1
|
Cai T, Jin T, Guan Y, Zou W, Wang X, Zhu Y. Hyperbaric oxygen therapy enhances restoration of physical functional in patients with recurrent glioma: A case report. Oncol Lett 2024; 28:583. [PMID: 39421317 PMCID: PMC11484218 DOI: 10.3892/ol.2024.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Patients with recurrent glioblastoma often opt for hypofractionated stereotactic radiosurgery, which can cause various adverse reactions. The pharmacological interventions used to manage these adverse reactions are usually unsatisfactory. The present study reports the case of a patient with recurrent glioblastoma who underwent hyperbaric oxygen therapy followed by immediate hypofractionated stereotactic radiosurgery. Grip strength, isokinetic muscle testing and gait analysis were evaluated during the treatment period, spanning an interval of 7 days in March 2023. Assessments before and after treatment revealed improvements in all three parameters compared with pre-treatment levels. In summary, combining hyperbaric oxygen therapy with hypofractionated stereotactic radiosurgery may enhance muscle strength in patients with recurrent glioblastoma. This treatment approach can lead to significant improvements in gait parameters, promoting better motor coordination. Furthermore, the combined therapy could offer a promising alternative for managing muscle weakness and mobility issues after glioblastoma recurrence.
Collapse
Affiliation(s)
- Tengteng Cai
- Department of Radiotherapy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, P.R. China
| | - Tao Jin
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
- Neurosurgical Institute, Fudan University, Shanghai 200040, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai 200040, P.R. China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Shanghai 200040, P.R. China
- China Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200040, P.R. China
| | - Yun Guan
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
- Neurosurgical Institute, Fudan University, Shanghai 200040, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai 200040, P.R. China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Shanghai 200040, P.R. China
- China Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200040, P.R. China
| | - Wei Zou
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
- Neurosurgical Institute, Fudan University, Shanghai 200040, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai 200040, P.R. China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Shanghai 200040, P.R. China
- China Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200040, P.R. China
| | - Xin Wang
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
- Neurosurgical Institute, Fudan University, Shanghai 200040, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai 200040, P.R. China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Shanghai 200040, P.R. China
- China Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200040, P.R. China
| | - Yulian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
2
|
Roth C, Paulini L, Hoffmann ME, Mosler T, Dikic I, Brunschweiger A, Körschgen H, Behl C, Linder B, Kögel D. BAG3 regulates cilia homeostasis of glioblastoma via its WW domain. Biofactors 2024; 50:1113-1133. [PMID: 38655699 PMCID: PMC11627473 DOI: 10.1002/biof.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
The multidomain protein BAG3 exerts pleiotropic oncogenic functions in many tumor entities including glioblastoma (GBM). Here, we compared BAG3 protein-protein interactions in either adherently cultured or stem-like cultured U251 GBM cells. In line with BAG3's putative role in regulating stem-like properties, identified interactors in sphere-cultured cells included different stem cell markers (SOX2, OLIG2, and NES), while interactomes of adherent BAG3-proficient cells indicated a shift toward involvement of BAG3 in regulation of cilium assembly (ACTR3 and ARL3). Applying a set of BAG3 deletion constructs we could demonstrate that none of the domains except the WW domain are required for suppression of cilia formation by full-length BAG3 in U251 and U343 cells. In line with the established regulation of the Hippo pathway by this domain, we could show that the WW mutant fails to rescue YAP1 nuclear translocation. BAG3 depletion reduced activation of a YAP1/AURKA signaling pathway and induction of PLK1. Collectively, our findings point to a complex interaction network of BAG3 with several pathways regulating cilia homeostasis, involving processes related to ciliogenesis and cilium degradation.
Collapse
Affiliation(s)
- Caterina Roth
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | - Lara Paulini
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | | | - Thorsten Mosler
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe UniversityFrankfurt am MainGermany
- Buchmann Institute for Molecular Life Sciences, Goethe UniversityFrankfurt am MainGermany
| | - Andreas Brunschweiger
- Institute of Pharmacy and Food Chemistry, Faculty of Chemistry and PharmacyJulius‐Maximilians‐UniversitätWürzburgGermany
| | - Hagen Körschgen
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Benedikt Linder
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
| | - Donat Kögel
- Department of Neurosurgery, Experimental NeurosurgeryUniversity Hospital, Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner Site FrankfurtFrankfurt am MainGermany
- German Cancer Research Center DKFZHeidelbergGermany
| |
Collapse
|
3
|
Chae Y, Roh J, Im M, Jang W, Kim B, Kang J, Youn B, Kim W. Gene Expression Profiling Regulated by lncRNA H19 Using Bioinformatic Analyses in Glioma Cell Lines. Cancer Genomics Proteomics 2024; 21:608-621. [PMID: 39467632 PMCID: PMC11534032 DOI: 10.21873/cgp.20477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND/AIM Glioma, the most common type of primary brain tumor, is characterized by high malignancy, recurrence, and mortality. Long non-coding RNA (lncRNA) H19 is a potential biomarker for glioma diagnosis and treatment due to its overexpression in human glioma tissues and its involvement in cell division and metastasis regulation. This study aimed to identify potential therapeutic targets involved in glioma development by analyzing gene expression profiles regulated by H19. MATERIALS AND METHODS To elucidate the role of H19 in A172 and U87MG glioma cell lines, cell counting, colony formation, and wound healing assays were conducted. RNA-seq data analysis and bioinformatics analyses were performed to reveal the molecular interactions of H19. RESULTS Cell-based experiments showed that elevated H19 levels were related to cancer cell survival, proliferation, and migration. Bioinformatics analyses identified 2,084 differentially expressed genes (DEGs) influenced by H19 which are involved in cancer progression. Specifically, ANXA5, CLEC18B, RAB42, CXCL8, OASL, USP18, and CDCP1 were positively correlated with H19 expression, while CSDC2 and FOXO4 were negatively correlated. These DEGs were predicted to function as oncogenes or tumor suppressors in gliomas, in association with H19. CONCLUSION These findings highlight H19 and its associated genes as potential diagnostic and therapeutic targets for gliomas, emphasizing their clinical significance in patient survival.
Collapse
Affiliation(s)
- Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Mijung Im
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Wonyi Jang
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Boseong Kim
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
| | - Jihoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA, U.S.A
| | - Buhyun Youn
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea
- Department of Biology Education, Korea National University of Education, Cheongju-si, Republic of Korea
| |
Collapse
|
4
|
Shi Y, Kang X, Ge Y, Cao Y, Li Y, Guo X, Chen W, Guo S, Wang Y, Liu D, Wang Y, Xing H, Xia Y, Li J, Wu J, Liang T, Wang H, Liu Q, Jin S, Qu T, Li H, Yang T, Zhang K, Feng F, Wang Y, You H, Ma W. The molecular signature and prognosis of glioma with preoperative intratumoral hemorrhage: a retrospective cohort analysis. BMC Neurol 2024; 24:202. [PMID: 38877400 PMCID: PMC11177380 DOI: 10.1186/s12883-024-03703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/31/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Intratumoral hemorrhage, though less common, could be the first clinical manifestation of glioma and is detectable via MRI; however, its exact impacts on patient outcomes remain unclear and controversial. The 2021 WHO CNS 5 classification emphasised genetic and molecular features, initiating the necessity to establish the correlation between hemorrhage and molecular alterations. This study aims to determine the prevalence of intratumoral hemorrhage in glioma subtypes and identify associated molecular and clinical characteristics to improve patient management. METHODS Integrated clinical data and imaging studies of patients who underwent surgery at the Department of Neurosurgery at Peking Union Medical College Hospital from January 2011 to January 2022 with pathological confirmation of glioma were retrospectively reviewed. Patients were divided into hemorrhage and non-hemorrhage groups based on preoperative magnetic resonance imaging. A comparison and survival analysis were conducted with the two groups. In terms of subgroup analysis, we classified patients into astrocytoma, IDH-mutant; oligodendroglioma, IDH-mutant, 1p/19q-codeleted; glioblastoma, IDH-wildtype; pediatric-type gliomas; or circumscribed glioma using integrated histological and molecular characteristics, according to WHO CNS 5 classifications. RESULTS 457 patients were enrolled in the analysis, including 67 (14.7%) patients with intratumoral hemorrhage. The hemorrhage group was significantly older and had worse preoperative Karnofsky performance scores. The hemorrhage group had a higher occurrence of neurological impairment and a higher Ki-67 index. Molecular analysis indicated that CDKN2B, KMT5B, and PIK3CA alteration occurred more in the hemorrhage group (CDKN2B, 84.4% vs. 62.2%, p = 0.029; KMT5B, 25.0% vs. 8.9%, p = 0.029; and PIK3CA, 81.3% vs. 58.5%, p = 0.029). Survival analysis showed significantly worse prognoses for the hemorrhage group (hemorrhage 18.4 months vs. non-hemorrhage 39.1 months, p = 0.01). In subgroup analysis, the multivariate analysis showed that intra-tumoral hemorrhage is an independent risk factor only in glioblastoma, IDH-wildtype (162 cases of 457 overall, HR = 1.72, p = 0.026), but not in other types of gliomas. The molecular alteration of CDK6 (hemorrhage group p = 0.004, non-hemorrhage group p < 0.001), EGFR (hemorrhage group p = 0.003, non-hemorrhage group p = 0.001), and FGFR2 (hemorrhage group p = 0.007, non-hemorrhage group p = 0.001) was associated with shorter overall survival time in both hemorrhage and non-hemorrhage groups. CONCLUSIONS Glioma patients with preoperative intratumoral hemorrhage had unfavorable prognoses compared to their nonhemorrhage counterparts. CDKN2B, KMT5B, and PIK3CA alterations were associated with an increased occurrence of intratumoral hemorrhage, which might be future targets for further investigation of intratumoral hemorrhage.
Collapse
Affiliation(s)
- Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoman Kang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yulu Ge
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaning Cao
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China.
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China.
| |
Collapse
|
5
|
Han Q, Lu Y, Wang D, Li X, Ruan Z, Mei N, Ji X, Geng D, Yin B. Glioblastomas with and without peritumoral fluid-attenuated inversion recovery (FLAIR) hyperintensity present morphological and microstructural differences on conventional MR images. Eur Radiol 2023; 33:9139-9151. [PMID: 37495706 DOI: 10.1007/s00330-023-09924-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVES Glioblastoma (GB) without peritumoral fluid-attenuated inversion recovery (FLAIR) hyperintensity is atypical and its characteristics are barely known. The aim of this study was to explore the differences in pathological and MRI-based intrinsic features (including morphologic and first-order features) between GBs with peritumoral FLAIR hyperintensity (PFH-bearing GBs) and GBs without peritumoral FLAIR hyperintensity (PFH-free GBs). METHODS In total, 155 patients with pathologically diagnosed GBs were retrospectively collected, which included 110 PFH-bearing GBs and 45 PFH-free GBs. The pathological and imaging data were collected. The Visually AcceSAble Rembrandt Images (VASARI) features were carefully evaluated. The first-order radiomics features from the tumor region were extracted from FLAIR, apparent diffusion coefficient (ADC), and T1CE (T1-contrast enhanced) images. All parameters were compared between the two groups of GBs. RESULTS The pathological data showed more alpha thalassemia/mental retardation syndrome X-linked (ATRX)-loss in PFH-free GBs compared to PFH-bearing ones (p < 0.001). Based on VASARI evaluation, PFH-free GBs had larger intra-tumoral enhancing proportion and smaller necrotic proportion (both, p < 0.001), more common non-enhancing tumor (p < 0.001), mild/minimal enhancement (p = 0.003), expansive T1/FLAIR ratio (p < 0.001) and solid enhancement (p = 0.009), and less pial invasion (p = 0.010). Moreover, multiple ADC- and T1CE-based first-order radiomics features demonstrated differences, especially the lower intensity heterogeneity in PFH-free GBs (for all, adjusted p < 0.05). CONCLUSIONS Compared to PFH-bearing GBs, PFH-free ones demonstrated less immature neovascularization and lower intra-tumoral heterogeneity, which would be helpful in clinical treatment stratification. CLINICAL RELEVANCE STATEMENT Glioblastomas without peritumoral FLAIR hyperintensity show less immature neovascularization and lower heterogeneity leading to potential higher treatment benefits due to less drug resistance and treatment failure. KEY POINTS • The study explored the differences between glioblastomas with and without peritumoral FLAIR hyperintensity. • Glioblastomas without peritumoral FLAIR hyperintensity showed less necrosis and contrast enhancement and lower intensity heterogeneity. • Glioblastomas without peritumoral FLAIR hyperintensity had less immature neovascularization and lower tumor heterogeneity.
