1
|
Ahmad S, Shah SA, Nishan U, Khan N, Almutairi MH, Fozia F, Jamila N, Almutairi BO, Ullah Z. 6-Aminoflavone Activates Nrf2 to Inhibit the Phospho-JNK/TNF-α Signaling Pathway to Reduce Amyloid Burden in an Aging Mouse Model. ACS OMEGA 2023; 8:26955-26964. [PMID: 37546603 PMCID: PMC10399177 DOI: 10.1021/acsomega.3c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
In the current study, we examined the antioxidant activity and anti-amyloidogenic potential of 6-aminoflavone in an adult mice model of d-galactose-induced aging. Male albino eight-week-old mice were assigned into four groups: 1. the control group (saline-treated), 2. d-galactose-treated mice (100 mg/kg/day, intravenously) for eight weeks, 3. d-galactose-treated mice (100 mg/kg/day, intravenously for eight weeks) and 6-AF-treated mice (30 mg/kg/day, intravenously for the final four weeks), and 4. 6-AF-treated mice (30 mg/kg/day i.p. for four weeks). We conducted many assays for antioxidant enzymes, including lipid peroxidation, catalase, glutathione (GSH), peroxidase (POD), and sulfoxide dismutase (SOD) (LPO). Western blotting was used to assess protein expression while the Morris water maze (MWM) and Y-maze (YM) were used to study behavior. The findings show that 6-AF greatly improved neuronal synapse and memory impairment brought on by d-galactose and it significantly inhibited BACE1 to reduce the amyloidogenic pathway of A (both amyloid β production and aggregation) by upregulating Nrf2 proteins (validated through molecular docking studies) and suppressing phosphorylated JNK and TNF-α proteins in adult albino mice's brain homogenates. These findings suggest that 6-AF, through the Nrf2/p-JNK/TNF-α signaling pathway, can diminish the oxidative stress caused by d-galactose, as well as the amyloidogenic route of A formation and memory impairment.
Collapse
Affiliation(s)
- Shakeel Ahmad
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ali Shah
- Department
of Biology, University of Haripur, Haripur 22620, Khyber Pakhtunkhwa, Pakistan
| | - Umar Nishan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Naeem Khan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Mikhlid H. Almutairi
- Zoology
Department, College of Science, King Saud
University, P.O. Box: 2455, 11451 Riyadh, Saudi
Arabia
| | - Fozia Fozia
- Department
of Biochemistry, KMU Institute of Medical
Sciences, Kohat 26000, KP, Pakistan
| | - Nargis Jamila
- Department
of Chemistry, Shaheed Benazir Bhutto Women
University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Bader O. Almutairi
- Zoology
Department, College of Science, King Saud
University, P.O. Box: 2455, 11451 Riyadh, Saudi
Arabia
| | - Zia Ullah
- College of
Professional Studies, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Tea polyphenols improve the memory in aging ovariectomized rats by regulating brain glucose metabolism in vivo and in vitro. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
3
|
Lv C, Huang S, Wang Y, Hu Z, Zhao G, Ma C, Cao X. Chicoric acid encapsulated within ferritin inhibits tau phosphorylation by regulating AMPK and GluT1 signaling cascade. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
4
|
Ma YH, Wu JH, Xu W, Shen XN, Wang HF, Hou XH, Cao XP, Bi YL, Dong Q, Feng L, Tan L, Yu JT. Associations of Green Tea Consumption and Cerebrospinal Fluid Biomarkers of Alzheimer's Disease Pathology in Cognitively Intact Older Adults: The CABLE Study. J Alzheimers Dis 2021; 77:411-421. [PMID: 32804140 DOI: 10.3233/jad-200410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Green tea has been widely recognized in ameliorating cognitive impairment and Alzheimer's disease (AD), especially the progression of cognitive dysfunction. But the underlying mechanism is still unclear. OBJECTIVE This study was designed to determine the role of green tea consumption in the association with cerebrospinal fluid (CSF) biomarkers of AD pathology and to ascertain whether specific population backgrounds showed the differences toward these relationships. METHODS Multivariate linear models analyzed the available data on CSF biomarkers and frequency of green tea consumption of 722 cognitively intact participants from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) database, and we additionally detected the interaction effects of tea consumption with APOEɛ4 status and gender using a two-way analysis of covariance. RESULTS Frequent green tea consumption was associated with a decreased level of CSF total-tau protein (t-tau) (p = 0.041) but not with the levels of CSF amyloid-β 42 (Aβ42) and CSF phosphorylated tau. The more pronounced associations of green tea consumption with CSF t-tau (p = 0.007) and CSF t-tau/Aβ42 (p = 0.039) were observed in individuals aged 65 years or younger. Additionally, males with frequent green tea consumption had a significantly low level of CSF t-tau/Aβ42 and a modest trend toward decreased CSF t-tau. There were no interaction effects of green tea consumption with APOEɛ4 and gender. CONCLUSION Collectively, our findings consolidated the favorable effects of green tea on the mitigation of AD risk. The constituents of green tea may improve abnormal tau metabolism and are promising targets in interventions and drug therapies.
