1
|
Bhowmick S, Biswas T, Ahmed M, Roy D, Mondal S. Caveolin-1 and lipids: Association and their dualism in oncogenic regulation. Biochim Biophys Acta Rev Cancer 2023; 1878:189002. [PMID: 37848094 DOI: 10.1016/j.bbcan.2023.189002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Caveolin-1 (Cav-1) is a structural protein of caveolae that functions as a molecular organizer for different cellular functions including endocytosis and cellular signaling. Cancer cells take advantage of the physical position of Cav-1, as it can communicate with extracellular matrix, help to organize growth factor receptors, redistribute cholesterol and glycosphingolipids, and finally transduce signals within the cells for oncogenesis. Recent studies emphasize the exceeding involvement of Cav-1 with different lipid bodies and in altering the metabolism, especially lipid metabolism. However, the association of Cav-1 with different lipid bodies like lipid rafts, lipid droplets, cholesterols, sphingolipids, and fatty acids is remarkably dynamic. The lipid-Cav-1 alliance plays a dual role in carcinogenesis. Both cancer progression and regression are modified and affected by the type of lipid molecule's association with Cav-1. Accordingly, this Cav-1-lipid cooperation exemplifies a cancer-type-specific treatment strategy for a better prognosis of the disease. In this review, we first present Cav-1 as an oncogenic molecule and its communication via lipid raft. We discussed the involvement of Cav-1 with lipid droplets, Cholesterol, sphingolipids, gangliosides, and ceramides. Further, we describe the Cav-1-mediated altered Fatty acid metabolism in cancer and the strategic therapeutic approaches toward Cav-1 targeting.
Collapse
Affiliation(s)
- Sramana Bhowmick
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Tannishtha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Mehnaz Ahmed
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, USA
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
2
|
Norouzi Z, Zarezadeh R, Mehdizadeh A, Niafar M, Germeyer A, Fayyazpour P, Fayezi S. Free Fatty Acids from Type 2 Diabetes Mellitus Serum Remodel Mesenchymal Stem Cell Lipids, Hindering Differentiation into Primordial Germ Cells. Appl Biochem Biotechnol 2022; 195:3011-3026. [PMID: 36495376 DOI: 10.1007/s12010-022-04204-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) adversely affects the essential characteristics of adipose tissue-derived mesenchymal stem cells (AdMSCs). Given that T2DM is associated with an altered serum free fatty acid (FFA) profile, we examined whether diabetic serum FFAs influence the viability, differentiation, and fatty acid composition of the major lipid fractions of human AdMSCs in vitro. Serum FFAs were isolated from 7 diabetic and 10 healthy nondiabetic female individuals. AdMSCs were cultured and differentiated into primordial germ cell-like cells (PGCLCs) in the presence of either diabetic or nondiabetic FFAs. Cell viability was assessed using trypan blue staining. Cell differentiation was evaluated by measuring the PGCLC transcriptional markers Blimp1 and Stella. Lipid fractionation and fatty acid quantification were performed using thin-layer chromatography and gas-liquid chromatography, respectively. Both diabetic and nondiabetic FFAs significantly reduced the viability of PGCLCs. The gene expression of both differentiation markers was significantly lower in cells exposed to diabetic FFAs than in those treated with nondiabetic FFAs. Saturated fatty acids were significantly increased and linoleic acid was significantly decreased in the cellular phospholipid fraction after exposure to diabetic FFAs. In contrast, monounsaturated fatty acids were reduced and linoleic acid was elevated in the cellular triglyceride fraction in response to diabetic FFAs. Such an altered serum FFA profile in patients with T2DM reduces the proliferation and differentiation potential of AdMSCs, presumably due to the aberrant distribution of fatty acids into cell phospholipids and triglycerides.
