1
|
Alberti C, Rizzo F, Anastasia A, Comi G, Corti S, Abati E. Charcot-Marie-tooth disease type 2A: An update on pathogenesis and therapeutic perspectives. Neurobiol Dis 2024; 193:106467. [PMID: 38452947 DOI: 10.1016/j.nbd.2024.106467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Mutations in the gene encoding MFN2 have been identified as associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a neurological disorder characterized by a broad clinical phenotype involving the entire nervous system. MFN2, a dynamin-like GTPase protein located on the outer mitochondrial membrane, is well-known for its involvement in mitochondrial fusion. Numerous studies have demonstrated its participation in a network crucial for various other mitochondrial functions, including mitophagy, axonal transport, and its controversial role in endoplasmic reticulum (ER)-mitochondria contacts. Considerable progress has been made in the last three decades in elucidating the disease pathogenesis, aided by the generation of animal and cellular models that have been instrumental in studying disease physiology. A review of the literature reveals that, up to now, no definitive pharmacological treatment for any CMT2A variant has been established; nonetheless, recent years have witnessed substantial progress. Many treatment approaches, especially concerning molecular therapy, such as histone deacetylase inhibitors, peptide therapy to increase mitochondrial fusion, the new therapeutic strategies based on MF1/MF2 balance, and SARM1 inhibitors, are currently in preclinical testing. The literature on gene silencing and gene replacement therapies is still limited, except for a recent study by Rizzo et al.(Rizzo et al., 2023), which recently first achieved encouraging results in in vitro and in vivo models of the disease. The near-future goal for these promising therapies is to progress to the stage of clinical translation.
Collapse
Affiliation(s)
- Claudia Alberti
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Federica Rizzo
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessia Anastasia
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Comi
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy; Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy; Neuromuscular and Rare Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy; Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
2
|
Di Nottia M, Verrigni D, Torraco A, Rizza T, Bertini E, Carrozzo R. Mitochondrial Dynamics: Molecular Mechanisms, Related Primary Mitochondrial Disorders and Therapeutic Approaches. Genes (Basel) 2021; 12:247. [PMID: 33578638 PMCID: PMC7916359 DOI: 10.3390/genes12020247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria do not exist as individual entities in the cell-conversely, they constitute an interconnected community governed by the constant and opposite process of fission and fusion. The mitochondrial fission leads to the formation of smaller mitochondria, promoting the biogenesis of new organelles. On the other hand, following the fusion process, mitochondria appear as longer and interconnected tubules, which enhance the communication with other organelles. Both fission and fusion are carried out by a small number of highly conserved guanosine triphosphatase proteins and their interactors. Disruption of this equilibrium has been associated with several pathological conditions, ranging from cancer to neurodegeneration, and mutations in genes involved in mitochondrial fission and fusion have been reported to be the cause of a subset of neurogenetic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Rosalba Carrozzo
- Laboratory of Molecular Medicine, Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (M.D.N.); (D.V.); (A.T.); (T.R.); (E.B.)
| |
Collapse
|
3
|
Abati E, Bresolin N, Comi G, Corti S. Silence superoxide dismutase 1 (SOD1): a promising therapeutic target for amyotrophic lateral sclerosis (ALS). Expert Opin Ther Targets 2020; 24:295-310. [PMID: 32125907 DOI: 10.1080/14728222.2020.1738390] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Amyotrophic lateral sclerosis (ALS) is a progressive and incurable neurodegenerative disorder that targets upper and lower motor neurons and leads to fatal muscle paralysis. Mutations in the superoxide dismutase 1 (SOD1) gene are responsible for 15% of familial ALS cases, but several studies have indicated that SOD1 dysfunction may also play a pathogenic role in sporadic ALS. SOD1 induces numerous toxic effects through the pathological misfolding and aggregation of mutant SOD1 species, hence a reduction of the levels of toxic variants appears to be a promising therapeutic strategy for SOD1-related ALS. Several methods are used to modulate gene expression in vivo; these include RNA interference, antisense oligonucleotides (ASOs) and CRISPR/Cas9 technology.Areas covered: This paper examines the current approaches for gene silencing and the progress made in silencing SOD1 in vivo. It progresses to shed light on the key results and pitfalls of these studies and highlights the future challenges and new perspectives for this exciting research field.Expert opinion: Gene silencing strategies targeting SOD1 may represent effective approaches for familial and sporadic ALS-related neurodegeneration; however, the risk of off-target effects must be minimized, and effective and minimally invasive delivery strategies should be fine-tuned.