Collapse
Affiliation(s)
- Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jia-Huan Wu
- Department of Neurology, Dalian Medical University, Dalian, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Tea polyphenols protect learning and memory in sleep-deprived mice by promoting AMPA receptor internalization. Neuroreport 2021; 31:857-864. [PMID: 32453025 PMCID: PMC7368842 DOI: 10.1097/wnr.0000000000001462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic sleep loss caused lots of health problems, also including cognition impairment. Tea is one of the most popular drinks when people stay up late. Nevertheless, the effects of tea on sleep deprivation-induced cognition impairment are still unclear. In the present study, we found 24-h sleep deprivation (S-DEP) increased membrane α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate (AMPA) receptor level through a tumor necrosis factor α (TNFα)-dependent pathway in hippocampi. Blocking elevated TNFα level can protect S-DEP mice from impaired learning ability according to behavioral test. Tea polyphenols, major active compounds in green tea, suppressed TNFα production through downregulating TNFα converting enzyme (TACE) level. Meanwhile, tea polyphenols treatment could ameliorate recognition impairment and anxiety-like behaviors in S-DEP mice. The aforementioned results demonstrate cognition protective effects of tea polyphenols in S-DEP mice model, which provide a theoretical basis for the treatments of S-DEP-induced cognition impairment by targeting the TACE/TNFα/AMPA pathway.
Collapse
|
6
|
Nan S, Wang P, Zhang Y, Fan J. Epigallocatechin-3-Gallate Provides Protection Against Alzheimer's Disease-Induced Learning and Memory Impairments in Rats. Drug Des Devel Ther 2021; 15:2013-2024. [PMID: 34012254 PMCID: PMC8128347 DOI: 10.2147/dddt.s289473] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Recent evidence has highlighted the anti-inflammatory properties of the constituent of Green Tea Polyphenols (GTP), epigallocatechin-3-gallate (EGCG) which has been suggested to exert a neuroprotective effect on Alzheimer’s disease (AD). The current study aimed to elucidate the effect of EGCG on memory function in rats with AD. Methods AD rat models were initially established through an injection with Aβ 25–35 solution, followed by gavage with EGCG at varying doses to determine the effect of EGCG on learning and cognitive deficits in AD. Morris water maze test was conducted to evaluate the spatial memory function of the rats. Immunohistochemistry and Western blot analysis were performed to identify Tau phosphorylation. The expression of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) mRNA and protein in rat hippocampus was measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Acetylcholinesterase (AchE) activity, Aβ1-42 expression and Ach content were all detected using enzyme-linked immunosorbent assay (ELISA). Results EGCG intervention brought about a decrease in the escape latency period while increasing the time at the target quadrant among the AD rats. EGCG decreased the hyperphosphorylation of Tau in hippocampus. BACE1 expression and activity as well as the expression of Aβ1-42 were suppressed by EGCG. Moreover, EGCG promoted Ach content by diminishing the activity of AchE. Conclusion The current study demonstrates that EGCG may diminish the hyperphosphorylation of the Tau protein, downregulate BACE1 and Aβ1-42 expression to improve the antioxidant system and learning and memory function of rats with AD.