Collapse
|
3
|
Taga H, Dallaire MP, Gervais R, Richard FJ, Ma L, Corl BA, Chouinard PY. Characterization of raft microdomains in bovine mammary tissue during lactation: How they are modulated by fatty acid treatments. J Dairy Sci 2020; 104:2384-2395. [PMID: 33246605 DOI: 10.3168/jds.2020-19267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
The objective of the current study was first to characterize lipid raft microdomains isolated as detergent-resistant membranes (DRM) from mammary gland tissue, and second to determine how dietary fatty acids (FA) such as conjugated linoleic acid (CLA), 19:1 cyclo, and long-chain n-3 polyunsaturated FA affect lipid raft markers of mammary cells, and to finally establish relationships between these markers and lactation performance in dairy cows. Eight Holstein cows were used in a replicated 4 × 4 Latin square design with periods of 28 d. For the first 14 d, cows received daily an abomasal infusion of (1) 406 g of a saturated FA supplement (112 g of 16:0 + 230 g of 18:0) used as a control; (2) 36 g of a CLA supplement (13.9 g of trans-10,cis-12 18:2) + 370 g of saturated FA; (3) 7 g of Sterculia fetida oil (3.1 g of 19:1 cyclo, STO) + 399 g of saturated FA; or (4) 406 g of fish oil (55.2 g of cis-5,cis-8,cis-11,cis-14,cis-17 20:5 + 59.3 g of cis-4,cis-7,cis-10,cis-13,cis-16,cis-19 22:6, FO). Mammary biopsies were harvested on d 14 of each infusion period and were followed by a 14-d washout interval. Cholera toxin subunit B, which specifically binds to ganglioside M-1 (GM-1), a lipid raft marker, was used to assess its distribution in DRM. Infusions of CLA, STO, and FO were individually compared with the control, and significance was declared at P ≤ 0.05. Milk fat yield was decreased with CLA and FO, but was not affected by STO. Milk lactose yield was decreased with CLA and STO, but was not affected by FO. Mammary tissue shows a strong GM-1-signal enrichment in isolated DRM from mammary gland tissue. Caveolin (CAV) and flotillin (FLOT) are 2 proteins considered as lipid raft markers and they are present in DRM from mammary gland tissue. Distributions of GM-1, CAV-1, and FLOT-1 showed an effect of treatments determined by their subcellular distributions in sucrose gradient fractions. Regardless of treatments, data showed positive relationships between the yield of milk fat, protein, and lactose, and the abundance GM-1 in DRM fraction. Milk protein yield was positively correlated with relative proportion of FLOT-1 in the soluble fraction, whereas lactose yield was positively correlated with relative proportion of CAV-1 in the DRM fractions. Infusion of CLA decreased mRNA abundance of CAV-1, FLOT-1, and FLOT-2. Regardless of treatments, a positive relationship was observed between fat yield and mRNA abundance of FLOT-2. In conclusion, although limited to a few markers, results of the current experiment raised potential links between variation in specific biologically active component of raft microdomains in bovine mammary gland and lactation performances in dairy cows.
Collapse
Affiliation(s)
- H Taga
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - M P Dallaire
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - R Gervais
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - F J Richard
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada
| | - L Ma
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - B A Corl
- Department of Dairy Science, Virginia Tech, Blacksburg 24061
| | - P Y Chouinard
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada.
