1
|
Pan P, Zhou N, Sun Y, Chen Z, Han J, Zhou W. The Spectrum of clinical manifestations in newborns with the COQ4 mutation: case series and literature review. Front Pediatr 2024; 12:1410133. [PMID: 39398416 PMCID: PMC11466766 DOI: 10.3389/fped.2024.1410133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Background Coenzyme Q10 (CoQ10) plays an important role in the electron transport chain within the human mitochondrial respiratory chain. The manifestations of this deficiency exhibit a diverse range. This study investigates the clinical manifestations of primary coenzyme Q10 deficiency in neonates with the COQ4 mutation to improve the diagnosis of the disease and the prognosis through targeted treatment. Methods We report 4 patients with primary coenzyme Q10 deficiency by COQ4 variants in neonates. A comprehensive literature search and review for original articles and case reports with COQ4 mutation published from January 1989 to November 2023 was performed through Pubmed. We review clinical manifestations, diagnostic approaches, and treatment monitoring in these and 20 previously reported patients. Results Within the cohort of four cases examined, three females and one male were identified from two distinct families. Specifically, case 1 and 2 consisted of monoamniotic twins. Cases 3 and 4 were siblings. A comprehensive review of 20 cases involving neonatal-onset COQ4 mutation was conducted. Half of the cases are Chinese. There was no statistically significant difference in the mortality between Chinese (9/12, 75%) and other regions (11/12, 91.7%) (P = 0.27). The survival time for the 24 cases was 60.0 ± 98.0 days (95% confidence interval CI: 0-252.0 days). The incidence of prenatal abnormalities in preterm infants was significantly higher than that in full-term infants (66.7% vs. 16.7%, P = 0.02). Hyperlactatemia was one of the most common manifestations, accounting for 75% of cases (18/24). Twenty of the 24 cases were diagnosed by whole exome sequencing. Only 9 patients received exogenous coenzyme Q10 treatment, and all the 4 surviving patients received coenzyme Q10 supplementation. Conclusion The prognosis of COQ4 mutation in the neonatal period indicates a low survival rate and an poor prognosis. This may be due to the incomplete understanding of the mechanism of how COQ4 gene defects lead to coenzyme Q10 deficiency and why CoQ10 supplementation does not respond well to treatment. To improve the diagnostic rate, in addition to genetic testing, mitochondrial functional verification should be prioritized in southern China, where the incidence is relatively high. It will facilitate more in-depth mechanistic studies.
Collapse
Affiliation(s)
- Pianpian Pan
- Nenoatal Intensive Care Unit, Guangzhou Wowen and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Na Zhou
- Heart Center, Guangzhou Wowen and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi Sun
- Nenoatal Intensive Care Unit, Guangzhou Wowen and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Chen
- Pathology Department, Guangzhou Wowen and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Wowen and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhou
- Nenoatal Intensive Care Unit, Guangzhou Wowen and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Takayama KS, Monteiro MC, Saito P, Pinto IC, Nakano CT, Martinez RM, Thomaz DV, Verri WA, Baracat MM, Arakawa NS, Russo HM, Zeraik ML, Casagrande R, Couto RODO, Georgetti SR. Rosmarinus officinalis extract-loaded emulgel prevents UVB irradiation damage to the skin. AN ACAD BRAS CIENC 2022; 94:e20201058. [PMID: 36477988 DOI: 10.1590/0001-3765202220201058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/08/2021] [Indexed: 12/07/2022] Open
Abstract
UVB-irradiation increases the risk of various skin disorders, therefore leading to inflammation and oxidative stress. In this sense, antioxidant-rich herbs such as Rosmarinus officinalis may be useful in minimizing the damage promoted by reactive oxygen species. In this work, we report the efficacy of a R. officinalis hydroethanolic extract (ROe)-loaded emulgel in preventing UVB-related skin damage. Total phenols were determined using Folin-Ciocalteu assay, and the main phytocomponents in the extract were identified by UHPLC-HRMS. Moreover, in vitro sun protection factor (SPF) value of ROe was also assessed, and we investigated the in vivo protective effect of an emulgel containing ROe against UVB-induced damage in an animal model. The ROe exhibited commercially viable SPF activity (7.56 ± 0.16) and remarkable polyphenolic content (24.15 ± 0.11 mg (Eq.GA)/g). HPLC-MS and UHPLC-HRMS results showcased that the main compounds in ROe were: rosmarinic acid, carnosic acid and carnosol. The evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ROe against several radicals and the capacity to reduce iron. Therefore, we demonstrated that topical application of the formulation containing ROe inhibited edema formation, myeloperoxidase activity, GSH depletion and maintained ferric reducing (FRAP) and ABTS scavenging abilities of the skin after UVB exposure.
