1
|
da Silva IF, Bragante WR, Junior RCM, Laurindo LF, Guiguer EL, Araújo AC, Fiorini AMR, Nicolau CCT, Oshiiwa M, de Lima EP, Barbalho SM, Silva LR. Effects of Smallanthus sonchifolius Flour on Metabolic Parameters: A Systematic Review. Pharmaceuticals (Basel) 2024; 17:658. [PMID: 38794228 PMCID: PMC11125133 DOI: 10.3390/ph17050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Smallanthus sonchifolius, popularly known as yacon, is a member of the Asteraceae family. Due to its medicinal and edible value, yacon is consumed by different populations. Yacon is unique due to its high fructo-oligosaccharide and inulin content, as well as flavonoids, sesquiterpene lactones, and phenolic acids. Roots can be used to produce flour, which is less perishable and can be applied in various industrial products. This systematic review focuses on the effects of yacon flour on metabolic parameters. PubMed, Cochrane, Embase, Science Direct, Scopus, Web of Science, and Google Scholar databases were consulted, and PRISMA guidelines were followed in the selection of the studies. In total, 526 articles were found in the databases, and of these, only 28 full texts were eligible for inclusion. After applying the inclusion and exclusion criteria, seven studies were finally included. The results showed that the use of yacon flour can reduce glycemia, HbA1c, advanced glycation ends, plasma lipids, body fat mass, body weight, and waist circumference and improve intestinal microbiota and the antioxidant status. Further exploration of the effects of yacon flour is warranted, and additional clinical trials are necessary to determine the optimal daily consumption levels required to assist in improving metabolic parameters.
Collapse
Affiliation(s)
- Isabela Frazão da Silva
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Wesley Rossi Bragante
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Renato Cesar Moretti Junior
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Adriana M. R. Fiorini
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Claudia C. T. Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Marie Oshiiwa
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- UNIMAR Charitable Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
- SPRINT—Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
2
|
Alemán MN, Sánchez SS, Honoré SM. Daily Intake of Smallanthus sonchifolius (Yacon) Roots Reduces the Progression of Non-alcoholic Fatty Liver in Rats Fed a High Fructose Diet. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:521-528. [PMID: 36048356 DOI: 10.1007/s11130-022-01009-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
High-fructose diet is associated with an increased risk of dyslipidemia, metabolic syndrome, and the development of non-alcoholic fatty liver disease (NAFLD) through chronic inflammation. The present study aimed to elucidate the potential benefit of daily consumption of Smallanthus sonchifolius (yacon) roots, rich in fructooligosaccharides (FOS), on the progression to liver fibrosis, in a rat model of NAFLD induced by a high-fructose diet. Male Wistar rats were fed a standard diet (CD, n = 6) or a standard diet plus 10% fructose solution (FD; n = 18). After 20 weeks, FD rats were randomly separated into the following groups (n = 6, each): FD; FD treated with yacon flour (340 mg FOS/body weight; FD + Y) and FD treated with fenofibrate (30 mg/kg body weight; FD + F), for 16 weeks. Daily intake of yacon flour significantly reduced body weight gain, plasma lipid levels, transaminase activities, and improved systemic insulin response in FD rats. In the liver, yacon treatment decreased fructose-induced steatosis and inflammation, and reduced total collagen deposition (64%). Also, yacon decreased TGF-β1 mRNA expression (78%), followed by decreased nuclear localization of p-Smad2/3 in liver tissue. Yacon significantly reduced the expression of α-smooth muscle actin (α-SMA), Col1α1, and Col3α1 mRNAs (85, 44, and 47%, respectively), inhibiting the activation of resident hepatic stellate cells (HSCs). These results suggested that yacon roots have the potential to ameliorate liver damage caused by long-term consumption of a high-fructose diet, being a promising nutritional strategy in NAFLD management.
Collapse
Affiliation(s)
- Mariano Nicolás Alemán
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
- Instituto de Biología "Dr. Francisco D. Barbieri" Facultad de Bioquímica, Química y Farmacia- Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - Sara Serafina Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Stella Maris Honoré
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina.
- Instituto de Biología "Dr. Francisco D. Barbieri" Facultad de Bioquímica, Química y Farmacia- Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina.
| |
Collapse
|