| |
Collapse
|
4
|
Gusmira A, Takemura K, Lee SY, Inaba T, Hanawa-Suetsugu K, Oono-Yakura K, Yasuhara K, Kitao A, Suetsugu S. Regulation of caveolae through cholesterol-depletion-dependent tubulation mediated by PACSIN2. J Cell Sci 2020; 133:jcs246785. [PMID: 32878944 DOI: 10.1242/jcs.246785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023] Open
Abstract
The membrane-shaping ability of PACSIN2 (also known as syndapin II), which is mediated by its F-BAR domain, has been shown to be essential for caveolar morphogenesis, presumably through the shaping of the caveolar neck. Caveolar membranes contain abundant cholesterol. However, the role of cholesterol in PACSIN2-mediated membrane deformation remains unclear. Here, we show that the binding of PACSIN2 to the membrane can be negatively regulated by cholesterol. We prepared reconstituted membranes based on the lipid composition of caveolae. The reconstituted membrane with cholesterol had a weaker affinity for the F-BAR domain of PACSIN2 than a membrane without cholesterol. Consistent with this, upon depletion of cholesterol from the plasma membrane, PACSIN2 localized at tubules that had caveolin-1 at their tips, suggesting that cholesterol inhibits membrane tubulation mediated by PACSIN2. The tubules induced by PACSIN2 could be representative of an intermediate of caveolae endocytosis. Consistent with this, the removal of caveolae from the plasma membrane upon cholesterol depletion was diminished in the PACSIN2-deficient cells. These data suggest that PACSIN2-mediated caveolae internalization is dependent on the amount of cholesterol, providing a mechanism for cholesterol-dependent regulation of caveolae.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aini Gusmira
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuhiro Takemura
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Shin Yong Lee
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takehiko Inaba
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kyoko Hanawa-Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kayoko Oono-Yakura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuma Yasuhara
- Division of Material Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
5
|
The roles of the diversity of amphipathic lipids in shaping membranes by membrane-shaping proteins. Biochem Soc Trans 2020; 48:837-851. [PMID: 32597479 DOI: 10.1042/bst20190376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022]
Abstract
Lipid compositions of cells differ according to cell types and intracellular organelles. Phospholipids are major cell membrane lipids and have hydrophilic head groups and hydrophobic fatty acid tails. The cellular lipid membrane without any protein adapts to spherical shapes, and protein binding to the membrane is thought to be required for shaping the membrane for various cellular events. Until recently, modulation of cellular lipid membranes was initially shown to be mediated by proteins recognizing lipid head groups, including the negatively charged ones of phosphatidylserine and phosphoinositides. Recent studies have shown that the abilities of membrane-deforming proteins are also regulated by the composition of fatty acid tails, which cause different degrees of packing defects. The binding of proteins to cellular lipid membranes is affected by the packing defects, presumably through modulation of their interactions with hydrophobic amino acid residues. Therefore, lipid composition can be characterized by both packing defects and charge density. The lipid composition regarding fatty acid tails affects membrane bending via the proteins with amphipathic helices, including those with the ArfGAP1 lipid packing sensor (ALPS) motif and via membrane-deforming proteins with structural folding, including those with the Bin-Amphiphysin-Rvs167 (BAR) domains. This review focuses on how the fatty acid tails, in combination with the head groups of phospholipids, affect protein-mediated membrane deformation.
Collapse
|
6
|
Arab A, Akbarian SA, Ghiyasvand R, Miraghajani M. The effects of conjugated linoleic acids on breast cancer: A systematic review. Adv Biomed Res 2016; 5:115. [PMID: 27512684 PMCID: PMC4964663 DOI: 10.4103/2277-9175.185573] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 05/12/2015] [Indexed: 01/02/2023] Open
Abstract
Recently prevention strategies for breast cancer are focused on lifestyle modification such as diet. Some dietary factors such as Conjugated linoleic acid (CLA) can lower the risk of breast cancer, metastasis and some factors concerning this malignancy. Many studies have been established in this field, but their results are inconsistent. Therefore, we evaluated this association based on systematic review among published scientific literature. We performed an electronic search using PubMed, Cochrane, Scopus, Google Scholar and Persian database (Iran Medex, magiran) to identify relevant studies. We summarized the findings of 8 papers in this review. Although, three cohort studies were not overall identified a protective effect of CLA dietary intake or CLA content in breast tissue on breast cancer incidence, metastasis and death, one of them showed an inverse association after adjusting for age. Also, among case-control studies a weak inverse association between breast cancer risk and CLA dietary intake and serum levels among post-menopausal women was reported. Besides, a clinical trial showed that some indicator of breast tumor decreased after CLA administration among women with breast adenocarcinoma. Lacking published evidence suggested inconsistent results. So, further well-designed studies are required, particularly in considering the main breast cancer risk factors.