Collapse
Affiliation(s)
- Qiuyue Han
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Rd. Middle, 200040, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Yiping Lu
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Rd. Middle, 200040, Shanghai, China
| | - Dongdong Wang
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Rd. Middle, 200040, Shanghai, China
| | - Xuanxuan Li
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Rd. Middle, 200040, Shanghai, China
| | - Zhuoying Ruan
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Rd. Middle, 200040, Shanghai, China
| | - Nan Mei
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Rd. Middle, 200040, Shanghai, China
| | - Xiong Ji
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Rd. Middle, 200040, Shanghai, China.
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China.
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Rd. Middle, 200040, Shanghai, China.
| |
Collapse
|
6
|
Brighi C, Puttick S, Woods A, Keall P, Tooney PA, Waddington DEJ, Sproule V, Rose S, Fay M. Comparison between [ 68Ga]Ga-PSMA-617 and [ 18F]FET PET as Imaging Biomarkers in Adult Recurrent Glioblastoma. Int J Mol Sci 2023; 24:16208. [PMID: 38003399 PMCID: PMC10671181 DOI: 10.3390/ijms242216208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this prospective clinical study was to evaluate the potential of the prostate specific membrane antigen (PSMA) targeting ligand, [68Ga]-PSMA-Glu-NH-CO-NH-Lys-2-naphthyl-L-Ala-cyclohexane-DOTA ([68Ga]Ga-PSMA-617) as a positron emission tomography (PET) imaging biomarker in recurrent glioblastoma patients. Patients underwent [68Ga]Ga-PSMA-617 and O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET) PET scans on two separate days. [68Ga]Ga-PSMA-617 tumour selectivity was assessed by comparing tumour volume delineation and by assessing the intra-patient correlation between tumour uptake on [68Ga]Ga-PSMA-617 and [18F]FET PET images. [68Ga]Ga-PSMA-617 tumour specificity was evaluated by comparing its tumour-to-brain ratio (TBR) with [18F]FET TBR and its tumour volume with the magnetic resonance imaging (MRI) contrast-enhancing (CE) tumour volume. Ten patients were recruited in this study. [68Ga]Ga-PSMA-617-avid tumour volume was larger than the [18F]FET tumour volume (p = 0.063). There was a positive intra-patient correlation (median Pearson r = 0.51; p < 0.0001) between [68Ga]Ga-PSMA-617 and [18F]FET in the tumour volume. [68Ga]Ga-PSMA-617 had significantly higher TBR (p = 0.002) than [18F]FET. The [68Ga]Ga-PSMA-617-avid tumour volume was larger than the CE tumour volume (p = 0.0039). Overall, accumulation of [68Ga]-Ga-PSMA-617 beyond [18F]FET-avid tumour regions suggests the presence of neoangiogenesis in tumour regions that are not overly metabolically active yet. Higher tumour specificity suggests that [68Ga]-Ga-PSMA-617 could be a better imaging biomarker for recurrent tumour delineation and secondary treatment planning than [18F]FET and CE MRI.
Collapse
Affiliation(s)
- Caterina Brighi
- Image X Institute, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney 2015, Australia; (P.K.); (D.E.J.W.)
| | - Simon Puttick
- AdvanCell Isotopes Pty Ltd., Sydney 2000, Australia; (S.P.); (S.R.)
| | - Amanda Woods
- GenesisCare, Newcastle 2290, Australia; (A.W.); (V.S.); (M.F.)
| | - Paul Keall
- Image X Institute, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney 2015, Australia; (P.K.); (D.E.J.W.)
| | - Paul A. Tooney
- MHF Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle 2308, Australia;
| | - David E. J. Waddington
- Image X Institute, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney 2015, Australia; (P.K.); (D.E.J.W.)
| | - Vicki Sproule
- GenesisCare, Newcastle 2290, Australia; (A.W.); (V.S.); (M.F.)
| | - Stephen Rose
- AdvanCell Isotopes Pty Ltd., Sydney 2000, Australia; (S.P.); (S.R.)
| | - Michael Fay
- GenesisCare, Newcastle 2290, Australia; (A.W.); (V.S.); (M.F.)
- MHF Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle 2308, Australia;
| |
Collapse
|
7
|
Agnihotri TG, Salave S, Shinde T, Srikanth I, Gyanani V, Haley JC, Jain A. Understanding the role of endothelial cells in brain tumor formation and metastasis: a proposition to be explored for better therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:222-235. [PMID: 39035200 PMCID: PMC11256543 DOI: 10.1016/j.jncc.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 07/23/2024] Open
Abstract
Glioblastoma is one of the most devastating central nervous system disorders. Being a highly vascular brain tumor, it is distinguished by aberrant vessel architecture. This lends credence to the idea that endothelial cells (ECs) linked with glioblastoma vary fundamentally from ECs seen in the healthy human brain. To effectively design an antiangiogenic treatment, it is crucial to identify the functional and phenotypic characteristics of tumor-associated ECs. The ECs associated with glioblastoma are less prone to apoptosis than control cells and are resistant to cytotoxic treatments. Additionally, ECs associated with glioblastoma migrate more quickly than control ECs and naturally produce large amounts of growth factors such as endothelin-1, interleukin-8, and vascular endothelial growth factor (VEGF). For designing innovative antiangiogenic drugs that particularly target tumor-related ECs in gliomas, it is critical to comprehend these distinctive features of ECs associated with gliomas. This review discusses the process of angiogenesis, other factors involved in the genesis of tumors, and the possibility of ECs as a potential target in combating glioblastoma. It also sheds light on the association of tumor microenvironment and ECs with immunotherapy. This review, thus gives us the hope that neuro endothelial targeting with growth factors and angiogenesis regulators combined with gene therapy would open up new doorways and change our traditional perspective of treating cancer.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Tanuja Shinde
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Induri Srikanth
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Vijay Gyanani
- Long Acting Drug Delivery, Celanese Corporation, Irving, United States
| | - Jeffrey C. Haley
- Long Acting Drug Delivery, Celanese Corporation, Irving, United States
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| |
Collapse
|
8
|
Karkon-Shayan S, Aliashrafzadeh H, Dianat-Moghadam H, Rastegar-Pouyani N, Majidi M, Zarei M, Moradi-Vastegani S, Bahramvand Y, Babaniamansour S, Jafarzadeh E. Resveratrol as an antitumor agent for glioblastoma multiforme: Targeting resistance and promoting apoptotic cell deaths. Acta Histochem 2023; 125:152058. [PMID: 37336070 DOI: 10.1016/j.acthis.2023.152058] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive brain and spinal cord tumors. Despite the significant development in application of antitumor drugs, no significant increases have been observed in the survival rates of patients with GBM, as GBM cells acquire resistance to conventional anticancer therapeutic agents. Multiple studies have revealed that PI3K/Akt, MAPK, Nanog, STAT 3, and Wnt signaling pathways are involved in GBM progression and invasion. Besides, biological processes such as anti-apoptosis, autophagy, angiogenesis, and stemness promote GBM malignancy. Resveratrol (RESV) is a non-flavonoid polyphenol with high antitumor activity, the potential of which, regulating signaling pathways involved in cancer malignancy, have been demonstrated by many studies. Herein, we present the potential of RESV in both single and combination therapy- targeting various signaling pathways- which induce apoptotic cell death, re-sensitize cancer cells to radiotherapy, and induce chemo-sensitizing effects to eventually inhibit GBM progression.
Collapse
Affiliation(s)
- Sepideh Karkon-Shayan
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hasan Aliashrafzadeh
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Majidi
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahdi Zarei
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Moradi-Vastegani
- Department of physiology, faculty of medicine, physiology research center, Ahvaz jundishapur university of medical sciences, Ahvaz, Iran
| | - Yaser Bahramvand
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Babaniamansour
- Department of Pathology, School of Medicine, Islamic Azad University Tehran Faculty of Medicine, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Wang S, Shi H, Wang L, Loredo A, Bachilo SM, Wu W, Tian Z, Chen Y, Weisman RB, Zhang X, Cheng Z, Xiao H. Photostable Small-Molecule NIR-II Fluorescent Scaffolds that Cross the Blood-Brain Barrier for Noninvasive Brain Imaging. J Am Chem Soc 2022; 144:23668-23676. [PMID: 36511618 PMCID: PMC10010776 DOI: 10.1021/jacs.2c11223] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The second near-infrared (NIR-II, 1000-1700 nm) fluorescent probes have significant advantages over visible or NIR-I (600-900 nm) imaging for both depth of penetration and level of resolution. Since the blood-brain barrier (BBB) prevents most molecules from entering the central nervous system, NIR-II dyes with large molecular frameworks have limited applications for brain imaging. In this work, we developed a series of boron difluoride (BF2) formazanate NIR-II dyes, which had tunable photophysical properties, ultrahigh photostability, excellent biological stability, and strong brightness. Modulation of the aniline moiety of BF2 formazanate dyes significantly enhances their abilities to cross the BBB for noninvasive brain imaging. Furthermore, the intact mouse brain imaging and dynamic dye diffusion across the BBB were monitored using these BF2 formazanate dyes in the NIR-II region. In murine glioblastoma models, these dyes can differentiate tumors from normal brain tissues. We anticipate that this new type of small molecule will find potential applications in creating probes and drugs relevant to theranostic for brain pathologies.
Collapse
Affiliation(s)
- Shichao Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Hui Shi
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Lushun Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Sergei M Bachilo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - William Wu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - R Bruce Weisman
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Xuanjun Zhang
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California 94305, United States.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Zhang Q, Guo YX, Zhang WL, Lian HY, Iranzad N, Wang E, Li YC, Tong HC, Li LY, Dong LY, Yang LH, Ma S. Intra-tumoral angiogenesis correlates with immune features and prognosis in glioma. Aging (Albany NY) 2022; 14:4402-4424. [PMID: 35579998 PMCID: PMC9186765 DOI: 10.18632/aging.204079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/22/2022] [Indexed: 11/25/2022]
Abstract
Gliomas are the most common malignant tumor in the brain. As with other tumors, the progression of glioma depends on intra-tumoral angiogenesis. However, the effect of angiogenesis on gliomas is still not fully understood. In this study, we developed an angiogenesis pathway score using Gene Set Variation Analysis (GSAV) in R to assess the status of intra-glioma angiogenesis in The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA mRNAseq_325, CGGA mRNA-array), and GSE16011 datasets. We found that the angiogenesis pathway score not only accurately predicted the prognosis of glioma patients, but also accurately distinguished the malignant phenotype and immune characteristics of gliomas. In addition, as an independent prognostic factor, the score could predict glioma sensitivity to radiotherapy and chemotherapy. In summary, we used the angiogenesis pathway score to reveal the relationship between glioma angiogenesis and the malignant phenotype, immune characteristics, and prognosis of glioma.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.,Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yao-Xing Guo
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.,Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wan-Lin Zhang
- Department of Pathology, Hebei Petro China Central Hospital, Langfang, Hebei, China
| | - Hai-Yan Lian
- Department of Ophthalmology, Jili Hospital of Liuyang (Liuyang Eye Hospital), Changsha, Hunan, China
| | - Natasha Iranzad
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Endi Wang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ying-Chun Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Hai-Chao Tong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Le-Yao Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ling-Yun Dong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Lian-He Yang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.,Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuang Ma
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.,Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Li X, Geng X, Chen Z, Yuan Z. Recent advances in glioma microenvironment-response nanoplatforms for phototherapy and sonotherapy. Pharmacol Res 2022; 179:106218. [DOI: 10.1016/j.phrs.2022.106218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
|
12
|
Cui J, Xu Y, Tu H, Zhao H, Wang H, Di L, Wang R. Gather wisdom to overcome barriers: Well-designed nano-drug delivery systems for treating gliomas. Acta Pharm Sin B 2022; 12:1100-1125. [PMID: 35530155 PMCID: PMC9069319 DOI: 10.1016/j.apsb.2021.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the special physiological and pathological characteristics of gliomas, most therapeutic drugs are prevented from entering the brain. To improve the poor prognosis of existing therapies, researchers have been continuously developing non-invasive methods to overcome barriers to gliomas therapy. Although these strategies can be used clinically to overcome the blood‒brain barrier (BBB), the accurate delivery of drugs to the glioma lesions cannot be ensured. Nano-drug delivery systems (NDDS) have been widely used for precise drug delivery. In recent years, researchers have gathered their wisdom to overcome barriers, so many well-designed NDDS have performed prominently in preclinical studies. These meticulous designs mainly include cascade passing through BBB and targeting to glioma lesions, drug release in response to the glioma microenvironment, biomimetic delivery systems based on endogenous cells/extracellular vesicles/protein, and carriers created according to the active ingredients of traditional Chinese medicines. We reviewed these well-designed NDDS in detail. Furthermore, we discussed the current ongoing and completed clinical trials of NDDS for gliomas therapy, and analyzed the challenges and trends faced by clinical translation of these well-designed NDDS.
