1
|
Ma X, Xia J, Gong D, Zeng Z, Chen H, Li X. Cow's Milk Allergy May Induce Lipid Metabolism Disorder in BALB/c Mice via Exosomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2612-2623. [PMID: 38261277 DOI: 10.1021/acs.jafc.3c07154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Allergic diseases and lipid-metabolism-disorder-derived diseases are both significant public health issues. Recent studies have shown that exosomes are associated with the course of allergic diseases and are involved in lipid metabolism. In this study, exosomes derived from cow's milk allergic (CMA) mice medially loaded lesser proteins favoring cholesterol metabolism. The levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-c) in the serum were increased in the CMA mice, and hepatic lipid deposition was observed in the liver, but these phenomena were improved by inhibiting the exosome release. Specifically, the higher expression of the sterol regulatory element binding factor 2 (SREBP2) protein and HMGCR gene in the liver of CMA mice indicated an increase in cholesterol synthesis. NPC1L1 was also highly expressed in the small intestine of CMA mice, and fecal TC level was decreased, suggesting that the reabsorption of cholesterol was elevated. The biosynthesis of cholesterol, the reverse cholesterol transport (RCT) process, and the synthesis of bile acid in the liver were improved by inhibiting exosome release, as well as the reabsorption of cholesterol in the small intestine. This study has for the first time demonstrated the lipid metabolism disorder caused by CMA, especially the important role of exosomes in food allergies and lipid metabolism.
Collapse
Affiliation(s)
- Xin Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330047, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330047, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330047, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute (Jiangxi-OAI), Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| |
Collapse
|
2
|
Putra SED, Humardani FM, Mulyanata LT, Tanaya LTA, Wijono H, Sulistomo HW, Kesuma D, Ikawaty R. Exploring diet-induced promoter hypomethylation and PDK4 overexpression: implications for type 2 diabetes mellitus. Mol Biol Rep 2023; 50:8949-8958. [PMID: 37707772 DOI: 10.1007/s11033-023-08794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by limited metabolic flexibility in the body. Such limitation implicates the pyruvate dehydrogenase kinase 4 (PDK4) gene Poor nutrition, frequently observed among Southeast Asians usually involves excessive intakes of carbohydrates and monosodium glutamate (MSG), that have been frequently linked to an increased risk of T2DM. METHODS The 14-week study aimed to assess the effects of high-carbohydrate (HC), high-MSG (HMSG), and a combination of high-carbohydrate and high-MSG (HCHMSG) diets on the development of T2DM using male mice. To assess the effects, the male mice were divided into four groups: control (C), HC, HMSG, and HCHMSG for 14 weeks. RESULTS After 14 weeks, both the HC and HCHMSG groups showed signs of T2DM (168.83 ± 32.33; 156.42 ± 32.46). The blood samples from the HMSG, HC, and HCHMSG groups (57.67 ± 2.882; 49.22 ± 7.36; 48.9 ± 6.43) as well as skeletal muscle samples from the HMSG, HC, and HCHMSG groups (57.78 ± 8.54; 42.13 ± 7.25; 37.57 ± 10.42) exhibited a gradual hypomethylation. The HC groups particularly displayed significant PDK4 gene expression in skeletal muscle. A progressive overexpression of the PDK4 gene was observed as well in the HMSG, HCHMSG, and HC groups (2.03 ± 3.097; 3.21 ± 2.94; 5.86 ± 2.54). CONCLUSIONS These findings suggest that T2DM can be induced by high-carbohydrate and high-MSG diets. However, the sole consumption of high MSG did not lead to the development of T2DM. Further research should focus on conducting long-term studies to fully comprehend the impact of a high MSG diet on individuals with pre-existing T2DM.
Collapse
Affiliation(s)
| | - Farizky Martriano Humardani
- Faculty of Medicine, University of Surabaya, Surabaya, 60292, Indonesia
- Magister in Biomedical Science Program, Faculty of Medicine, Faculty of Medicine Universitas Brawijaya, Malang, 65112, Indonesia
| | | | | | - Heru Wijono
- Faculty of Medicine, University of Surabaya, Surabaya, 60292, Indonesia
| | - Hikmawan Wahyu Sulistomo
- Magister in Biomedical Science Program, Faculty of Medicine, Faculty of Medicine Universitas Brawijaya, Malang, 65112, Indonesia
| | - Dini Kesuma
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, 60292, Indonesia
| | - Risma Ikawaty
- Faculty of Medicine, University of Surabaya, Surabaya, 60292, Indonesia.