Collapse
Affiliation(s)
- Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahab Aldin Akbarian
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Ghiyasvand
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Miraghajani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Guéguinou M, Gambade A, Félix R, Chantôme A, Fourbon Y, Bougnoux P, Weber G, Potier-Cartereau M, Vandier C. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2603-20. [PMID: 25450343 DOI: 10.1016/j.bbamem.2014.10.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Maxime Guéguinou
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Audrey Gambade
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Romain Félix
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Aurélie Chantôme
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Yann Fourbon
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Philippe Bougnoux
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France; Centre HS Kaplan, CHRU Tours, Tours F-37032, France
| | - Günther Weber
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Marie Potier-Cartereau
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Christophe Vandier
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France.
| |
Collapse
|
8
|
Yang G, Xu H, Li Z, Li F. Interactions of caveolin-1 scaffolding and intramembrane regions containing a CRAC motif with cholesterol in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2588-99. [PMID: 24998359 DOI: 10.1016/j.bbamem.2014.06.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/13/2014] [Accepted: 06/22/2014] [Indexed: 11/27/2022]
Abstract
Caveolin-1 is a major structural protein of caveolae and specifically binds cholesterol (Chol). The caveolin scaffolding domain is thought to be involved in caveolin-Chol interaction through the sequence V94-T-K-Y-W-F-Y-R101, a motif that matches a cholesterol recognition amino-acid consensus (CRAC). In the present work, three CRAC-containing peptides, corresponding to caveolin-1 94-101, 82-101 and 93-126, were tested to study the role of the CRAC motif in the caveolin-Chol interaction in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers using differential scanning calorimetry (DSC), fluorescence and circular dichroism (CD). The Y97I substituents of the three peptides and one peptide segment corresponding to caveolin-1 101-126 that excludes the CRAC motif were also tested for comparison. Our results showed the potency of these CRAC-containing peptides in sequestering Chol into domains and the enhanced role of the intramembrane domain and scaffolding domain for the potency. Of the three CRAC-containing peptides, the peptide 93-126 was particularly effective in promoting Chol segregation, while the peptide 82-101 was less potent in promoting the formation of domains than the peptide 93-126, but was more potent than the peptide 94-101. The domain partition of DPPC/Chol bilayers was not observed in the presence of the peptide 101-126, in contrast to the case in the presence of the peptide 93-126 at the same concentrations of peptide and Chol. The potency of the CRAC motif in Chol segregation was lowered by the Y97I mutation. The difference in structure may be a factor that contributes to different effects of these peptides on the distribution of Chol in the lipid membrane.
Collapse
Affiliation(s)
- Guanhua Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, PR China
| | - Haoran Xu
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun 130012, PR China
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun 130012, PR China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
9
|
Abdelmagid SA, Clarke SE, Wong J, Roke K, Nielsen D, Badawi A, El-Sohemy A, Mutch DM, Ma DW. Plasma concentration of cis9trans11 CLA in males and females is influenced by SCD1 genetic variations and hormonal contraceptives: a cross-sectional study. Nutr Metab (Lond) 2013; 10:50. [PMID: 23866021 PMCID: PMC3722052 DOI: 10.1186/1743-7075-10-50] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/16/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The conjugated linoleic acid isomer cis9trans11 CLA can be endogenously synthesized from trans vaccenic acid (C18:1 t11) via desaturation at the delta 9 position catalyzed by the stearoyl-CoA desaturase 1 (SCD1), also known as delta-9 desaturase (D9D). Diet, hormonal regulation of gene expression and single nucleotide polymorphisms (SNPs) have been implicated in altering circulating levels of fatty acids. Hormonal contraceptives (HC) have also been shown to influence levels of some fatty acids. SNPs in SCD1 have been associated with altered levels of palmitoleic and oleic acids; however, associations between SCD1 SNPs and D9D desaturation index have not been previously examined in relation to CLA. Herein, we investigated the effects of sex and HC use on circulating concentrations of c9t11 CLA and D9D desaturation index. Furthermore, we determined the effects of ten SCD1 SNPs on D9D desaturation indices estimated by product to precursor ratio of c9t11 CLA to C18:1 t11. METHODS PLASMA SAMPLES WERE COLLECTED FROM SUBJECTS (CAUCASIAN MALES: n = 113; Caucasian females: n = 298; Asian males: n = 98; Asian females: n = 277) from the Toronto Nutrigenomics and Health Study. Circulating fatty acids levels were measured by gas chromatography. RESULTS Results show that circulating c9t11 CLA concentrations are significantly higher in females than males and they are further elevated in females using HC. In addition, a significant sex- and ethnic-specific association was found between SCD1 SNP rs10883463 (p = 0.0014) and altered D9D activity in Caucasian males. CONCLUSION Findings from the present study identify SCD1 SNPs and hormonal contraceptives as factors altering endogenous c9t11 CLA levels in a sex- and ethnic-specific manner.