Collapse
Affiliation(s)
- Jiwei Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yuanxin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Haiyan Tu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Huacong Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Honglan Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
- Corresponding author. Tel./fax: +86 15852937869.
| |
Collapse
|
13
|
Cocola C, Magnaghi V, Abeni E, Pelucchi P, Martino V, Vilardo L, Piscitelli E, Consiglio A, Grillo G, Mosca E, Gualtierotti R, Mazzaccaro D, La Sala G, Di Pietro C, Palizban M, Liuni S, DePedro G, Morara S, Nano G, Kehler J, Greve B, Noghero A, Marazziti D, Bussolino F, Bellipanni G, D'Agnano I, Götte M, Zucchi I, Reinbold R. Transmembrane Protein TMEM230, a Target of Glioblastoma Therapy. Front Cell Neurosci 2021; 15:703431. [PMID: 34867197 PMCID: PMC8636015 DOI: 10.3389/fncel.2021.703431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells. Known targets for anti-angiogenic therapies provide minimal or no effect in overall survival of 12–15 months following diagnosis. Identification of novel targets therefore remains an important goal for effective treatment of highly vascularized tumors such as GBM. We previously demonstrated in zebrafish that a balanced level of expression of the transmembrane protein TMEM230/C20ORF30 was required to maintain normal blood vessel structural integrity and promote proper vessel network formation. To investigate whether TMEM230 has a role in the pathogenesis of GBM, we analyzed its prognostic value in patient tumor gene expression datasets and performed cell functional analysis. TMEM230 was found necessary for growth of U87-MG cells, a model of human GBM. Downregulation of TMEM230 resulted in loss of U87 migration, substratum adhesion, and re-passaging capacity. Conditioned media from U87 expressing endogenous TMEM230 induced sprouting and tubule-like structure formation of HUVECs. Moreover, TMEM230 promoted vascular mimicry-like behavior of U87 cells. Gene expression analysis of 702 patients identified that TMEM230 expression levels distinguished high from low grade gliomas. Transcriptomic analysis of patients with gliomas revealed molecular pathways consistent with properties observed in U87 cell assays. Within low grade gliomas, elevated TMEM230 expression levels correlated with reduced overall survival independent from tumor subtype. Highest level of TMEM230 correlated with glioblastoma and ATP-dependent microtubule kinesin motor activity, providing a direction for future therapeutic intervention. Our studies support that TMEM230 has both glial tumor and endothelial cell intracellular and extracellular functions. Elevated levels of TMEM230 promote glial tumor cell migration, extracellular scaffold remodeling, and hypervascularization and abnormal formation of blood vessels. Downregulation of TMEM230 expression may inhibit both low grade glioma and glioblastoma tumor progression and promote normalization of abnormally formed blood vessels. TMEM230 therefore is both a promising anticancer and antiangiogenic therapeutic target for inhibiting GBM tumor cells and tumor-driven angiogenesis.
Collapse
Affiliation(s)
- Cinzia Cocola
- Institute for Biomedical Technologies, National Research Council, Milan, Italy.,Consorzio Italbiotec, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Edoardo Abeni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Paride Pelucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Martino
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Laura Vilardo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Eleonora Piscitelli
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Arianna Consiglio
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giorgio Grillo
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Ettore Mosca
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Roberta Gualtierotti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Mazzaccaro
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Mira Palizban
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Sabino Liuni
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Giuseppina DePedro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giovanni Nano
- Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - James Kehler
- National Institutes of Health, NIDDK, Laboratory of Cell and Molecular Biology, Bethesda, MD, United States
| | - Burkhard Greve
- Department of Radiation Therapy and Radiation Oncology, University Hospital of Münster, Münster, Germany
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM, United States.,Department of Oncology, University of Turin, Orbassano, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
| | - Federico Bussolino
- Department of Oncology, University of Turin, Orbassano, Italy.,Laboratory of Vascular Oncology Candiolo Cancer Institute - IRCCS, Candiolo, Italy
| | - Gianfranco Bellipanni
- Department of Biology, Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| | - Igea D'Agnano
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital of Münster, Münster, Germany
| | - Ileana Zucchi
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Rolland Reinbold
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| |
Collapse
|
14
|
Umans RA, Ten Kate M, Pollock C, Sontheimer H. Fishing for Contact: Modeling Perivascular Glioma Invasion in the Zebrafish Brain. ACS Pharmacol Transl Sci 2021; 4:1295-1305. [PMID: 34423267 DOI: 10.1021/acsptsci.0c00129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive, central nervous system (CNS) cancer for which there is no cure. Invading tumor cells evade treatment, limiting the efficacy of the current standard of care regimen. Understanding the underlying invasive behaviors that support tumor growth may allow for generation of novel GBM therapies. Zebrafish (Danio rerio) are attractive for genetics and live imaging and have, in recent years, emerged as a model system suitable for cancer biology research. While other groups have studied CNS tumors using zebrafish, few have concentrated on the invasive behaviors supporting the development of these diseases. Previous studies demonstrated that one of the main mechanisms of GBM invasion is perivascular invasion, i.e., single tumor cell migration along blood vessels. Here, we characterize phenotypes, methodology, and potential therapeutic avenues for utilizing zebrafish to model perivascular GBM invasion. Using patient-derived xenolines or an adherent cell line, we demonstrate tumor expansion within the zebrafish brain. Within 24-h postintracranial injection, D54-MG-tdTomato glioma cells produce fingerlike projections along the zebrafish brain vasculature. As few as 25 GBM cells were sufficient to promote single cell vessel co-option. Of note, these tumor-vessel interactions are CNS specific and do not occur on pre-existing blood vessels when injected into the animal's peripheral tissue. Tumor-vessel interactions increase over time and can be pharmacologically disrupted through inhibition of Wnt signaling. Therefore, zebrafish serve as a favorable model system to study perivascular glioma invasion, one of the deadly characteristics that make GBM so difficult to treat.
Collapse
Affiliation(s)
- Robyn A Umans
- Center for Glial Biology in Health, Disease, and Cancer, The Fralin Biomedical Research Institute at VTC, Roanoke, Virginia 24016, United States
| | - Mattie Ten Kate
- School of Neuroscience, Virginia Tech, Sandy Hall, 210 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Carolyn Pollock
- School of Neuroscience, Virginia Tech, Sandy Hall, 210 Drillfield Drive, Blacksburg, Virginia 24061, United States
| | - Harald Sontheimer
- Center for Glial Biology in Health, Disease, and Cancer, The Fralin Biomedical Research Institute at VTC, Roanoke, Virginia 24016, United States.,School of Neuroscience, Virginia Tech, Sandy Hall, 210 Drillfield Drive, Blacksburg, Virginia 24061, United States
| |
Collapse
|
15
|
Vásquez X, Sánchez-Gómez P, Palma V. Netrin-1 in Glioblastoma Neovascularization: The New Partner in Crime? Int J Mol Sci 2021; 22:8248. [PMID: 34361013 PMCID: PMC8348949 DOI: 10.3390/ijms22158248] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common primary tumor of the central nervous system. It is characterized by having an infiltrating growth and by the presence of an excessive and aberrant vasculature. Some of the mechanisms that promote this neovascularization are angiogenesis and the transdifferentiation of tumor cells into endothelial cells or pericytes. In all these processes, the release of extracellular microvesicles by tumor cells plays an important role. Tumor cell-derived extracellular microvesicles contain pro-angiogenic molecules such as VEGF, which promote the formation of blood vessels and the recruitment of pericytes that reinforce these structures. The present study summarizes and discusses recent data from different investigations suggesting that Netrin-1, a highly versatile protein recently postulated as a non-canonical angiogenic ligand, could participate in the promotion of neovascularization processes in GBM. The relevance of determining the angiogenic signaling pathways associated with the interaction of Netrin-1 with its receptors is posed. Furthermore, we speculate that this molecule could form part of the microvesicles that favor abnormal tumor vasculature. Based on the studies presented, this review proposes Netrin-1 as a novel biomarker for GBM progression and vascularization.
Collapse
Affiliation(s)
- Ximena Vásquez
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile;
| | - Pilar Sánchez-Gómez
- Neurooncology Unit, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile;
| |
Collapse
|
16
|
Zaman N, Dass SS, DU Parcq P, Macmahon S, Gallagher L, Thompson L, Khorashad JS, LimbÄck-Stanic C. The KDR (VEGFR-2) Genetic Polymorphism Q472H and c-KIT Polymorphism M541L Are Associated With More Aggressive Behaviour in Astrocytic Gliomas. Cancer Genomics Proteomics 2021; 17:715-727. [PMID: 33099473 DOI: 10.21873/cgp.20226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND/AIM Better diagnostic and prognostic markers are required for a more accurate diagnosis and an earlier detection of glioma progression and for suggesting better treatment strategies. This retrospective study aimed to identify actionable gene variants to define potential markers of clinical significance. MATERIALS AND METHODS 56 glioblastomas (GBM) and 44 grade 2-3 astrocytomas were profiled with next generation sequencing (NGS) as part of routine diagnostic workup and bioinformatics analysis was used for the identification of variants. CD34 immunohistochemistry (IHC) was used to measure microvessel density (MVD) and Log-rank test to compare survival and progression in the presence or absence of these variants. RESULTS Bioinformatic analysis highlighted frequently occurring variants in genes involved in angiogenesis regulation (KDR, KIT, TP53 and PIK3CA), with the most common ones being KDR (rs1870377) and KIT (rs3822214). The KDR variant was associated with increased MVD and shorter survival in GBM. We did not observe any correlation between the KIT variant and MVD; however, there was an association with tumour grade. CONCLUSION This study highlights the role of single-nucleotide variants (SNVs) that may be considered non-pathogenic and suggests the prognostic significance for survival of KIT rs3822214 and KDR rs1870377 and potential importance in planning new treatment strategies for gliomas.
Collapse
Affiliation(s)
- Niyaz Zaman
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, U.K
| | - Serena Santhana Dass
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, U.K
| | - Persephone DU Parcq
- Department of Cell Pathology, Imperial College Healthcare NHS Trust, London, U.K
| | - Suzanne Macmahon
- Clinical Genomics, The Centre for Molecular Pathology, The Royal Marsden NHS Foundation Trust, London, U.K
| | - Lewis Gallagher
- Clinical Genomics, The Centre for Molecular Pathology, The Royal Marsden NHS Foundation Trust, London, U.K
| | - Lisa Thompson
- Clinical Genomics, The Centre for Molecular Pathology, The Royal Marsden NHS Foundation Trust, London, U.K
| | - Jamshid S Khorashad
- Department of Immunology and Inflammation, Imperial College London, London, U.K
| | - Clara LimbÄck-Stanic
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, U.K. .,Department of Cell Pathology, Imperial College Healthcare NHS Trust, London, U.K
| |
Collapse
|
17
|
Jeong S, Jung S, Park GS, Shin J, Oh JW. Piperine synergistically enhances the effect of temozolomide against temozolomide-resistant human glioma cell lines. Bioengineered 2021; 11:791-800. [PMID: 32693671 PMCID: PMC8291786 DOI: 10.1080/21655979.2020.1794100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Temozolomide (TMZ) is an alkylating chemotherapy agent used in the clinical treatment of glioblastoma multiforme (GBM) patients. Piperine (PIP) is a naturally occurring pungent nitrogenous substance present in the fruits of peppers. We investigated the anti-cancer efficacies of PIP alone and in combination with TMZ in GBM cellsusingparameters such as cell proliferation, cellular apoptosis,caspase-8/-9/-3 activities, cell cycle kinetics, wound-healing ability, and loss of mitochondrial membrane potential (MMP). Treatment with PIP and alow concentration of PIP-TMZ, inhibited cell growth, similar to TMZ.PIP-TMZ promoted apoptosis by activation of caspase-8/-9/-3, MMP loss, and inhibition of in vitro wound-healing motility. Reverse transcription polymerase chain reaction analysis showed significant inhibition of Cyclin-dependent kinases (CDK)4/6−cyclin D and CDK2−cyclin-E expression upon treatment with a low concentration PIP-TMZ, suggesting an S to G1 arrest. Our findings provide insight into the apoptotic potential of the combination of a low concentration of PIP-TMZ, though further in vivo study will be needed for its validation.