- , Raya Kali Rungkut Street, Surabaya, 60292, East Java, Indonesia.
| |
Collapse
|
3
|
A four-week white bread diet does not alter plasma glucose concentrations, metabolic or vascular physiology in mourning doves, Zenaida macroura. Comp Biochem Physiol A Mol Integr Physiol 2020; 247:110718. [DOI: 10.1016/j.cbpa.2020.110718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
|
4
|
Chaves Filho AJM, Lima CNC, Vasconcelos SMM, de Lucena DF, Maes M, Macedo D. IDO chronic immune activation and tryptophan metabolic pathway: A potential pathophysiological link between depression and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:234-249. [PMID: 28595944 DOI: 10.1016/j.pnpbp.2017.04.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
Obesity and depression are among the most pressing health problems in the contemporary world. Obesity and depression share a bidirectional relationship, whereby each condition increases the risk of the other. By inference, shared pathways may underpin the comorbidity between obesity and depression. Activation of cell-mediated immunity (CMI) is a key factor in the pathophysiology of depression. CMI cytokines, including IFN-γ, TNFα and IL-1β, induce the catabolism of tryptophan (TRY) by stimulating indoleamine 2,3-dioxygenase (IDO) resulting in the synthesis of kynurenine (KYN) and other tryptophan catabolites (TRYCATs). In the CNS, TRYCATs have been related to oxidative damage, inflammation, mitochondrial dysfunction, cytotoxicity, excitotoxicity, neurotoxicity and lowered neuroplasticity. The pathophysiology of obesity is also associated with a state of aberrant inflammation that activates aryl hydrocarbon receptor (AHR), a pathway involved in the detection of intracellular or environmental changes as well as with increases in the production of TRYCATs, being KYN an agonists of AHR. Both AHR and TRYCATS are involved in obesity and related metabolic disorders. These changes in the TRYCAT pathway may contribute to the onset of neuropsychiatric symptoms in obesity. This paper reviews the role of immune activation, IDO stimulation and increased TRYCAT production in the pathophysiology of depression and obesity. Here we suggest that increased synthesis of detrimental TRYCATs is implicated in comorbid obesity and depression and is a new drug target to treat both diseases.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Camila Nayane Carvalho Lima
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Impact Strategic Research Center, Deakin University, Geelong, Australia; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
5
|
Two opposite extremes of adiposity similarly reduce inflammatory response of antigen-induced acute joint inflammation. Nutrition 2016; 33:132-140. [PMID: 27427510 DOI: 10.1016/j.nut.2016.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/20/2016] [Accepted: 05/17/2016] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Acute inflammation is a normal response of tissue to an injury. During this process, inflammatory mediators are produced and metabolic alterations occur. Adipose tissue is metabolically activated, and upon food consumption, it disrupts the inflammatory response. However, little is known about the acute inflammatory response in joints that results from diet-induced adipose tissue remodeling. The objective of this study was to determine whether alterations in adipose tissue mass arising from food consumption modify the inflammatory response of antigen-induced joint inflammation in mice. METHODS Male BALB/c mice were fed a chow diet, a highly refined carbohydrate-containing (HC) diet for 8 wk. They were then immunized and, after 2 wk, received a knee injection of methylated bovine serum albumin (mBSA). They were sacrificed at 6, 24, and 48 h after injection. The effect of the cafeteria diet for 8 wk, which also increases adipose tissue, or conjugated linoleic acid (CLA) supplementation for 4 wk, a model of lipodystrophy, was evaluated 24 h after knee challenge with mBSA. RESULTS Cellular influx, predominantly neutrophils, in synovial fluid was attenuated in the HC diet group, as were levels of myeloperoxidase and IL-1β in periarticular tissue and histopathological analysis. These responses were associated with reduced adiponectin and increased leptin in serum, which was pronounced in mice fed the HC diet. Cafeteria diet and CLA supplementation induced a profile similar to that seen with the HC diet in terms of inflammation, disease response, and metabolic alteration. Interestingly, after the injection of mBSA, the area of adipocytes in the infrapatellar fat pad increased in mice fed with chow diet similar to those fed the HC and cafeteria diet. CONCLUSIONS We demonstrated that attenuation of joint response induced by diet was independent of adipose tissue remodeling but could be associated with metabolic alterations.
Collapse
|