Collapse
Affiliation(s)
- Salma A Abdelmagid
- Department of Human Health and Nutritional Sciences, Animal Science/Nutrition Building, Rm 342, College of Biological Science, University of Guelph, 491 Gordon Street, Guelph, Ontario, Canada
| | - Shannon E Clarke
- Department of Human Health and Nutritional Sciences, Animal Science/Nutrition Building, Rm 342, College of Biological Science, University of Guelph, 491 Gordon Street, Guelph, Ontario, Canada
| | - Jeremy Wong
- Department of Human Health and Nutritional Sciences, Animal Science/Nutrition Building, Rm 342, College of Biological Science, University of Guelph, 491 Gordon Street, Guelph, Ontario, Canada
| | - Kaitlin Roke
- Department of Human Health and Nutritional Sciences, Animal Science/Nutrition Building, Rm 342, College of Biological Science, University of Guelph, 491 Gordon Street, Guelph, Ontario, Canada
| | - Daiva Nielsen
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Alaa Badawi
- Office for Biotechnology, Genomics and Population Health, Public Health Agency of Canada, Toronto, Ontario, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, Animal Science/Nutrition Building, Rm 342, College of Biological Science, University of Guelph, 491 Gordon Street, Guelph, Ontario, Canada
| | - David Wl Ma
- Department of Human Health and Nutritional Sciences, Animal Science/Nutrition Building, Rm 342, College of Biological Science, University of Guelph, 491 Gordon Street, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Abstract
Purpose Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids. Methods Caveolae were isolated from Chinese hamster ovary (CHO) cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS). The caveolin-1bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS. Results In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5×107 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid. Conclusion Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.
Collapse
|
11
|
Cis-9,trans-11-conjugated linoleic acid affects lipid raft composition and sensitizes human colorectal adenocarcinoma HT-29 cells to X-radiation. Biochim Biophys Acta Gen Subj 2012; 1830:2233-42. [PMID: 23116821 DOI: 10.1016/j.bbagen.2012.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/29/2012] [Accepted: 10/18/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Investigations concerned the mechanism of HT-29 cells radiosensitization by cis-9,trans-11-conjugated linoleic acid (c9,t11-CLA), a natural component of human diet with proven antitumor activity. METHODS The cells were incubated for 24h with 70μM c9,t11-CLA and then X-irradiated. The following methods were used: gas chromatography (incorporation of the CLA isomer), flow cytometry (cell cycle), cloning (survival), Western blotting (protein distribution in membrane fractions), and pulse-field gel electrophoresis (rejoining of DNA double-strand breaks). In parallel, DNA-PK activity, γ-H2AX foci numbers and chromatid fragmentation were estimated. Gene expression was analysed by RT-PCR and chromosomal aberrations by the mFISH method. Nuclear accumulation of the EGF receptor (EGFR) was monitored by ELISA. RESULTS AND CONCLUSIONS C9,t11-CLA sensitized HT-29 cells to X-radiation. This effect was not due to changes in cell cycle progression or DNA-repair-related gene expression. Post-irradiation DSB rejoining was delayed, corresponding with the insufficient DNA-PK activation, although chromosomal aberration frequencies did not increase. Distributions of cholesterol and caveolin-1 in cellular membrane fractions changed. The nuclear EGFR translocation, necessary to increase the DNA-PK activity in response to oxidative stress, was blocked. We suppose that c9,t11-CLA modified the membrane structure, thus disturbing the intracellular EGFR transport and the EGFR-dependent pro-survival signalling, both functionally associated with lipid raft properties. GENERAL SIGNIFICANCE The results point to the importance of the cell membrane interactions with the nucleus after injury inflicted by X -rays. Compounds like c9,t11-CLA, that specifically alter membrane properties, could be used to develop new anticancer strategies.