Collapse
Affiliation(s)
- Somi Jeong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University , Seoul, Korea
| | - Seunghwa Jung
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University , Seoul, Korea
| | - Gyun-Seok Park
- Department of Bio-resources and Food Science, Konkuk University , Seoul, Korea
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University , Seoul, Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University , Seoul, Korea
| |
Collapse
|
18
|
Arpa D, Parisi E, Ghigi G, Cortesi A, Longobardi P, Cenni P, Pieri M, Tontini L, Neri E, Micheletti S, Ghetti F, Monti M, Foca F, Tesei A, Arienti C, Sarnelli A, Martinelli G, Romeo A. Role of Hyperbaric Oxygenation Plus Hypofractionated Stereotactic Radiotherapy in Recurrent High-Grade Glioma. Front Oncol 2021; 11:643469. [PMID: 33859944 PMCID: PMC8042328 DOI: 10.3389/fonc.2021.643469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/09/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The presence of hypoxic cells in high-grade glioma (HGG) is one of major reasons for failure of local tumour control with radiotherapy (RT). The use of hyperbaric oxygen therapy (HBO) could help to overcome the problem of oxygen deficiency in poorly oxygenated regions of the tumour. We propose an innovative approach to improve the efficacy of hypofractionated stereotactic radiotherapy (HSRT) after HBO (HBO-RT) for the treatment of recurrent HGG (rHGG) and herein report the results of an ad interim analysis. METHODS We enrolled a preliminary cohort of 9 adult patients (aged >18 years) with a diagnosis of rHGG. HSRT was administered in daily 5-Gy fractions for 3-5 consecutive days a week. Each fraction was delivered up to maximum of 60 minutes after HBO. RESULTS Median follow-up from re-irradiation was 11.6 months (range: 3.2-11.6 months). The disease control rate (DCR) 3 months after HBO-RT was 55.5% (5 patients). Median progression-free survival (mPFS) for all patients was 5.2 months (95%CI: 1.34-NE), while 3-month and 6-month PFS was 55.5% (95%CI: 20.4-80.4) and 27.7% (95%CI: 4.4-59.1), respectively. Median overall survival (mOS) of HBO-RT was 10.7 months (95% CI: 7.7-NE). No acute or late neurologic toxicity >grade (G)2 was observed in 88.88% of patients. One patient developed G3 radionecrosis. CONCLUSIONS HSRT delivered after HBO appears to be effective for the treatment of rHGG, it could represent an alternative, with low toxicity, to systemic therapies for patients who cannot or refuse to undergo such treatments. CLINICAL TRIAL REGISTRATION www.ClinicalTrials.gov, identifier NCT03411408.
Collapse
Affiliation(s)
- Donatella Arpa
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Elisabetta Parisi
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giulia Ghigi
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Annalisa Cortesi
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | - Patrizia Cenni
- Neuroradiology Unit, “Santa Maria delle Croci” Hospital, Ravenna, Italy
| | - Martina Pieri
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Luca Tontini
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Elisa Neri
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Simona Micheletti
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Francesca Ghetti
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Manuela Monti
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Anna Tesei
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Anna Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Antonio Romeo
- Radiotherapy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
19
|
Trends and challenges in modeling glioma using 3D human brain organoids. Cell Death Differ 2020; 28:15-23. [PMID: 33262470 PMCID: PMC7707134 DOI: 10.1038/s41418-020-00679-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
The human brain organoids derived from pluripotent cells are a new class of three-dimensional tissue systems that recapitulates several neural epithelial aspects. Brain organoids have already helped efficient modeling of crucial elements of brain development and disorders. Brain organoids’ suitability in modeling glioma has started to emerge, offering another usefulness of brain organoids in disease modeling. Although the current state-of-the organoids mostly reflect the immature state of the brain, with their vast cell diversity, human brain-like cytoarchitecture, feasibility in culturing, handling, imaging, and tractability can offer enormous potential in reflecting the glioma invasion, integration, and interaction with different neuronal cell types. Here, we summarize the current trend of employing brain organoids in glioma modeling and discuss the immediate challenges. Solving them might lay a foundation for using brain organoids as a pre-clinical 3D substrate to dissect the glioma invasion mechanisms in detail.
Collapse
|
20
|
Abstract
We propose a model for glioma patterns in a microlocal tumor environment under the influence of acidity, angiogenesis, and tissue anisotropy. The bottom-up model deduction eventually leads to a system of reaction–diffusion–taxis equations for glioma and endothelial cell population densities, of which the former infers flux limitation both in the self-diffusion and taxis terms. The model extends a recently introduced (Kumar, Li and Surulescu, 2020) description of glioma pseudopalisade formation with the aim of studying the effect of hypoxia-induced tumor vascularization on the establishment and maintenance of these histological patterns which are typical for high-grade brain cancer. Numerical simulations of the population level dynamics are performed to investigate several model scenarios containing this and further effects.
Collapse
|
21
|
Influence of Lipoxygenase Inhibition on Glioblastoma Cell Biology. Int J Mol Sci 2020; 21:ijms21218395. [PMID: 33182324 PMCID: PMC7664864 DOI: 10.3390/ijms21218395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The relationship between glioblastoma (GBM) and fatty acid metabolism could be the key to elucidate more effective therapeutic targets. 15-lipoxygenase-1 (15-LOX), a linolenic acid and arachidonic acid metabolizing enzyme, induces both pro- and antitumorigenic effects in different cancer types. Its role in glioma activity has not yet been clearly described. The objective of this study was to identify the influence of 15-LOX and its metabolites on glioblastoma cell activity. METHODS GBM cell lines were examined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to identify 15-LOX metabolites. GBM cells treated with 15-LOX metabolites, 13-hydroxyoctadecadeinoic acid (HODE) and 9-HODE, and two 15-LOX inhibitors (luteolin and nordihydroguaiaretic acid) were also examined. Dose response/viability curves, RT-PCRs, flow cytometry, migration assays, and zymograms were performed to analyze GBM growth, migration, and invasion. RESULTS Higher quantities of 13-HODE were observed in five GBM cell lines compared to other lipids analyzed. Both 13-HODE and 9-HODE increased cell count in U87MG. 15-LOX inhibition decreased migration and increased cell cycle arrest in the G2/M phase. CONCLUSION 15-LOX and its linoleic acid (LA)-derived metabolites exercise a protumorigenic influence on GBM cells in vitro. Elevated endogenous levels of 13-HODE called attention to the relationship between linoleic acid metabolism and GBM cell activity.
Collapse
|
22
|
Peleli M, Moustakas A, Papapetropoulos A. Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies. Int J Mol Sci 2020; 21:E7371. [PMID: 33036204 PMCID: PMC7582718 DOI: 10.3390/ijms21197371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma and other brain or CNS malignancies (like neuroblastoma and medulloblastoma) are difficult to treat and are characterized by excessive vascularization that favors further tumor growth. Since the mean overall survival of these types of diseases is low, the finding of new therapeutic approaches is imperative. In this review, we discuss the importance of the interaction between the endothelium and the tumor cells in brain and CNS malignancies. The different mechanisms of formation of new vessels that supply the tumor with nutrients are discussed. We also describe how the tumor cells (TC) alter the endothelial cell (EC) physiology in a way that favors tumorigenesis. In particular, mechanisms of EC-TC interaction are described such as (a) communication using secreted growth factors (i.e., VEGF, TGF-β), (b) intercellular communication through gap junctions (i.e., Cx43), and (c) indirect interaction via intermediate cell types (pericytes, astrocytes, neurons, and immune cells). At the signaling level, we outline the role of important mediators, like the gasotransmitter nitric oxide and different types of reactive oxygen species and the systems producing them. Finally, we briefly discuss the current antiangiogenic therapies used against brain and CNS tumors and the potential of new pharmacological interventions that target the EC-TC interaction.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden;
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden;
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
| |
Collapse
|
23
|
Llaguno-Munive M, León-Zetina S, Vazquez-Lopez I, Ramos-Godinez MDP, Medina LA, Garcia-Lopez P. Mifepristone as a Potential Therapy to Reduce Angiogenesis and P-Glycoprotein Associated With Glioblastoma Resistance to Temozolomide. Front Oncol 2020; 10:581814. [PMID: 33123485 PMCID: PMC7571516 DOI: 10.3389/fonc.2020.581814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma, the most common primary central nervous system tumor, is characterized by extensive vascular neoformation and an area of necrosis generated by rapid proliferation. The standard treatment for this type of tumor is surgery followed by chemotherapy based on temozolomide and radiotherapy, resulting in poor patient survival. Glioblastoma is known for strong resistance to treatment, frequent recurrence and rapid progression. The aim of this study was to evaluate whether mifepristone, an antihormonal agent, can enhance the effect of temozolomide on C6 glioma cells orthotopically implanted in Wistar rats. The levels of the vascular endothelial growth factor (VEGF), and P-glycoprotein (P-gp) were examined, the former a promoter of angiogenesis that facilitates proliferation, and the latter an efflux pump transporter linked to drug resistance. After a 3-week treatment, the mifepristone/temozolomide regimen had decreased the level of VEGF and P-gp and significantly reduced tumor proliferation (detected by PET/CT images based on 18F-fluorothymidine uptake). Additionally, mifepristone proved to increase the intracerebral concentration of temozolomide. The lower level of O6-methylguanine-DNA-methyltransferase (MGMT) (related to DNA repair in tumors) previously reported for this combined treatment was herein confirmed. After the mifepristone/temozolomide treatment ended, however, the values of VEGF, P-gp, and MGMT increased and reached control levels by 14 weeks post-treatment. There was also tumor recurrence, as occurred when administering temozolomide alone. On the other hand, temozolomide led to 100% mortality within 26 days after beginning the drug treatment, while mifepristone/temozolomide enabled 70% survival 60–70 days and 30% survived over 100 days, suggesting that mifepristone could possibly act as a chemo-sensitizing agent for temozolomide.
Collapse
Affiliation(s)
- Monserrat Llaguno-Munive
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico.,Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sebastián León-Zetina
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Inés Vazquez-Lopez
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Luis A Medina
- Unidad de Investigación Biomédica en Cáncer INCan-UNAM, Instituto Nacional de Cancerología, Mexico City, Mexico.,Instituto de Física, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, Mexico
| | - Patricia Garcia-Lopez
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
24
|
Ngo MT, Harley BAC. Angiogenic biomaterials to promote therapeutic regeneration and investigate disease progression. Biomaterials 2020; 255:120207. [PMID: 32569868 PMCID: PMC7396313 DOI: 10.1016/j.biomaterials.2020.120207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
The vasculature is a key component of the tissue microenvironment. Traditionally known for its role in providing nutrients and oxygen to surrounding cells, the vasculature is now also acknowledged to provide signaling cues that influence biological outcomes in regeneration and disease. These cues come from the cells that comprise vasculature, as well as the dynamic biophysical and biochemical properties of the surrounding extracellular matrix that accompany vascular development and remodeling. In this review, we illustrate the larger role of the vasculature in the context of regenerative biology and cancer progression. We describe cellular, biophysical, biochemical, and metabolic components of vascularized microenvironments. Moreover, we provide an overview of multidimensional angiogenic biomaterials that have been developed to promote therapeutic vascularization and regeneration, as well as to mimic elements of vascularized microenvironments as a means to uncover mechanisms by which vasculature influences cancer progression and therapy.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
25
|
Asad AS, Nicola Candia AJ, Gonzalez N, Zuccato CF, Seilicovich A, Candolfi M. The role of the prolactin receptor pathway in the pathogenesis of glioblastoma: what do we know so far? Expert Opin Ther Targets 2020; 24:1121-1133. [PMID: 32896197 DOI: 10.1080/14728222.2020.1821187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Prolactin (PRL) and its receptor (PRLR) have been associated with the development of hormone-dependent tumors and have been detected in glioblastoma (GBM) biopsies. GBM is the most common and aggressive primary brain tumor in adults and the prognosis for patients is dismal; hence researchers are exploring the PRLR pathway as a therapeutic target in this disease. Areas covered: This paper explores the effects of PRLR activation on the biology of GBM, the correlation between PRL and PRLR expression and GBM progression and survival in male and female patients. Finally, we discuss how a better understanding of the PRLR pathway may allow the development of novel treatments for GBM. Expert opinion: We propose PRL and PRLR as potential prognosis biomarkers and therapeutic targets in GBM. Local administration of PRLR inhibitors using gene therapy may offer a beneficial strategy for targeting GBM cells disseminated in the non-neoplastic brain; however, efficacy and safety require careful and extensive evaluation. The data depicted herein underline the need to (i) improve our understanding of sexual dimorphism in GBM, and (ii) develop accurate preclinical models that take into consideration different hormonal contexts, specific genetic alterations, and tumor grades.