Collapse
Affiliation(s)
- Shanji Nan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Peng Wang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yizhi Zhang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| |
Collapse
|
7
|
ÇAM ME. Camellia sinensis leaves hydroalcoholic extract improves the Alzheimer's disease-like alterations induced by type 2 diabetes in rats. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2020. [DOI: 10.33808/clinexphealthsci.685280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Song Y, Li X, Gong X, Zhao X, Ma Z, Xia T, Gu X. Green tea polyphenols improve isoflurane-induced cognitive impairment via modulating oxidative stress. J Nutr Biochem 2019; 73:108213. [DOI: 10.1016/j.jnutbio.2019.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/04/2019] [Accepted: 07/02/2019] [Indexed: 12/24/2022]
|
9
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MDC. Natural Compounds for Alzheimer's Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int J Mol Sci 2019; 20:E2313. [PMID: 31083327 PMCID: PMC6539304 DOI: 10.3390/ijms20092313] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder related with the increase of age and it is the main cause of dementia in the world. AD affects cognitive functions, such as memory, with an intensity that leads to several functional losses. The continuous increase of AD incidence demands for an urgent development of effective therapeutic strategies. Despite the extensive research on this disease, only a few drugs able to delay the progression of the disease are currently available. In the last years, several compounds with pharmacological activities isolated from plants, animals and microorganisms, revealed to have beneficial effects for the treatment of AD, targeting different pathological mechanisms. Thus, a wide range of natural compounds may play a relevant role in the prevention of AD and have proven to be efficient in different preclinical and clinical studies. This work aims to review the natural compounds that until this date were described as having significant benefits for this neurological disease, focusing on studies that present clinical trials.
Collapse
Affiliation(s)
- Stephanie Andrade
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria João Ramalho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Joana Angélica Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
10
|
Epicatechin Gallate Protects HBMVECs from Ischemia/Reperfusion Injury through Ameliorating Apoptosis and Autophagy and Promoting Neovascularization. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7824684. [PMID: 30962864 PMCID: PMC6431361 DOI: 10.1155/2019/7824684] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/03/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
Abstract
Green tea is one of the most beverages with antioxidants and nutrients. As one of the major components of green tea, (-)-epicatechin gallate (ECG) was evaluated for its antioxidative properties in the present study. Cell proliferation assay, tube formation, cell migration, apoptosis, and autophagy were performed in human brain microvascular endothelial cells (HBMVECs) after oxygen-glucose deprivation/reoxygenation (OGD/R) to investigate potential anti-ischemia/reperfusion injury properties of ECG in vitro. Markers of oxidative stress as ROS, LDH, MDA, and SOD were further assayed in our study. Data indicated that ECG could affect neovascularization and promote cell proliferation, tube formation, and cell migration while inhibiting apoptosis and autophagy through affecting VEGF, Bcl-2, BAX, LC3B, caspase 3, mTOR, and Beclin-1 expression. All the data suggested that ECG may be protective for the brain against ischemia/reperfusion injury by promoting neovascularization, alleviating apoptosis and autophagy, and promoting cell proliferation in HBMVECs of OGD/R.
Collapse
|
11
|
Zhang Y, He F, Hua T, Sun Q. Green tea polyphenols ameliorate ethanol-induced spatial learning and memory impairments by enhancing hippocampus NMDAR1 expression and CREB activity in rats. Neuroreport 2018; 29:1564-1570. [PMID: 30371539 DOI: 10.1097/wnr.0000000000001152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The current research probed into the effects of green tea polyphenols (GTPs) on ethanol-induced spatial learning and memory impairments and inquired the potential molecular mechanism in rats. Thirty 8-week-old male Sprague-Dawley rats were randomly divided into three groups. The control group (control, n=10), ethanol group (ethanol, n=10), and GTPs intervention group (GTP, n=10) received gavage administration of saline, ethanol, and ethanol-GTP solution, respectively, for 8 weeks. Morris water maze was applied to assess the spatial learning and memory function of rats in each group at the last week of treatment. There was no dramatic change in body weight of rats in the different groups. Compared with rats in the control group, 8-week ethanol gavaged rats showed increased escape latency period and decreased time in the target quadrant. Moreover, 8-week ethanol gavage decreased the density of pyramidal layer neurons, expression of NMDAR1, and CREB phosphorylation in the hippocampus region. In contrast, GTP intervention decreased escape latency period and increased the time in the target quadrant, the density of pyramidal layer neurons, expression of NMDAR1, and CREB phosphorylation in the hippocampus region. The current findings indicated that GTP intervention can improve ethanol-induced spatial learning and memory impairments in rats after ethanol withdrawal, which is related to the upregulated density of pyramidal layer neurons, expression of NMDAR1, and CREB phosphorylation in the hippocampus region.