Collapse
Affiliation(s)
- Kátia S Takayama
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Mariana C Monteiro
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Priscila Saito
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Ingrid C Pinto
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Claudia T Nakano
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Renata M Martinez
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Douglas V Thomaz
- Universidade Federal de Goiás, Faculdade de Farmácia, Rua 240, s/n, Setor Leste Universitário, 74605-170 Goiânia, GO, Brazil
| | - Waldiceu A Verri
- Universidade Estadual de Londrina - UEL, Departamento de Patologia, Rodovia Celso Garcia Cid, Km 380, PR 445, Caixa Postal 10011, 86051-980 Londrina, PR, Brazil
| | - Marcela M Baracat
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Nilton S Arakawa
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Helena M Russo
- Universidade Estadual Paulista - UNESP, Instituto de Química, Núcleos de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais -NuBBE, Departamento de Química Orgânica, Avenida Prof. Francisco Degni, 55, 14800-060 Araraquara, SP, Brazil
| | - Maria L Zeraik
- Universidade Estadual de Londrina - UEL, Laboratório de Fitoquímica e Biomoléculas - LabFitoBio, Departamento de Química, Rodovia Celso Garcia Cid, Km 380, 86051-990 Londrina, PR, Brazil
| | - Rubia Casagrande
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Renê O DO Couto
- Universidade Federal de São João del-Rei, Laboratório de Desenvolvimento Farmacotécnico - LADEF, Campus Centro-Oeste Dona Lindu, Rua Sebastião Gonçalves Coelho, 35501-296 Divinópolis, MG, Brazil
| | - Sandra R Georgetti
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| |
Collapse
|
3
|
Wardhani LFK, Dewi IP, Putra KNS, Andrianto A, Soemantri D. The physiological insight of Coenzyme-Q10 administration in preventing the incidence of reperfusion arrhythmia among patients undergoing coronary artery bypass grafting surgery. J Basic Clin Physiol Pharmacol 2022; 33:695-701. [PMID: 35858280 DOI: 10.1515/jbcpp-2021-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/25/2022] [Indexed: 11/15/2022]
Abstract
Reperfusion arrhythmia following cardiac surgery has long been studied as part of myocardial damage. Reperfusion injury is thought to be exacerbated by oxygen-free radicals, whereas arrhythmogenic oscillations in membrane potential are mediated by reactive oxygen. Coenzyme Q10 is a lipid-soluble antioxidant that inhibits lipid peroxidation in biological membranes and supplies ATP cell synthesis, required as the organism's primary energy source. This process explains how Coenzyme Q10 helps stabilize membranes and avoids critical metabolite depletion that may relate to reperfusion arrhythmia. There is a reduction of iatrogenic Coenzyme Q10 after coronary artery bypass surgery (CABG). On the other hand, there is an increased inflammatory process and cellular demand post CABG procedure. It leads to ischemia that can be manifested as arrhythmia. Reperfusion arrhythmia was less common in patients who took Coenzyme Q10. These findings suggest that Coenzyme Q10 supplementation might help patients with heart surgery avoid reperfusion arrhythmia. However, a higher-quality randomized controlled study is needed to determine the effect of Coenzyme Q10 in preventing reperfusion arrhythmia in cardiac surgery patients.