Collapse
Affiliation(s)
- Antonela S Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Alejandro J Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Camila F Zuccato
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina.,departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
26
|
Chien YC, Chen JN, Chen YH, Chou RH, Lee HC, Yu YL. Epigenetic Silencing of miR-9 Promotes Migration and Invasion by EZH2 in Glioblastoma Cells. Cancers (Basel) 2020; 12:cancers12071781. [PMID: 32635336 PMCID: PMC7408254 DOI: 10.3390/cancers12071781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults. Tumor invasion is the major reason for treatment failure and poor prognosis in GBM. Inhibiting migration and invasion has become an important therapeutic strategy for GBM treatment. Enhancer of zeste homolog 2 (EZH2) and C-X-C motif chemokine receptor 4 (CXCR4) have been determined to have important roles in the occurrence and development of tumors, but the specific relationship between EZH2 and CXCR4 expression in GBM is less well characterized. In this study, we report that EZH2 and CXCR4 were overexpressed in glioma patients. Furthermore, elevated EZH2 and CXCR4 were correlated with shorter disease-free survival. In three human GBM cell lines, EZH2 modulated the expression of miR-9, which directly targeted the oncogenic signaling of CXCR4 in GBM. The ectopic expression of miR-9 dramatically inhibited the migratory capacity of GBM cells in vitro. Taken together, our results indicate that miR-9, functioning as a tumor-suppressive miRNA in GBM, is suppressed through epigenetic silencing by EZH2. Thus, miR-9 may be an attractive target for therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Yi-Chung Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (Y.-C.C.); (J.-N.C.); (Y.-H.C.); (R.-H.C.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Jia-Ni Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (Y.-C.C.); (J.-N.C.); (Y.-H.C.); (R.-H.C.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Ya-Huey Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (Y.-C.C.); (J.-N.C.); (Y.-H.C.); (R.-H.C.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Drug Development Center, China Medical University, Taichung 404, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (Y.-C.C.); (J.-N.C.); (Y.-H.C.); (R.-H.C.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Drug Development Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Han-Chung Lee
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: (H.-C.L.); (Y.-L.Y.); Tel.: +886-4-22052121 (ext. 7911) (Y.-L.Y.)
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (Y.-C.C.); (J.-N.C.); (Y.-H.C.); (R.-H.C.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Drug Development Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Correspondence: (H.-C.L.); (Y.-L.Y.); Tel.: +886-4-22052121 (ext. 7911) (Y.-L.Y.)
| |
Collapse
|
27
|
Delen E, Doğanlar O. The Dose Dependent Effects of Ruxolitinib on the Invasion and Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT Signaling Pathway. J Korean Neurosurg Soc 2020; 63:444-454. [PMID: 32492985 PMCID: PMC7365278 DOI: 10.3340/jkns.2019.0252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2020] [Indexed: 01/08/2023] Open
Abstract
Objective Glioblastoma multiforme (GBM) is the most aggressive for of brain tumor and treatment often fails due to the invasion of tumor cells into neighboring healthy brain tissues. Activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway is essential for normal cellular function including angiogenesis, and has been proposed to have a pivotal role in glioma invasion. This study aimed to determine the dose-dependent effects of ruxolitinib, an inhibitor of JAK, on the interferon (IFN)-I/IFN-α/IFN-β receptor/STAT and IFN-γ/IFN-γ receptor/STAT1 axes of the IFN-receptor-dependent JAK/STAT signaling pathway in glioblastoma invasion and tumorigenesis in U87 glioblastoma tumor spheroids.
Methods We administered three different doses of ruxolitinib (50, 100, and 200 nM) to human U87 glioblastoma spheroids and analyzed the gene expression profiles of IFNs receptors from the JAK/STAT pathway. To evaluate activation of this pathway, we quantified the phosphorylation of JAK and STAT proteins using Western blotting.
Results Quantitative real-time polymerase chain reaction analysis demonstrated that ruxolitinib led to upregulated of the IFN-α and IFN-γ while no change on the hypoxia-inducible factor-1α and vascular endothelial growth factor expression levels. Additionally, we showed that ruxolitinib inhibited phosphorylation of JAK/STAT proteins. The inhibition of IFNs dependent JAK/STAT signaling by ruxolitinib leads to decreases of the U87 cells invasiveness and tumorigenesis. We demonstrate that ruxolitinib may inhibit glioma invasion and tumorigenesis through inhibition of the IFN-induced JAK/STAT signaling pathway.
Conclusion Collectively, our results revealed that ruxolitinib may have therapeutic potential in glioblastomas, possibly by JAK/STAT signaling triggered by IFN-α and IFN-γ.
Collapse
Affiliation(s)
- Emre Delen
- Department of Neurosurgery, Trakya University School of Medicine, Edirne, Turkey
| | - Oğuzhan Doğanlar
- Department of Medical Biology, Trakya University School of Medicine, Edirne, Turkey
| |
Collapse
|
28
|
Lei L, Mou Q. Exosomal taurine up-regulated 1 promotes angiogenesis and endothelial cell proliferation in cervical cancer. Cancer Biol Ther 2020; 21:717-725. [PMID: 32432954 DOI: 10.1080/15384047.2020.1764318] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Emerging evidence had highlighted that exosomes could mediate cell-cell communication in human cancerous development via transferring the various molecular cargos, including long non-coding RNA (lncRNA). Taurine up-regulated 1 (TUG1) was previously reported as an oncogenic lncRNA in cervical cancer (CC) via facilitating cell proliferation and other vital biological behaviors. Nevertheless, the presence of TUG1 in exosomes and the functional regulation of exosomal TUG1 in CC are still elusive. The current study aimed at the communication between CC cell lines and endothelial cell-mediated by exosomes, as well as the roles of exosomes derived from CC cells and exosomal TUG1 in affecting angiogenesis. Initially, it was found that TUG1 expression was upregulated in both CC cells and their secreted exosomes. TUG1 was transferred from CC cells to recipient human umbilical vein endothelial cells (HUVECs) in the exosomes way. Interestingly, TUG1 depletion impaired the exosomes-mediated proangiogenic potential of HUVECs by modulating certain key angiogenesis-related genes. In addition, exosomal TUG1 contributed to HUVECs proliferation through suppressing caspase-3 activity and impacting apoptosis-related proteins. Collectively, we identified a new exosomes-mediated molecular mechanism by which CC cells transferred TUG1 via exosomes to recipient HUVECs, thus promoting angiogenesis, providing a promising target for early diagnosis of CC.
Collapse
Affiliation(s)
- Lei Lei
- Department of Three Wards of Department of Gynecology Oncology, Shaanxi Provincial Cancer Hospital , Xi'an, Shaanxi, China
| | - Qinwei Mou
- Department of Gynecology, Baoji Maternal and Children Health Care Hospital , Baoji, Shaanxi, China
| |
Collapse
|
29
|
Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed Pharmacother 2020; 126:110086. [PMID: 32172060 DOI: 10.1016/j.biopha.2020.110086] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) continues to be the most aggressive cancer of the brain. The dismal prognosis is largely attributed to the microenvironment surrounding tumor cells. Astrocytes, the main component of the GBM microenvironment, play several fundamental physiological roles in the central nervous system. During the development of GBM, tumor-associated astrocytes (TAAs) directly contact GBM cells, which activate astrocytes to form reactive astrocytes, facilitating tumor progression, proliferation and migration through multiple well-understood signaling pathways. Notably, TAAs also influence GBM cell behaviors via suppressing immune responses and enhancing the chemoradiotherapy resistance of tumor cells. These new activities are closely linked with the treatment and prognosis of GBM. In this review, we discuss recent advances regarding new functions of reactive astrocytes, including TAA-cancer cell interactions, mechanisms involved in immunosuppressive regulation, and chemoradiotherapy resistance. It is expected that these updated experimental or clinical studies of TAAs may provide a promising approach for GBM treatment in the near future.
Collapse
|
30
|
Hwang I, Choi SH, Park CK, Kim TM, Park SH, Won JK, Kim IH, Lee ST, Yoo RE, Kang KM, Yun TJ, Kim JH, Sohn CH. Dynamic Contrast-Enhanced MR Imaging of Nonenhancing T2 High-Signal-Intensity Lesions in Baseline and Posttreatment Glioblastoma: Temporal Change and Prognostic Value. AJNR Am J Neuroradiol 2019; 41:49-56. [PMID: 31806595 DOI: 10.3174/ajnr.a6323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/02/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The prognostic value of dynamic contrast-enhanced MR imaging on nonenhancing T2 high-signal-intensity lesions in patients with glioblastoma has not been thoroughly elucidated to date. We evaluated the temporal change and prognostic value for progression-free survival of dynamic contrast-enhanced MR imaging-derived pharmacokinetic parameters on nonenhancing T2 high-signal-intensity lesions in patients with glioblastoma before and after standard treatment, including gross total surgical resection. MATERIALS AND METHODS This retrospective study included 33 patients who were newly diagnosed with glioblastoma and treated with gross total surgical resection followed by concurrent chemoradiation therapy and adjuvant chemotherapy with temozolomide in a single institution. All patients underwent dynamic contrast-enhanced MR imaging before surgery as a baseline and after completion of maximal surgical resection and concurrent chemoradiation therapy. On the whole nonenhancing T2 high-signal-intensity lesion, dynamic contrast-enhanced MR imaging-derived pharmacokinetic parameters (volume transfer constant [K trans], volume of extravascular extracellular space [v e], and blood plasma volume [vp ]) were calculated. The Cox proportional hazards regression model analysis was performed to determine the histogram features or percentage changes of pharmacokinetic parameters related to progression-free survival. RESULTS Baseline median K trans, baseline first quartile K trans, and posttreatment median K trans were significant independent variables, as determined by univariate analysis (P < .05). By multivariate Cox regression analysis including methylation status of O6-methylguanine-DNA methyltransferase, baseline median K trans was determined to be the significant independent variable and was negatively related to progression-free survival (hazard ratio = 1.48, P = .003). CONCLUSIONS Baseline median K trans from nonenhancing T2 high-signal-intensity lesions could be a potential prognostic imaging biomarker in patients undergoing gross total surgical resection followed by standard therapy for glioblastoma.