Collapse
Affiliation(s)
- Yong Zhang
- Physiology Laboratory of College of Life Sciences
| | - Fenfen He
- Physiology Laboratory of College of Life Sciences
| | - Tianmiao Hua
- Neurobiology Laboratory of College of Life Sciences, Anhui Normal University, Wuhu, People's Republic of China
| | - Qingyan Sun
- Physiology Laboratory of College of Life Sciences
| |
Collapse
|
12
|
Association of Tea Consumption with Risk of Alzheimer's Disease and Anti-Beta-Amyloid Effects of Tea. Nutrients 2018; 10:nu10050655. [PMID: 29789466 PMCID: PMC5986534 DOI: 10.3390/nu10050655] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative disease Alzheimer’s disease (AD) is attracting growing concern because of an increasing patient population among the elderly. Tea consumption is considered a natural complementary therapy for neurodegenerative diseases. In this paper, epidemiological studies on the association between tea consumption and the reduced risk of AD are reviewed and the anti-amyloid effects of related bioactivities in tea are summarized. Future challenges regarding the role of tea in preventing AD are also discussed.
Collapse
|
13
|
Momtaz S, Hassani S, Khan F, Ziaee M, Abdollahi M. Cinnamon, a promising prospect towards Alzheimer's disease. Pharmacol Res 2017; 130:241-258. [PMID: 29258915 DOI: 10.1016/j.phrs.2017.12.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 12/25/2022]
Abstract
Over the last decades, an exponential increase of efforts concerning the treatment of Alzheimer's disease (AD) has been practiced. Phytochemicals preparations have a millenary background to combat various pathological conditions. Various cinnamon species and their biologically active ingredients have renewed the interest towards the treatment of patients with mild-to-moderate AD through the inhibition of tau protein aggregation and prevention of the formation and accumulation of amyloid-β peptides into the neurotoxic oligomeric inclusions, both of which are considered to be the AD trademarks. In this review, we presented comprehensive data on the interactions of a number of cinnamon polyphenols (PPs) with oxidative stress and pro-inflammatory signaling pathways in the brain. In addition, we discussed the potential association between AD and diabetes mellitus (DM), vis-à-vis the effluence of cinnamon PPs. Further, an upcoming prospect of AD epigenetic pathophysiological conditions and cinnamon has been sighted. Data was retrieved from the scientific databases such as PubMed database of the National Library of Medicine, Scopus and Google Scholar without any time limitation. The extract of cinnamon efficiently inhibits tau accumulations, Aβ aggregation and toxicity in vivo and in vitro models. Indeed, cinnamon possesses neuroprotective effects interfering multiple oxidative stress and pro-inflammatory pathways. Besides, cinnamon modulates endothelial functions and attenuates the vascular cell adhesion molecules. Cinnamon PPs may induce AD epigenetic modifications. Cinnamon and in particular, cinnamaldehyde seem to be effective and safe approaches for treatment and prevention of AD onset and/or progression. However, further molecular and translational research studies as well as prolonged clinical trials are required to establish the therapeutic safety and efficacy in different cinnamon spp.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran Iran
| | - Mojtaba Ziaee
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran Iran.
| |
Collapse
|
14
|
Yi L, Liu W, Wang Z, Ren D, Peng W. Characterizing Alzheimer's disease through metabolomics and investigating anti-Alzheimer's disease effects of natural products. Ann N Y Acad Sci 2017. [PMID: 28632966 DOI: 10.1111/nyas.13385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lunzhao Yi
- Yunnan Food Safety Research Institute; Kunming University of Science and Technology; Kunming China
| | - Wenbin Liu
- Yunnan Food Safety Research Institute; Kunming University of Science and Technology; Kunming China
| | - Zhe Wang
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital; Central South University; Changsha Hunan China
| | - Dabing Ren
- Yunnan Food Safety Research Institute; Kunming University of Science and Technology; Kunming China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, the Second Xiangya Hospital; Central South University; Changsha Hunan China
| |
Collapse
|
15
|
Guo L, Guo J, Zhu W, Jiang X. Optimized synchronous extraction process of tea polyphenols and polysaccharides from Huaguoshan Yunwu tea and their antioxidant activities. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song BJ. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637:34-55. [PMID: 26883165 PMCID: PMC4821765 DOI: 10.1016/j.brainres.2016.02.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities.