Collapse
Affiliation(s)
- Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Giacomo Comi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
4
|
Barbullushi K, Abati E, Rizzo F, Bresolin N, Comi GP, Corti S. Disease Modeling and Therapeutic Strategies in CMT2A: State of the Art. Mol Neurobiol 2019; 56:6460-6471. [DOI: 10.1007/s12035-019-1533-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
|
5
|
Padua L, Pazzaglia C, Pareyson D, Schenone A, Aiello A, Fabrizi GM, Cavallaro T, Santoro L, Manganelli F, Gemignani F, Vitetta F, Quattrone A, Mazzeo A, Russo M, Vita G. Novel outcome measures for Charcot-Marie-Tooth disease: validation and reliability of the 6-min walk test and StepWatch(™) Activity Monitor and identification of the walking features related to higher quality of life. Eur J Neurol 2016; 23:1343-50. [PMID: 27160471 DOI: 10.1111/ene.13033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/22/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Charcot-Marie-Tooth (CMT) disease is the most common inherited neuropathy, but therapeutic options have been limited to symptom management. Past pharmacological trials have failed, possibly due to insensitive outcome measures (OMs). The aim of the current study was to evaluate the validity and reliability of the 6-min walk test (6MWT) and StepWatch(™) Activity Monitoring (SAM) with other previously validated OMs in CMT disease. METHODS A prospective multicenter study was performed, consecutively enrolling 168 CMT patients (104 with CMT1A, 27 with CMT1B, 37 with X-linked CMT) from Italian centers specializing in CMT care. RESULTS Statistical analysis showed that the 6MWT was highly related with all previously used OMs. Some, but not all, SAM parameters were related to commonly used OMs but may provide more information about quality of life. CONCLUSIONS The current study demonstrated the validity and reliability of the 6MWT and SAM as OMs for CMT. Moreover, SAM provides data that correlate better with quality of life measures, making it useful in future rehabilitation trials.
Collapse
Affiliation(s)
- L Padua
- Department of Neuroscience, Don Carlo Gnocchi Onlus Foundation, Milan, Italy.,Department of Geriatrics, Neuroscience and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - C Pazzaglia
- Department of Neuroscience, Don Carlo Gnocchi Onlus Foundation, Milan, Italy
| | - D Pareyson
- Department of Clinical Neurosciences, IRCCS Foundation, 'C. Besta' Neurological Institute, Milan, Italy
| | - A Schenone
- Department of Neuroscience, Ospedale San Martino Genova, Genoa, Italy
| | - A Aiello
- Department of Neuroscience, Ospedale San Martino Genova, Genoa, Italy
| | - G M Fabrizi
- Department of Neurological, Biomedical and Motor Sciences, University of Verona, Verona, Italy
| | - T Cavallaro
- UOC Neurologia B, AOUI Verona, Verona, Italy
| | - L Santoro
- Department of Neurological Sciences, Reproductive Sciences and Odontostomatological, 'Federico II' University, Naples, Italy
| | - F Manganelli
- Department of Neurological Sciences, Reproductive Sciences and Odontostomatological, 'Federico II' University, Naples, Italy
| | - F Gemignani
- Department of Neurosciences, University of Parma, Parma, Italy
| | - F Vitetta
- Department of Neurosciences, University of Parma, Parma, Italy
| | - A Quattrone
- Department of Medical Sciences, 'Magna Graecia' University, Catanzaro, Italy
| | - A Mazzeo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - M Russo
- Nemo Sud Clinical Center for Neuromuscular Diseases, Messina, Italy
| | - G Vita
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.,Nemo Sud Clinical Center for Neuromuscular Diseases, Messina, Italy
| | | |
Collapse
|
6
|
Stuppia G, Rizzo F, Riboldi G, Del Bo R, Nizzardo M, Simone C, Comi GP, Bresolin N, Corti S. MFN2-related neuropathies: Clinical features, molecular pathogenesis and therapeutic perspectives. J Neurol Sci 2015; 356:7-18. [PMID: 26143526 DOI: 10.1016/j.jns.2015.05.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
Mitofusin 2 (MFN2) is a GTPase dynamin-like protein of the outer mitochondrial membrane, encoded in the nuclear genome by the MFN2 gene located on the short (p) arm of chromosome 1. MFN2 protein is involved in several intracellular pathways, but is mainly involved in a network that has an essential role in several mitochondrial functions, including fusion, axonal transport, interorganellar communication and mitophagy. Mutations in the gene encoding MFN2 are associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a neurological disorder characterized by a wide clinical phenotype that involves the central and peripheral nervous system. Here, we present the clinical, genetic and neuropathological features of human diseases associated with MFN2 mutations. We also report proposed pathogenic mechanisms through which MFN2 mutations likely contribute to the development of neurodegeneration. MFN2-related disorders may occur more frequently than previously considered, and they may represent a paradigm for the study of the defective mitochondrial dynamics that seem to play a significant role in the molecular and cellular pathogenesis of common neurodegenerative diseases; thus they may also lead to the identification of related therapeutic targets.