Collapse
Affiliation(s)
- I Hwang
- From the Department of Radiology (I.H., S.H.C., R.-E.Y., K.M.K., T.J.Y., J.-H.K., C.-H.S.), Center for Nanoparticle Research
| | - S H Choi
- From the Department of Radiology (I.H., S.H.C., R.-E.Y., K.M.K., T.J.Y., J.-H.K., C.-H.S.), Center for Nanoparticle Research .,Institute for Basic Science, and School of Chemical and Biological Engineering (S.H.C.)
| | - C-K Park
- Department of Neurosurgery and Biomedical Research Institute (P.C.-K.)
| | - T M Kim
- Department of Internal Medicine and Cancer Research Institute (T.M.K.)
| | - S-H Park
- Department of Pathology (S.-H.P., J.K.W.)
| | - J K Won
- Department of Pathology (S.-H.P., J.K.W.)
| | - I H Kim
- Department of Radiation Oncology and Cancer Research Institute (I.H.K.)
| | - S-T Lee
- Department of Neurology (S.-T.L.), Seoul National University Hospital, Seoul, Korea
| | - R-E Yoo
- From the Department of Radiology (I.H., S.H.C., R.-E.Y., K.M.K., T.J.Y., J.-H.K., C.-H.S.), Center for Nanoparticle Research
| | - K M Kang
- From the Department of Radiology (I.H., S.H.C., R.-E.Y., K.M.K., T.J.Y., J.-H.K., C.-H.S.), Center for Nanoparticle Research
| | - T J Yun
- From the Department of Radiology (I.H., S.H.C., R.-E.Y., K.M.K., T.J.Y., J.-H.K., C.-H.S.), Center for Nanoparticle Research
| | - J-H Kim
- From the Department of Radiology (I.H., S.H.C., R.-E.Y., K.M.K., T.J.Y., J.-H.K., C.-H.S.), Center for Nanoparticle Research
| | - C-H Sohn
- From the Department of Radiology (I.H., S.H.C., R.-E.Y., K.M.K., T.J.Y., J.-H.K., C.-H.S.), Center for Nanoparticle Research
| |
Collapse
|
31
|
Sánchez-Martín V, Jiménez-García L, Herranz S, Luque A, Acebo P, Amesty Á, Estévez-Braun A, de Las Heras B, Hortelano S. α-Hispanolol Induces Apoptosis and Suppresses Migration and Invasion of Glioblastoma Cells Likely via Downregulation of MMP-2/9 Expression and p38MAPK Attenuation. Front Pharmacol 2019; 10:935. [PMID: 31551765 PMCID: PMC6733979 DOI: 10.3389/fphar.2019.00935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
α-Hispanolol (α-H) is a labdane diterpenoid that has been shown to induce apoptosis in several human cancer cells. However, the effect of α-H in human glioblastoma cells has not been described. In the present work, we have investigated the effects of α-H on apoptosis, migration, and invasion of human glioblastoma cells with the aim of identifying the molecular targets underlying its mechanism of action. The results revealed that α-H showed significant cytotoxicity against human glioma cancer cell lines U87 and U373 in a concentration- and time-dependent manner. This effect was higher in U87 cells and linked to apoptosis, as revealed the increased percentage of sub-G1 population by cell cycle analysis and acquisition of typical features of apoptotic cell morphology. Apoptosis was also confirmed by significant presence of annexin V-positive cells and caspase activation. Pretreatment with caspase inhibitors diminishes the activities of caspase 8, 9, and 3 and maintains the percentage of viable glioblastoma cells, indicating that α-H induced cell apoptosis through both the extrinsic and the intrinsic pathways. Moreover, we also found that α-H downregulated the anti-apoptotic Bcl-2 and Bcl-xL proteins and activated the pro-apoptotic Bid and Bax proteins. On the other hand, α-H exhibited inhibitory effects on the migration and invasion of U87 cells in a concentration-dependent manner. Furthermore, additional experiments showed that α-H treatment reduced the enzymatic activities and protein levels of matrix metalloproteinase MMP-2 and MMP-9 and increased the expression of TIMP-1 inhibitor, probably via p38MAPK regulation. Finally, xenograft assays confirmed the anti-glioma efficacy of α-H. Taken together, these findings suggest that α-H may exert anti-tumoral effects in vitro and in vivo through the inhibition of cell proliferation and invasion as well as by the induction of apoptosis in human glioblastoma cells. This research describes α-H as a new drug that may improve the therapeutic efficacy against glioblastoma tumors.
Collapse
Affiliation(s)
- Vanesa Sánchez-Martín
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Lidia Jiménez-García
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Herranz
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Luque
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Acebo
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángel Amesty
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Ana Estévez-Braun
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Beatriz de Las Heras
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Sonsoles Hortelano
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Ngo MT, Harley BAC. Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel. Biomaterials 2019; 198:122-134. [PMID: 29941152 DOI: 10.1101/273763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/30/2018] [Accepted: 06/10/2018] [Indexed: 05/25/2023]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor, with patients exhibiting poor survival (median survival time: 15 months). Difficulties in treating GBM include not only the inability to resect the diffusively-invading tumor cells, but also therapeutic resistance. The perivascular niche (PVN) within the GBM tumor microenvironment contributes significantly to tumor cell invasion, cancer stem cell maintenance, and has been shown to protect tumor cells from radiation and chemotherapy. In this study, we examine how the inclusion of non-tumor cells in culture with tumor cells within a hydrogel impacts the overall gene expression profile of an in vitro artificial perivascular niche (PVN) comprised of endothelial and stromal cells directly cultured with GBM tumor cells within a methacrylamide-functionalized gelatin hydrogel. Using RNA-seq, we demonstrate that genes related to angiogenesis and extracellular matrix remodeling are upregulated in the PVN model compared to hydrogels containing only tumor or perivascular niche cells, while downregulated genes are related to cell cycle and DNA damage repair. Signaling pathways and genes commonly implicated in GBM malignancy, such as MGMT, EGFR, PI3K-Akt signaling, and Ras/MAPK signaling are also upregulated in the PVN model. We describe the kinetics of gene expression within the PVN hydrogels over a course of 14 days, observing the patterns associated with tumor cell-mediated endothelial network co-option and regression. We finally examine the effect of temozolomide, a frontline chemotherapy used clinically against GBM, on the PVN culture. Notably, the PVN model is less responsive to TMZ compared to hydrogels containing only tumor cells. Overall, these results demonstrate that inclusion of cellular and matrix-associated elements of the PVN within an in vitro model of GBM allows for the development of gene expression patterns and therapeutic response relevant to GBM.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
33
|
Brighi C, Puttick S, Rose S, Whittaker AK. The potential for remodelling the tumour vasculature in glioblastoma. Adv Drug Deliv Rev 2018; 136-137:49-61. [PMID: 30308226 DOI: 10.1016/j.addr.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/19/2022]
Abstract
Despite significant improvements in the clinical management of glioblastoma, poor delivery of systemic therapies to the entire population of tumour cells remains one of the biggest challenges in the achievement of more effective treatments. On the one hand, the abnormal and dysfunctional tumour vascular network largely limits blood perfusion, resulting in an inhomogeneous delivery of drugs to the tumour. On the other hand, the presence of an intact blood-brain barrier (BBB) in certain regions of the tumour prevents chemotherapeutic drugs from permeating through the tumour vessels and reaching the diseased cells. In this review we analyse in detail the implications of the presence of a dysfunctional vascular network and the impenetrable BBB on drug transport. We discuss advantages and limitations of the currently available strategies for remodelling the tumour vasculature aiming to ameliorate the above mentioned limitations. Finally we review research methods for visualising vascular dysfunction and highlight the power of DCE- and DSC-MRI imaging to assess changes in blood perfusion and BBB permeability.
Collapse
|
34
|
Qiu JJ, Lin XJ, Tang XY, Zheng TT, Lin YY, Hua KQ. Exosomal Metastasis‑Associated Lung Adenocarcinoma Transcript 1 Promotes Angiogenesis and Predicts Poor Prognosis in Epithelial Ovarian Cancer. Int J Biol Sci 2018; 14:1960-1973. [PMID: 30585260 PMCID: PMC6299373 DOI: 10.7150/ijbs.28048] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/15/2018] [Indexed: 12/21/2022] Open
Abstract
Exosomes mediate cell-cell crosstalk in cancer progression by transferring their molecular cargos, including long noncoding RNAs (lncRNAs). Metastasis‑associated lung adenocarcinoma transcript 1 (MALAT1) is a well-known lncRNA associated with cancer angiogenesis and metastasis. However, the presence of MALAT1 in exosomes and the roles and clinical values of exosomal MALAT1 in epithelial ovarian cancer (EOC) remain unknown. The present study focused on the crosstalk between EOC cells and endothelial cells mediated by exosomal MALAT1 and aimed to explore the roles of exosomes and exosomal MALAT1 in EOC angiogenesis and to reveal the clinical relevance and prognostic predictive value of serum exosomal MALAT1 in EOC. We observed that MALAT1 was increased in both metastatic EOC cells and their secreted exosomes. Exosomal MALAT1 derived from EOC cells was transferred to recipient human umbilical vein endothelial cells (HUVECs) via exosomes. In vitro and in vivo experiments demonstrated that MALAT1 knockdown impaired the exosome-mediated proangiogenic activity of HUVECs through certain key angiogenesis-related genes. Clinically, elevated serum exosomal MALAT1 was highly correlated with an advanced and metastatic phenotype of EOC and was an independent predictive factor for EOC overall survival (OS). Moreover, a prognostic nomogram model we constructed showed a good prediction of the probability of 3-year OS of EOC patients according to the c-index (0.751, 95% confidence interval [CI]=0.691-0.811) and calibration curve. Collectively, our data provide a novel mechanism by which EOC cells transfer MALAT1 via exosomes to recipient HUVECs and influence HUVECs by stimulating angiogenesis-related gene expression, eventually promoting angiogenesis. Additionally, circulating exosomal MALAT1 can serve as a promising serum-based, noninvasive predictive biomarker for EOC prognosis.
Collapse
Affiliation(s)
- Jun-Jun Qiu
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China.,Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011, China
| | - Xiao-Jing Lin
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China.,Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011, China
| | - Xiao-Yan Tang
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China.,Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011, China
| | - Ting-Ting Zheng
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China.,Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011, China
| | - Ying-Ying Lin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Ke-Qin Hua
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China.,Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011, China
| |
Collapse
|
35
|
Song X, Shu XH, Wu ML, Zheng X, Jia B, Kong QY, Liu J, Li H. Postoperative resveratrol administration improves prognosis of rat orthotopic glioblastomas. BMC Cancer 2018; 18:871. [PMID: 30176837 PMCID: PMC6122735 DOI: 10.1186/s12885-018-4771-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Background Although our previous study revealed lumbar punctured resveratrol could remarkably prolong the survival of rats bearing orthotopic glioblastomas, it also suggested the administration did not completely suppress rapid tumour growth. These evidences led us to consider that the prognosis of tumour-bearing rats may be further improved if this treatment is used in combination with neurosurgery. Therefore, we investigated the effectiveness of the combined treatment on rat orthotopic glioblastomas. Methods Rat RG2 glioblastoma cells were inoculated into the brains of 36 rats. The rats were subjected to partial tumour removal after they showed symptoms of intracranial hypertension. There were 28 rats that survived the surgery, and these animals were randomly and equally divided into the control group without postoperative treatment and the LP group treated with 100 μl of 300 μM resveratrol via the LP route. Resveratrol was administered 24 h after tumour resection in 3-day intervals, and the animals received 7 treatments. The intracranial tumour sizes, average life span, cell apoptosis and STAT3 signalling were evaluated by multiple experimental approaches in the tumour tissues harvested from both groups. Results The results showed that 5 of the 14 (35.7%) rats in the LP group remained alive over 60 days without any sign of recurrence. The remaining nine animals had a longer mean postoperative survival time (11.0 ± 2.9 days) than that of the (7.3 + 1.3 days; p < 0.05) control group. The resveratrol-treated tumour tissues showed less Ki67 labelling, widely distributed apoptotic regions, upregulated PIAS3 expression and reduced p-STAT3 nuclear translocation. Conclusions This study demonstrates that postoperative resveratrol administration efficiently improves the prognosis of rat advanced orthotopic glioblastoma via inhibition of growth, induction of apoptosis and inactivation of STAT3 signalling. Therefore, this therapeutic approach could be of potential practical value in the management of glioblastomas.
Collapse
Affiliation(s)
- Xue Song
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao-Hong Shu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xu Zheng
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bin Jia
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qing-You Kong
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China. .,South China University of Technology School of Medicine, Guangzhou, 520006, China.
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
36
|
Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch A. The biology and mathematical modelling of glioma invasion: a review. J R Soc Interface 2018; 14:rsif.2017.0490. [PMID: 29118112 DOI: 10.1098/rsif.2017.0490] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion.