Collapse
Affiliation(s)
- Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Oman
| | - Ghazi Daradkeh
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Lubna Mahmood
- Department of Nutritional Sciences, Qatar University, Qatar
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Zhu J, Shi R, Chen S, Dai L, Shen T, Feng Y, Gu P, Shariff M, Nguyen T, Ye Y, Rao J, Xing G. The Relieving Effects of BrainPower Advanced, a Dietary Supplement, in Older Adults with Subjective Memory Complaints: A Randomized, Double-Blind, Placebo-Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:7898093. [PMID: 27190539 PMCID: PMC4842387 DOI: 10.1155/2016/7898093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 01/11/2023]
Abstract
Subjective memory complaints (SMCs) are common in older adults that can often predict further cognitive impairment. No proven effective agents are available for SMCs. The effect of BrainPower Advanced, a dietary supplement consisting of herbal extracts, nutrients, and vitamins, was evaluated in 98 volunteers with SMCs, averaging 67 years of age (47-88), in a randomized, double-blind, placebo-controlled trial. Subjective hypomnesis/memory loss (SML) and attention/concentration deficits (SAD) were evaluated before and after 12-week supplementation of BrainPower Advanced capsules (n = 47) or placebo (n = 51), using a 5-point memory questionnaire (1 = no/slight, 5 = severe). Objective memory function was evaluated using 3 subtests of visual/audio memory, abstraction, and memory recall that gave a combined total score. The BrainPower Advanced group had more cases of severe SML (severity ⩾ 3) (44/47) and severe SAD (43/47) than the placebo group (39/51 and 37/51, < 0.05, < 0.05, resp.) before the treatment. BrainPower Advanced intervention, however, improved a greater proportion of the severe SML (29.5%)(13/44) (P < 0.01) and SAD (34.9%)(15/43)(P < 0.01) than placebo (5.1% (2/39) and 13.5% (5/37), resp.). Thus, 3-month BrainPower Advanced supplementation appears to be beneficial to older adults with SMCs.
Collapse
Affiliation(s)
- Jingfen Zhu
- Department of Community Health and Family Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Rong Shi
- School of Public Health, Shanghai University of TCM, Shanghai 201203, China
| | - Su Chen
- Si-Tang Community Health Service Center of Shanghai, Shanghai 200431, China
| | - Lihua Dai
- Department of Emergency Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tian Shen
- Department of Community Health and Family Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yi Feng
- Department of Community Health and Family Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Pingping Gu
- Southern California Kaiser Sunset, 4867 Sunset Boulevard, Los Angeles, CA 90027, USA
| | - Mina Shariff
- Department of Research, DRM Resources, 1683 Sunflower Avenue, Costa Mesa, CA 92626, USA
| | - Tuong Nguyen
- Department of Research, DRM Resources, 1683 Sunflower Avenue, Costa Mesa, CA 92626, USA
| | - Yeats Ye
- Maryland Population Research Center, University of Maryland, College Park, MD 20742, USA
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Guoqiang Xing
- Imaging Institute of Rehabilitation and Development of Brain Function, North Sichuan Medical University, Nanchong Central Hospital, Nanchong 637000, China
- Lotus Biotech.com LLC, John Hopkins University-MCC, 9601 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
18
|
Kamat PK, Rai S, Swarnkar S, Shukla R, Nath C. Molecular and Cellular Mechanism of Okadaic Acid (OKA)-Induced Neurotoxicity: A Novel Tool for Alzheimer’s Disease Therapeutic Application. Mol Neurobiol 2014; 50:852-65. [DOI: 10.1007/s12035-014-8699-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/24/2014] [Indexed: 12/31/2022]
|