Collapse
Affiliation(s)
- Louisa Fadjri Kusuma Wardhani
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Ivana Purnama Dewi
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia.,Faculty of Medicine, Duta Wacana Christian University, Yogyakarta, Indonesia
| | - Kresna Nugraha Setia Putra
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Andrianto Andrianto
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Djoko Soemantri
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
| |
Collapse
|
4
|
López-Lluch G, Del Pozo-Cruz J, Sánchez-Cuesta A, Cortés-Rodríguez AB, Navas P. Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization. Nutrition 2018; 57:133-140. [PMID: 30153575 DOI: 10.1016/j.nut.2018.05.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/17/2018] [Accepted: 05/22/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Bioavailability of supplements with coenzyme Q10 (CoQ10) in humans seems to depend on the excipients of formulations and on physiological characteristics of the individuals. The aim of this study was to determine which factors presented in CoQ10 supplements affect the different response to CoQ10 in humans. METHODS We tested seven different supplement formulations containing 100 mg of CoQ10 in 14 young, healthy individuals. Bioavailability was measured as area under the curve of plasma CoQ10 levels over 48 h after ingestion of a single dose. Measurements were repeated in the same group of 14 volunteers in a double-blind crossover design with a minimum of 4 wk washout between intakes. RESULTS Bioavailability of the formulations showed large differences that were statistically significant. The two best absorbable formulations were soft-gel capsules containing ubiquinone (oxidized CoQ10) or ubiquinol (reduced CoQ10). The matrix used to dissolve CoQ10 and the proportion and addition of preservatives such as vitamin C affected the bioavailability of CoQ10. Although control measurements documented that all formulations contained 100 mg of either CoQ10 or ubiquinol, some of the participants showed high and others lower capacity to reach high increase of CoQ10 in blood, indicating the participation of individual unknown physiological factors. CONCLUSION This study highlights the importance of individually adapted selection of best formulations to reach the highest bioavailability of CoQ10 in humans.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain.
| | | | - Ana Sánchez-Cuesta
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Ana Belén Cortés-Rodríguez
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Plácido Navas
- Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| |
Collapse
|
5
|
Pegoraro NS, Barbieri AV, Camponogara C, Mattiazzi J, Brum ES, Marchiori MC, Oliveira SM, Cruz L. Nanoencapsulation of coenzyme Q10 and vitamin E acetate protects against UVB radiation-induced skin injury in mice. Colloids Surf B Biointerfaces 2017; 150:32-40. [DOI: 10.1016/j.colsurfb.2016.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/10/2023]
|
6
|
Potgieter M, Pretorius E, Pepper MS. Primary and secondary coenzyme Q10 deficiency: the role of therapeutic supplementation. Nutr Rev 2013; 71:180-8. [PMID: 23452285 DOI: 10.1111/nure.12011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is the only lipid-soluble antioxidant that animal cells synthesize de novo. It is found in cell membranes and is particularly well known for its role in the electron transport chain in mitochondrial membranes during aerobic cellular respiration. A deficiency in either its bioavailability or its biosynthesis can lead to one of several disease states. Primary deficiency has been well described and results from mutations in genes involved in CoQ10 biosynthesis. Secondary deficiency may be linked to hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins), which are used for the treatment of hypercholesterolemia. Dietary contributions of CoQ10 are very small, but supplementation is effective in increasing plasma CoQ10 levels. It has been clearly demonstrated that treatment with CoQ10 is effective in numerous disorders and deficiency states and that supplementation has a favorable outcome. However, CoQ10 is not routinely prescribed in clinical practice. This review explores primary as well as statin-induced secondary deficiency and provides an overview of the benefits of CoQ10 supplementation.
Collapse
Affiliation(s)
- Marnie Potgieter
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | | |
Collapse
|
7
|
Belhaj N, Dupuis F, Arab-Tehrany E, Denis FM, Paris C, Lartaud I, Linder M. Formulation, characterization and pharmacokinetic studies of coenzyme Q10 PUFA’s nanoemulsions. Eur J Pharm Sci 2012; 47:305-12. [DOI: 10.1016/j.ejps.2012.06.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/25/2012] [Accepted: 06/17/2012] [Indexed: 12/18/2022]
|
8
|
Lee BJ, Huang YC, Chen SJ, Lin PT. Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition 2012; 28:250-5. [DOI: 10.1016/j.nut.2011.06.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 06/08/2011] [Accepted: 06/08/2011] [Indexed: 11/30/2022]