Collapse
Affiliation(s)
- J C L Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - K Talkenberger
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - M Seifert
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - B Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Consortium (DKTK), partner site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Hawkins-Daarud
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - K R Swanson
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - H Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - A Deutsch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| |
Collapse
|
37
|
Dai M, Li S, Qin X. Colorectal neoplasia differentially expressed: a long noncoding RNA with an imperative role in cancer. Onco Targets Ther 2018; 11:3755-3763. [PMID: 29988699 PMCID: PMC6029599 DOI: 10.2147/ott.s162754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Colorectal neoplasia differentially expressed (CRNDE), as a long noncoding RNA (lncRNA), has attracted increasing attention in recent years and has been documented to be at abnormally high expression in various types of cancer, such as colorectal cancer, glioma, hepatocellular carcinoma, lung cancer, and breast cancer. It could not only be used as a clinical biomarker for the early diagnosis and prognosis evaluation in a variety of cancers but also promote the development and progress of various tumor cells. Moreover, it is involved in the targeting regulation of multiple microRNAs and the activation/inhibition of multiple signaling pathways. In this review, we presented a systematic summary of the potential carcinogenicity and clinical value of CRNDE in the current evidence, so as to provide reference for early diagnosis, prognosis evaluation, and targeted therapy of various clinical cancers.
Collapse
Affiliation(s)
- Meiyu Dai
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China,
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China,
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China,
| |
Collapse
|
38
|
Ngo MT, Harley BAC. Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel. Biomaterials 2018; 198:122-134. [PMID: 29941152 DOI: 10.1016/j.biomaterials.2018.06.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/30/2018] [Accepted: 06/10/2018] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor, with patients exhibiting poor survival (median survival time: 15 months). Difficulties in treating GBM include not only the inability to resect the diffusively-invading tumor cells, but also therapeutic resistance. The perivascular niche (PVN) within the GBM tumor microenvironment contributes significantly to tumor cell invasion, cancer stem cell maintenance, and has been shown to protect tumor cells from radiation and chemotherapy. In this study, we examine how the inclusion of non-tumor cells in culture with tumor cells within a hydrogel impacts the overall gene expression profile of an in vitro artificial perivascular niche (PVN) comprised of endothelial and stromal cells directly cultured with GBM tumor cells within a methacrylamide-functionalized gelatin hydrogel. Using RNA-seq, we demonstrate that genes related to angiogenesis and extracellular matrix remodeling are upregulated in the PVN model compared to hydrogels containing only tumor or perivascular niche cells, while downregulated genes are related to cell cycle and DNA damage repair. Signaling pathways and genes commonly implicated in GBM malignancy, such as MGMT, EGFR, PI3K-Akt signaling, and Ras/MAPK signaling are also upregulated in the PVN model. We describe the kinetics of gene expression within the PVN hydrogels over a course of 14 days, observing the patterns associated with tumor cell-mediated endothelial network co-option and regression. We finally examine the effect of temozolomide, a frontline chemotherapy used clinically against GBM, on the PVN culture. Notably, the PVN model is less responsive to TMZ compared to hydrogels containing only tumor cells. Overall, these results demonstrate that inclusion of cellular and matrix-associated elements of the PVN within an in vitro model of GBM allows for the development of gene expression patterns and therapeutic response relevant to GBM.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
39
|
Mao XG, Wang C, Liu DY, Zhang X, Wang L, Yan M, Zhang W, Zhu J, Li ZC, Mi C, Tian JY, Hou GD, Miao SY, Song ZX, Li JC, Xue XY. Hypoxia upregulates HIG2 expression and contributes to bevacizumab resistance in glioblastoma. Oncotarget 2018; 7:47808-47820. [PMID: 27329597 PMCID: PMC5216980 DOI: 10.18632/oncotarget.10029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/17/2016] [Indexed: 01/08/2023] Open
Abstract
Hypoxia contributes to the maintenance of stem-like cells in glioblastoma (GBM), and activates vascular mimicry and tumor resistance to anti-angiogenesis treatments. The present study examined the expression patterns and biological significance of hypoxia-inducible protein 2 (HIG2, also known as HILPDA) in GBM. HIG2 was highly expressed in gliomas and was correlated with tumor grade, and high HIG2 expression independently predicted poor GBM patient prognosis. HIG2 was upregulated during hypoxia and by hypoxia mimics, and HIG2 knockdown in GBM cells inhibited cell proliferation and invasion. HIF1α bound to the HIG2 promoter and increased its expression in GBM cells, and HIG2 upregulated HIF1α expression. Reconstruction of a HIG2-related molecular network using bioinformatics methods revealed that HIG2 is closely correlated with angiogenesis genes, such as VEGFA, in GBM. HIG2 levels positively correlated with VEGFA in GBM samples. In addition, treatment of transplanted xenograft nude mice with bevacizumab (anti-angiogenesis therapy) resulted in HIG2 upregulation at late stages. We conclude that HIG2 is overexpressed in GBM and upregulated by hypoxia, and is a potential novel therapeutic target. HIG2 overexpression is an independent prognostic indicator and may promote tumor resistance to anti-angiogenesis treatments.
Collapse
Affiliation(s)
- Xing-Gang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Dong-Ye Liu
- Northern Hospital, General Hospital of PLA Shenyang Military Area Command, Shenyang, Liaoning Province, People's Republic of China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Ming Yan
- Department of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Wei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jun Zhu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Zi-Chao Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Chen Mi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jing-Yang Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Guang-Dong Hou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Si-Yu Miao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Zi-Xuan Song
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jin-Cheng Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiao-Yan Xue
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
40
|
Yin S, Du W, Wang F, Han B, Cui Y, Yang D, Chen H, Liu D, Liu X, Zhai X, Jiang C. MicroRNA-326 sensitizes human glioblastoma cells to curcumin via the SHH/GLI1 signaling pathway. Cancer Biol Ther 2018; 19:260-270. [PMID: 27819521 PMCID: PMC5902238 DOI: 10.1080/15384047.2016.1250981] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme is the most malignant and common brain tumor in adults and is characterized by poor survival and high resistance to chemotherapy and radiotherapy. Among the new chemotherapy drugs, curcumin, a popular dietary supplement, has proven to have a potent anticancer effect on a variety of cancer cell types; however, it remains difficult to achieve a satisfactory therapeutic effect with curcumin using the traditional single-drug treatment. In this study, we found that expression of miR-326, a tumor suppressor microRNA in various tumor types, resulted in a marked increase of curcumin-induced cytotoxicity and apoptosis and a decrease of proliferation and migration in glioma cells. Moreover, we found that combination treatment of miR-326 and curcumin caused significant inhibition of the SHH/GLI1 pathway in glioma cells compared with either treatment alone, independent of p53 status. Furthermore, in vivo, the curcumin-induced increase in miR-326 expression altered the anti-glioma mechanism of this combination treatment, which further reduced tumor volume and prolonged the survival period compared to either treatment alone. Taken together, our data strongly support an important role for miR-326 in enhancing the chemosensitivity of glioma cells to curcumin.
Collapse
Affiliation(s)
- Shi Yin
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Wenzhong Du
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Feng Wang
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Bo Han
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Yuqiong Cui
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Dongbo Yang
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Hui Chen
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Daming Liu
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Xing Liu
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Xiuwei Zhai
- c Department of Neurosurgery , Daqing LongNan Hospital , Daqing , China
| | - Chuanlu Jiang
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China.,b Neuroscience Institute, Heilongjiang Academy of Medical Sciences , Harbin , China
| |
Collapse
|
41
|
Annexin 2A sustains glioblastoma cell dissemination and proliferation. Oncotarget 2018; 7:54632-54649. [PMID: 27429043 PMCID: PMC5342369 DOI: 10.18632/oncotarget.10565] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most devastating tumor of the brain, characterized by an almost inevitable tendency to recur after intensive treatments and a fatal prognosis. Indeed, despite recent technical improvements in GBM surgery, the complete eradication of cancer cell disseminated outside the tumor mass still remains a crucial issue for glioma patients management. In this context, Annexin 2A (ANXA2) is a phospholipid-binding protein expressed in a variety of cell types, whose expression has been recently associated with cell dissemination and metastasis in many cancer types, thus making ANXA2 an attractive putative regulator of cell invasion also in GBM. Here we show that ANXA2 is over-expressed in GBM and positively correlates with tumor aggressiveness and patient survival. In particular, we associate the expression of ANXA2 to a mesenchymal and metastatic phenotype of GBM tumors. Moreover, we functionally characterized the effects exerted by ANXA2 inhibition in primary GBM cultures, demonstrating its ability to sustain cell migration, matrix invasion, cytoskeletal remodeling and proliferation. Finally, we were able to generate an ANXA2-dependent gene signature with a significant prognostic potential in different cohorts of solid tumor patients, including GBM. In conclusion, we demonstrate that ANXA2 acts at multiple levels in determining the disseminating and aggressive behaviour of GBM cells, thus proving its potential as a possible target and strong prognostic factor in the future management of GBM patients.
Collapse
|
42
|
Lin CJ, Lin YL, Luh F, Yen Y, Chen RM. Preclinical effects of CRLX101, an investigational camptothecin-containing nanoparticle drug conjugate, on treating glioblastoma multiforme via apoptosis and antiangiogenesis. Oncotarget 2018; 7:42408-42421. [PMID: 27285755 PMCID: PMC5173144 DOI: 10.18632/oncotarget.9878] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are difficult to treat in clinical practice. This study was aimed to investigate the preclinical efficacy of CRLX101, an investigational nanoparticle-drug conjugate developed by conjugating camptothecin (CPT) with cyclodextrin-polyethylene glycol, against gliomas. CPT fluorescence was detected across tight-junction barriers and in mouse plasma and brain. Following CRLX101 treatment, CPT was distributed in the cytoplasm of human U87 MG glioma cells. U87 MG cell viability was decreased by CRLX101 and CPT. Moreover, CRLX101 induced less cytotoxicity to human astrocytes compared to CPT. Exposure of U87 MG cells to CRLX101 induced G2/M cell cycle arrest and apoptosis. Administration of CRLX101 induced apoptosis in mice brain tumor tissues and prolonged the survival rate of mice. In addition, CRLX101 inhibited hypoxia and angiogenesis by suppressing the expression of carbonic anhydrase IX, vascular endothelial growth factor, and CD31 in tumor sections. Taken together, this preclinical study showed that CRLX101 possesses antitumor abilities by inducing cell cycle arrest and apoptosis in glioma cells and inhibiting tumor angiogenesis, thereby prolonging the lifespan of mice bearing intracranial gliomas. These data support further research of CRLX101 in patients with brain tumors.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ling Lin
- Brain Disease Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Frank Luh
- Sino-American Cancer Foundation, Temple City, California, USA
| | - Yun Yen
- Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Brain Disease Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Anesthetics and Toxicology Research Center and Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
43
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
44
|
Ngo MT, Harley BA. The Influence of Hyaluronic Acid and Glioblastoma Cell Coculture on the Formation of Endothelial Cell Networks in Gelatin Hydrogels. Adv Healthc Mater 2017; 6:10.1002/adhm.201700687. [PMID: 28941173 PMCID: PMC5719875 DOI: 10.1002/adhm.201700687] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is the most common and deadly form of brain cancer. Interactions between GBM cells and vasculature in vivo contribute to poor clinical outcomes, with GBM-induced vessel co-option, regression, and subsequent angiogenesis strongly influencing GBM invasion. Here, elements of the GBM perivascular niche are incorporated into a methacrylamide-functionalized gelatin hydrogel as a means to examine GBM-vessel interactions. The complexity of 3D endothelial cell networks formed from human umbilical vein endothelial cells and normal human lung fibroblasts as a function of hydrogel properties and vascular endothelial growth factor (VEGF) presentation is presented. While overall length and branching of the endothelial cell networks decrease with increasing hydrogel stiffness and incorporation of brain-mimetic hyaluronic acid, it can be separately altered by changing the vascular cell seeding density. It is shown that covalent incorporation of VEGF supports network formation as robustly as continuously available soluble VEGF. The impact of U87-MG GBM cells on the endothelial cell networks is subsequently investigated. GBM cells localize in proximity to the endothelial cell networks and hasten network regression in vitro. Together, this in vitro platform recapitulates the close association between GBM cells and vessel structures as well as elements of vessel co-option and regression preceding angiogenesis in vivo.