Collapse
Affiliation(s)
- Giulia Stuppia
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giulietta Riboldi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Chiara Simone
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
7
|
The motor function measure to study limitation of activity in children and adults with Charcot-Marie-Tooth disease. Ann Phys Rehabil Med 2014; 57:587-99. [DOI: 10.1016/j.rehab.2014.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 11/23/2022]
|
8
|
Bouhy D, Timmerman V. Animal models and therapeutic prospects for Charcot-Marie-Tooth disease. Ann Neurol 2013; 74:391-6. [PMID: 23913540 DOI: 10.1002/ana.23987] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/04/2013] [Accepted: 07/29/2013] [Indexed: 12/14/2022]
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are inherited neuromuscular disorders caused by a length-dependent neurodegeneration of peripheral nerves. More than 900 mutations in 60 different genes are causative of the neuropathy. Despite significant progress in therapeutic strategies, the disease remains incurable. The increasing number of genes linked to the disease, and their considerable clinical and genetic heterogeneity render the development of these strategies particularly challenging. In this context, cellular and animals models provide powerful tools. Efficient motor and sensory tests have been developed to assess the behavioral phenotype in transgenic animal models (rodent and fly). When these models reproduce a phenotype comparable to CMT, they allow therapeutic approaches and the discovery of modifiers and biomarkers. In this review, we describe the most convincing transgenic rodent and fly models of CMT and how they can lead to clinical trial. We also discuss the challenges that the research, the clinic, and the pharmaceutical industry will face in developing efficient and accessible treatment for CMT patients.
Collapse
Affiliation(s)
- Delphine Bouhy
- Peripheral Neuropathy Group, Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
9
|
Puwanant A, Herrmann DN. Hereditary Motor Sensory Neuropathies (Charcot–Marie–Tooth Disease). Neuromuscul Disord 2011. [DOI: 10.1002/9781119973331.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
|
11
|
Haberlová J, Seeman P. Utility of Charcot-Marie-Tooth Neuropathy Score in children with type 1A disease. Pediatr Neurol 2010; 43:407-10. [PMID: 21093731 DOI: 10.1016/j.pediatrneurol.2010.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/27/2010] [Accepted: 06/14/2010] [Indexed: 10/18/2022]
Abstract
The aim of this study was to evaluate the utility of the Charcot-Marie-Tooth Neuropathy Score (CMTNS) for evaluation of disease severity in young children with Charcot-Marie-Tooth type 1A. Current validated scoring scales for Charcot-Marie-Tooth are the CMTNS and the Neuropathy Impairment Score (NIS). Both work well for adult patients, and usually also for children over 10 years of age. There is no validation of scales for young children. Children with genetically proven Charcot-Marie-Tooth type 1A disease (n = 20, aged 3 to 10 years) were examined clinically, followed by electrophysiologic examination, and were scored under the CMTNS scale. The clinical symptoms were mild; the two most frequent symptoms were difficulty in heel walking and lower limb areflexia. The score was maximally abnormal in four of the nine categories. Categories for sensation, sensory symptoms, and motor symptoms of the arms were normal in all cases. The score was below 8 for all tested children. To conclude, the CMTNS in children aged 10 years and younger has limited sensitivity; out of nine categories, only four are useful. Thus, evaluation of disease severity and progression in young children with Charcot-Marie-Tooth disease remains limited, and there is need for other, effective scoring systems.
Collapse
Affiliation(s)
- Jana Haberlová
- DNA Laboratory, Department of Child Neurology, Second School of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
12
|
Natural history of Charcot–Marie-Tooth 2: 2-year follow-up of muscle strength, walking ability and quality of life. Neurol Sci 2009; 31:175-8. [DOI: 10.1007/s10072-009-0202-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 11/19/2009] [Indexed: 01/23/2023]
|
13
|
Abstract
PURPOSE OF REVIEW We review recent advances in Charcot-Marie-Tooth disease (CMT), the most frequent inherited neuromuscular disorder. RECENT FINDINGS During the last year further progresses have occurred in this field and concerned identification of novel mutations in recently identified genes, allowing better definition of associated phenotypes; increased knowledge on pathophysiologic mechanisms of the different CMT types, with the contribution of cellular and animal model studies; studies on the natural history of CMT and attempts at developing appropriate outcome measures to assess disease course and intervention efficacy; trials with ascorbic acid in CMT type 1A; and studies on new possible therapeutic strategies. SUMMARY Such advances have implications on clinical management of CMT and are modifying the clinical approach to CMT, by improving diagnostic tools, allowing better definition of prognosis, and increasing the hope for future effective treatments. Research on CMT is important as is shedding light on important pathways that regulates the normal function of axonal transport, vesicular trafficking, and also revealing new aspects of intracellular organelles' function and interactions.
Collapse
|
14
|
Current world literature. Curr Opin Neurol 2009; 22:554-61. [PMID: 19755870 DOI: 10.1097/wco.0b013e3283313b14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Pareyson D, Marchesi C. Diagnosis, natural history, and management of Charcot–Marie–Tooth disease. Lancet Neurol 2009; 8:654-67. [PMID: 19539237 DOI: 10.1016/s1474-4422(09)70110-3] [Citation(s) in RCA: 399] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|