|
9
|
A randomized, double-blind, placebo-controlled crossover study of coenzyme Q10 therapy in hypertensive patients with the metabolic syndrome. Am J Hypertens 2012; 25:261-70. [PMID: 22113168 DOI: 10.1038/ajh.2011.209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Our aim was to examine the effects of adjunctive coenzyme Q(10) therapy on 24-h ambulatory blood pressure (BP) in subjects with the metabolic syndrome and inadequate BP control. METHODS In a randomized, double-blind, placebo-controlled 12-week crossover trial, coenzyme Q(10) (100 mg twice daily) or placebo was administrated to 30 subjects with the metabolic syndrome, and inadequate BP control (an average clinic BP of ≥140 systolic mm Hg or ≥130 mm Hg for patients with type 2 diabetes) while taking an unchanged, conventional antihypertensive regimen. Clinic and 24-h ambulatory BP were assessed pre- and post-treatment phases. The primary outcomes were the changes in 24-h systolic and diastolic BP during adjunctive therapy with coenzyme Q(10) vs. placebo and prespecified secondary outcomes included changes in BP loads. RESULTS Compared with placebo, treatment with coenzyme Q(10) was not associated with statistically significant reductions in systolic (P = 0.60) or diastolic 24-h ambulatory BP (P = 0.12) or heart rate (P = 0.10), although daytime diastolic BP loads, were significantly lower during coenzyme Q(10) administration with thresholds set at >90 mm Hg (P = 0.007) and ≥85 mm Hg (P = 0.03). Coenzyme Q(10) was well tolerated and was not associated with any clinically relevant changes in safety parameters. CONCLUSIONS Although it is possible that coenzyme Q(10) may improve BP control under some circumstances, any effects are likely to be smaller than reported in previous meta-analyses. Furthermore, our data suggest that coenzyme Q(10) is not currently indicated as adjunctive antihypertensive treatment for patients with the metabolic syndrome whose BP control is inadequate, despite regular antihypertensive therapy.
Collapse
|
10
|
Relationship between plasma coenzyme Q10, asymmetric dimethylarginine and arterial stiffness in patients with phenotypic or genotypic familial hypercholesterolemia on long-term statin therapy. Atherosclerosis 2011; 218:188-93. [DOI: 10.1016/j.atherosclerosis.2011.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/18/2011] [Accepted: 04/18/2011] [Indexed: 11/23/2022]
|
11
|
Lever M, George PM, Atkinson W, Molyneux SL, Elmslie JL, Slow S, Richards AM, Chambers ST. Plasma lipids and betaine are related in an acute coronary syndrome cohort. PLoS One 2011; 6:e21666. [PMID: 21747945 PMCID: PMC3128609 DOI: 10.1371/journal.pone.0021666] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/07/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Low plasma betaine has been associated with unfavorable plasma lipid profiles and cardiovascular risk. In some studies raised plasma betaine after supplementation is associated with elevations in plasma lipids. We aimed to measure the relationships between plasma and urine betaine and plasma lipids, and the effects of lipid-lowering drugs on these. METHODOLOGY Fasting plasma samples were collected from 531 subjects (and urine samples from 415) 4 months after hospitalization for an acute coronary syndrome episode. In this cross-sectional study, plasma betaine and dimethylglycine concentrations and urine excretions were compared with plasma lipid concentrations. Subgroup comparisons were made for gender, with and without diabetes mellitus, and for drug treatment. PRINCIPAL FINDINGS Plasma betaine negatively correlated with triglyceride (Spearman's r(s) = -0.22, p<0.0001) and non-high-density lipoprotein cholesterol (r(s) = -0.27, p<0.0001). Plasma betaine was a predictor of BMI (p<0.05) and plasma non-high-density lipoprotein cholesterol and triglyceride (p<0.001) independently of gender, age and the presence of diabetes. Using data grouped by plasma betaine decile, increasing plasma betaine was linearly related to decreases in BMI (p = 0.008) and plasma non-HDL cholesterol (p = 0.002). In a non-linear relationship betaine was negatively associated with elevated plasma triglycerides (p = 0.004) only for plasma betaine >45 µmol/L. Subjects taking statins had higher plasma betaine concentrations (p<0.001). Subjects treated with a fibrate had lower plasma betaine (p = 0.003) possibly caused by elevated urine betaine loss (p<0.001). The ratio of coenzyme Q to non-high-density lipoprotein cholesterol was higher in subjects with higher plasma betaine, and in subjects taking a statin. CONCLUSION Low plasma betaine concentrations correlated with an unfavourable lipid profile. Betaine deficiency may be common in the study population. Controlled clinical trials of betaine supplementation should be conducted in appropriate populations to determine whether correction affects cardiovascular risk.
Collapse
Affiliation(s)
- Michael Lever
- Clinical Biochemistry Unit, Canterbury Health Laboratories, Christchurch, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|