Collapse
Affiliation(s)
- Mai T Ngo
- 193 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Brendan A Harley
- 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| |
Collapse
|
45
|
Sangpairoj K, Vivithanaporn P, Apisawetakan S, Chongthammakun S, Sobhon P, Chaithirayanon K. RUNX1 Regulates Migration, Invasion, and Angiogenesis via p38 MAPK Pathway in Human Glioblastoma. Cell Mol Neurobiol 2017; 37:1243-1255. [PMID: 28012022 DOI: 10.1007/s10571-016-0456-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
Abstract
Runt-related transcription factor 1 (RUNX1) is essential for the establishment of fetal and adult hematopoiesis and neuronal development. Aberrant expression of RUNX1 led to proliferation and metastasis of several cancers. The aim of the present study was to investigate the role of RUNX1 in migration, invasion, and angiogenesis of human glioblastoma using IL-1β-treated U-87 MG human glioblastoma cells as a model. IL-1β at 10 ng/ml stimulated translocation of RUNX1 into the nucleus with increased expressions of RUNX1, MMP-1, MMP-2, MMP-9, MMP-19, and VEGFA in U-87 MG cells. In addition, silencing of RUNX1 gene significantly suppressed U-87 MG cell migration and invasion abilities. Moreover, knockdown of RUNX1 mRNA in U-87 MG cells reduced the tube formation of human umbilical vein endothelial cells. Further investigation revealed that IL-1β-induced RUNX1 expression might be mediated via the p38 mitogen-activated protein kinase (MAPK) signaling molecule for the expression of these invasion- and angiogenic-related molecules. Together with an inhibitor of p38 MAPK (SB203580) could decrease RUNX1 mRNA expression. Thus, RUNX1 may be one of the putative molecular targeted therapies against glioma metastasis and angiogenesis through the activation of p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Kant Sangpairoj
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornpun Vivithanaporn
- Department of Pharmacology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Somjai Apisawetakan
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Wattana, Bangkok, 10110, Thailand
| | - Sukumal Chongthammakun
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
- Faculty of Allied Health Sciences, Burapha University, Mueang District, Chonburi, 20131, Thailand
| | - Kulathida Chaithirayanon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
46
|
BKM120 sensitizes C6 glioma cells to temozolomide via suppression of the PI3K/Akt/NF-κB/MGMT signaling pathway. Oncol Lett 2017; 14:6597-6603. [PMID: 29151909 PMCID: PMC5680702 DOI: 10.3892/ol.2017.7034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/19/2017] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma is the most common type of malignant intracranial tumor in adults. Temozolomide (TMZ), as the first-line chemotherapy agent used in patients with glioblastoma, has demonstrated different effects in patients due to the expression of O6-methylguanine-DNA methyltransferase (MGMT) which is able to repair the DNA lesions induced by TMZ. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is over-activated in glioblastoma and has been revealed to be potentially implicated in resistance to TMZ. BKM120, a selective pan class I PI3K inhibitor, has been reported to facilitate apoptosis and reverse drug resistance in advanced solid tumors. The present study aims to investigate whether BKM120 is able to sensitize glioma cells to TMZ. C6 glioma cells were treated with BKM120 and/or TMZ for 12, 24 and 48 h, respectively. Cell Counting Kit-8 assays were performed to determine cell viability. The level of apoptosis was evaluated by Hoechst 33342 and TUNEL staining, and the levels of cleaved caspase-3 and Bcl-2-like protein 4 (Bax) expression was measured. Furthermore, the present study investigated the possible mechanism underlying BKM120 reverse chemoresistance to TMZ. The downstream targets of PI3K, including phosphorylated (p)-Akt, nuclear factor (NF)-B p65, were analyzed by western blotting. The MGMT transcription levels in monotherapy and combination therapy were demonstrated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The present study revealed that monotherapy treatments with either drug required a high concentration found reduction in cell viability. However, a low concentration of BKM120 inhibited the PI3K/Akt/NF-κB signaling pathway activity in glioma cells and significantly increased TMZ cytotoxicity. The coefficient of drug interaction was ~0.7. Results from the TUNEL assay, Hoechst 33342 staining and evaluation of the levels of cleaved caspase-3 and Bax expression also confirmed the finding that the combination treatment induced a higher level of apoptosis compared with the TMZ monotherapy. RT-qPCR demonstrated that the combination strategy reversed the TMZ-induced MGMT over-transcription. The reduction of NF-κB p65 in combination treatment supported the hypothesis that BKM120 may mediate MGMT transcription via inhibition of NF-κB p65. In conclusion, BKM120 and TMZ demonstrated strong synergistic cytotoxicity in C6 glioma cells. The BKM120-induced NF-κB p65 inhibition may be involved in the mediation of MGMT transcription to reverse TMZ-resistance in C6 glioma cells.
Collapse
|
47
|
Gamboa NT, Taussky P, Park MS, Couldwell WT, Mahan MA, Kalani MYS. Neurovascular patterning cues and implications for central and peripheral neurological disease. Surg Neurol Int 2017; 8:208. [PMID: 28966815 PMCID: PMC5609400 DOI: 10.4103/sni.sni_475_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
The highly branched nervous and vascular systems run along parallel trajectories throughout the human body. This stereotyped pattern of branching shared by the nervous and vascular systems stems from a common reliance on specific cues critical to both neurogenesis and angiogenesis. Continually emerging evidence supports the notion of later-evolving vascular networks co-opting neural molecular mechanisms to ensure close proximity and adequate delivery of oxygen and nutrients to nervous tissue. As our understanding of these biologic pathways and their phenotypic manifestations continues to advance, identification of where pathways go awry will provide critical insight into central and peripheral nervous system pathology.
Collapse
Affiliation(s)
- Nicholas T Gamboa
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Philipp Taussky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Min S Park
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - William T Couldwell
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mark A Mahan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - M Yashar S Kalani
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
48
|
Wadajkar AS, Dancy JG, Roberts NB, Connolly NP, Strickland DK, Winkles JA, Woodworth GF, Kim AJ. Decreased non-specific adhesivity, receptor targeted (DART) nanoparticles exhibit improved dispersion, cellular uptake, and tumor retention in invasive gliomas. J Control Release 2017; 267:144-153. [PMID: 28887134 DOI: 10.1016/j.jconrel.2017.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/26/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
The most common and deadly form of primary brain cancer, glioblastoma (GBM), is characterized by significant intratumoral heterogeneity, microvascular proliferation, immune system suppression, and brain tissue invasion. Delivering effective and sustained treatments to the invasive GBM cells intermixed with functioning neural elements is a major goal of advanced therapeutic systems for brain cancer. Previously, we investigated the nanoparticle characteristics that enable targeting of invasive GBM cells. This revealed the importance of minimizing non-specific binding within the relatively adhesive, 'sticky' microenvironment of the brain and brain tumors in particular. We refer to such nanoformulations with decreased non-specific adhesivity and receptor targeting as 'DART' therapeutics. In this work, we applied this information toward the design and characterization of biodegradable nanocarriers, and in vivo testing in orthotopic experimental gliomas. We formulated particulate nanocarriers using poly(lactic-co-glycolic acid) (PLGA) and PLGA-polyethylene glycol (PLGA-PEG) polymers to generate sub-100nm nanoparticles with minimal binding to extracellular brain components and strong binding to the Fn14 receptor - an upregulated, conserved component in invasive GBM. Multiple particle tracking in brain tissue slices and in vivo testing in orthotopic murine malignant glioma revealed preserved nanoparticle diffusivity and increased uptake in brain tumor cells. These combined characteristics also resulted in longer retention of the DART nanoparticles within the orthotopic tumors compared to non-targeted versions. Taken together, these results and nanoparticle design considerations offer promising new methods to optimize therapeutic nanocarriers for improving drug delivery and treatment for invasive brain tumors.
Collapse
Affiliation(s)
- Aniket S Wadajkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jimena G Dancy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nathan B Roberts
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nina P Connolly
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dudley K Strickland
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A Winkles
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
49
|
Roos A, Dhruv HD, Mathews IT, Inge LJ, Tuncali S, Hartman LK, Chow D, Millard N, Yin HH, Kloss J, Loftus JC, Winkles JA, Berens ME, Tran NL. Identification of aurintricarboxylic acid as a selective inhibitor of the TWEAK-Fn14 signaling pathway in glioblastoma cells. Oncotarget 2017; 8:12234-12246. [PMID: 28103571 PMCID: PMC5355340 DOI: 10.18632/oncotarget.14685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/26/2016] [Indexed: 12/30/2022] Open
Abstract
The survival of patients diagnosed with glioblastoma (GBM), the most deadly form of brain cancer, is compromised by the proclivity for local invasion into the surrounding normal brain, which prevents complete surgical resection and contributes to therapeutic resistance. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor (TNF) superfamily, can stimulate glioma cell invasion and survival via binding to fibroblast growth factor-inducible 14 (Fn14) and subsequent activation of the transcription factor NF-κB. To discover small molecule inhibitors that disrupt the TWEAK-Fn14 signaling axis, we utilized a cell-based drug-screening assay using HEK293 cells engineered to express both Fn14 and a NF-κB-driven firefly luciferase reporter protein. Focusing on the LOPAC1280 library of 1280 pharmacologically active compounds, we identified aurintricarboxylic acid (ATA) as an agent that suppressed TWEAK-Fn14-NF-κB dependent signaling, but not TNFα-TNFR-NF-κB driven signaling. We demonstrated that ATA repressed TWEAK-induced glioma cell chemotactic migration and invasion via inhibition of Rac1 activation but had no effect on cell viability or Fn14 expression. In addition, ATA treatment enhanced glioma cell sensitivity to both the chemotherapeutic agent temozolomide (TMZ) and radiation-induced cell death. In summary, this work reports a repurposed use of a small molecule inhibitor that targets the TWEAK-Fn14 signaling axis, which could potentially be developed as a new therapeutic agent for treatment of GBM patients.
Collapse
Affiliation(s)
- Alison Roos
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA
| | - Harshil D Dhruv
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Ian T Mathews
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Landon J Inge
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ 85004, USA
| | - Serdar Tuncali
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA
| | - Lauren K Hartman
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Donald Chow
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Nghia Millard
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Holly H Yin
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Jean Kloss
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA
| | - Joseph C Loftus
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA
| | - Jeffrey A Winkles
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona 85259, USA
| |
Collapse
|
50
|
Trastuzumab distribution in an in-vivo and in-vitro model of brain metastases of breast cancer. Oncotarget 2017; 8:83734-83744. [PMID: 29137378 PMCID: PMC5663550 DOI: 10.18632/oncotarget.19634] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/03/2017] [Indexed: 11/25/2022] Open
Abstract
Background Drug and antibody delivery to brain metastases has been highly debated in the literature. The blood-tumor barrier (BTB) is more permeable than the blood-brain barrier (BBB), and has shown to have highly functioning efflux transporters and barrier properties, which limits delivery of targeted therapies. Methods We characterized the permeability of 125I-trastuzumab in an in-vivo, and fluorescent trastuzumab-Rhodamine123 (t-Rho123) in a novel microfluidic in-vitro, BBB and BTB brain metastases of breast cancer model. In-vivo: Human MDA-MB-231-HER2+ metastatic breast cancer cells were grown and maintained under static conditions. Cells were harvested at 80% confluency and prepped for intra-cardiac injection into 20 homozygous female Nu/Nu mice. In-vitro: In a microfluidic device (SynVivo), human umbilical vein endothelial cells were grown and maintained under shear stress conditions in the outer compartment and co-cultured with CTX-TNA2 rat brain astrocytes (BBB) or Met-1 metastatic HER2+ murine breast cancer cells (BTB), which were maintained in the central compartment under static conditions. Results Tissue distribution of 125I-trastuzumab revealed only ~3% of injected dose reached normal brain, with ~5% of injected dose reaching brain tumors. No clear correlation was observed between size of metastases and the amount of 125I-trastuzumab localized in-vivo. This heterogeneity was paralleled in-vitro, where the distribution of t-Rho123 from the outer chamber to the central chamber of the microfluidic device was qualitatively and quantitatively analyzed over time. The rate of t-Rho123 linear uptake in the BBB (0.27 ± 0.33 × 104) and BTB (1.29 ± 0.93 × 104) showed to be significantly greater than 0 (p < 0.05). The BTB devices showed significant heterogenetic tendencies, as seen in in-vivo. Conclusions This study is one of the first studies to measure antibody movement across the blood-brain and blood-tumor barriers, and demonstrates that, though in small and most likely not efficacious quantities, trastuzumab does cross the blood-brain and blood-tumor barriers.
Collapse
|