenomics.00066.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023] Open
Abstract
Exercise is beneficial for obesity, partially through increased mitochondrial activity and raised nicotinamide adenine dinucleotide (NAD), a coenzyme critical for mitochondrial function and metabolism. Recent work has shown that increasing the availability of NAD through pharmacological means improves metabolic health in rodent models of diet-induced obesity and that the effect of these supplements when administered orally may be modulated by the gut microbiome. The gut microbiome is altered by both diet and exercise and is thought to contribute to some aspects of high-fat diet-induced metabolic dysfunction. We examined the independent and combined effects of treadmill exercise and nicotinamide mononucleotide (NMN) supplementation on the gut microbiome of female C57Bl6/J mice chronically fed a high-fat diet. We showed that 8 wk of treadmill exercise, oral-administered NMN, or combined therapy exert unique effects on gut microbiome composition without changing bacterial species richness. Exercise and NMN exerted additive effects on microbiota composition, and NMN partially or fully restored predicted microbial functions, specifically carbohydrate and lipid metabolism, to control levels. Further research is warranted to better understand the mechanisms underpinning the interactions between exercise and oral NAD+ precursor supplementation on gut microbiome.NEW & NOTEWORTHY Exercise and NAD+ precursor supplementation exerted additive and independent effects on gut microbiota composition and inferred function in female mice with diet-induced obesity. Notably, combining exercise and oral nicotinamide mononucleotide supplementation restored inferred microbial functions to control levels, indicating that this combination may improve high-fat diet-induced alterations to microbial metabolism.
Collapse
Affiliation(s)
- Josephine Yu
- School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Neil A Youngson
- School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Margaret J Morris
- School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Sarah-Jane Leigh
- School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Zhao Y, Zheng Y, Xie K, Hou Y, Liu Q, Jiang Y, Zhang Y, Man C. Combating Obesity: Harnessing the Synergy of Postbiotics and Prebiotics for Enhanced Lipid Excretion and Microbiota Regulation. Nutrients 2023; 15:4971. [PMID: 38068829 PMCID: PMC10707991 DOI: 10.3390/nu15234971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Obesity is a chronic metabolic disease that can be induced by a high-fat diet (HFD) and predisposes to a variety of complications. In recent years, various bioactive substances, such as probiotics, prebiotics, and postbiotics, have been widely discussed because of their good anti-lipid and anti-inflammatory activities. In this paper, soybean protein isolate was used as a substrate to prepare the postbiotic. Compound prebiotics (galactose oligosaccharides, fructose oligosaccharides, and lactitol) preparation Aunulife Postbiotics and Prebiotics Composition (AYS) is the research object. Weight loss and bowel movements in mice induced by a high-fat diet were studied. Moreover, qualitative and quantitative analyses of small-molecule metabolites in AYS were performed to identify the functional molecules in AYS. After 12 weeks of feeding, the weight gain of mice that were fed with high-dose AYS (group H) and low-dose AYS (group L) from 4 to 12 weeks was 6.72 g and 5.25 g (p < 0.05), both of which were significantly lower than that of the high-fat diet (group DM, control group) group (7.73 g) (p < 0.05). Serum biochemical analysis showed that TC, TG, and LDL-C levels were significantly lower in mice from the H and L groups (p < 0.05). In addition, the fecal lipid content of mice in the L group reached 5.89%, which was significantly higher than that of the DM group at 4.02% (p < 0.05). The study showed that AYS changed the structure of the intestinal microbiota in mice on a high-fat diet, resulting in a decrease in the relative abundance of Firmicutes and Muribaculaceae and an increase in the relative abundance of Bacteroidetes, Verrucomicrobia, and Lactobacillus. The metabolomics study results of AYS showed that carboxylic acids and derivatives, and organonitrogen compounds accounted for 51.51% of the AYS metabolites, among which pantothenate, stachyose, betaine, and citrate had the effect of preventing obesity in mice. In conclusion, the administration of prebiotics and postbiotic-rich AYS reduces weight gain and increases fecal lipid defecation in obese mice, potentially by regulating the intestinal microbiota of mice on a high-fat diet.
Collapse
Affiliation(s)
- Yueming Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
- Ausnutria Dairy (China) Co., Ltd., Changsha 410000, China; (K.X.); (Y.H.); (Q.L.)
| | - Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
| | - Kui Xie
- Ausnutria Dairy (China) Co., Ltd., Changsha 410000, China; (K.X.); (Y.H.); (Q.L.)
| | - Yanmei Hou
- Ausnutria Dairy (China) Co., Ltd., Changsha 410000, China; (K.X.); (Y.H.); (Q.L.)
| | - Qingjing Liu
- Ausnutria Dairy (China) Co., Ltd., Changsha 410000, China; (K.X.); (Y.H.); (Q.L.)
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (Y.Z.); (Y.J.)
| |
Collapse
|