Collapse
|
12
|
The janus face of lipids in human breast cancer: how polyunsaturated Fatty acids affect tumor cell hallmarks. Int J Breast Cancer 2012; 2012:712536. [PMID: 22811918 PMCID: PMC3395128 DOI: 10.1155/2012/712536] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/06/2012] [Indexed: 12/13/2022] Open
Abstract
For several years, lipids and especially n - 3 and n - 6 polyunsaturated fatty acids (PUFAs) receive much attention in human health. Epidemiological studies tend to correlate a PUFA-rich diet with a reduced incidence of cancer, including breast cancer. However, the molecular and cellular mechanisms supporting the effect of PUFAs in breast cancer cells remain relatively unknown. Here, we review some recent progress in understanding the impact that PUFA may have on breast cancer cell proliferation, apoptosis, migration, and invasion. While most of the results obtained with docosahexaenoic acid and/or eicosapentaenoic acid show a decrease of tumor cell proliferation and/or aggressivity, there is some evidence that other lipids, which accumulate in breast cancer tissues, such as arachidonic acid may have opposite effects. Finally, lipids and especially PUFAs appear as potential adjuvants to conventional cancer therapy.
Collapse
|
13
|
Gudla P, Ishlak A, AbuGhazaleh AA. The Effect of Forage Level and Oil Supplement on Butyrivibrio fibrisolvens and Anaerovibrio lipolytica in Continuous Culture Fermenters. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2012; 25:234-9. [PMID: 25049556 PMCID: PMC4093135 DOI: 10.5713/ajas.2011.11242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 10/27/2011] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate the effects of forage level and oil supplement on selected strains of rumen bacteria believed to be involved in biohydrogenation (BH). A continuous culture system consisting of four fermenters was used in a 4×4 Latin square design with a factorial arrangement of treatments, with four 10 d consecutive periods. Treatment diets were: i) high forage diet (70:30 forage to concentrate (dry matter basis); HFC), ii) high forage plus oil supplement (HFO), iii) low forage diet (30:70 forage to concentrate; LFC), and iv) low forage plus oil supplement (LFO). The oil supplement was a blend of fish oil and soybean oil added at 1 and 2 g/100 g dry matter, respectively. Treatment diets were fed for 10 days and samples were collected from each fermenter on the last day of each period 3 h post morning feeding. The concentrations of vaccenic acid (t11C18:1; VA) and c9t11 conjugated linoleic acid (CLA) were greater with the high forage diet while the concentrations of t10 C18:1 and t10c12 CLA were greater with the low forage diet and addition of oil supplement increased their concentrations at both forage levels. The DNA abundance of Anaerovibrio lipolytica, and Butyrivibrio fibrisolvens vaccenic acid subgroup (Butyrivibrio VA) were lower with the low forage diets but not affected by oil supplement. The DNA abundance of Butyrivibrio fibrisolvens stearic acid producer subgroup (Butyrivibrio SA) was not affected by forage level or oil supplement. In conclusion, oil supplement had no effects on the tested rumen bacteria and forage level affected Anaerovibrio lipolytica and Butyrivibrio VA.
Collapse
|
14
|
Rastmanesh R. An urgent need to include risk-benefit analysis in clinical trials investigating conjugated linoleic acid supplements in cancer patients. Contemp Clin Trials 2010; 32:69-73. [PMID: 20851779 DOI: 10.1016/j.cct.2010.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/13/2010] [Accepted: 09/08/2010] [Indexed: 12/29/2022]
Abstract
Malnutrition and weight loss are common in patients with cancer, both factors could potentially affect the response and tolerance to treatment, decreased quality of life, and thus associate them with poor survival. Conjugated linoleic acid (CLA) is shown to have beneficial health effects in healthy and disease situations including chemoprotective properties in various experimental cancer models. However, the anticarcinogenic property of CLA in animal and tissue culture models could not be confirmed in the Netherlands Cohort Study on Diet and Cancer and a prospective cohort of Swedish women. Cancer patients are already at increased risk of anorexia and there are evidences that CLA suppresses appetite even in healthy individuals. Risk/benefit analysis of CLA supplementation has never been reported before and it is not clear whether any beneficial anti-tumor effect of CLA prevails over its anti-appetite and/or weight lowering side effect in these patients. I suggest that clinical trials investigating CLA supplements in cancer patients, measure appropriate variables such as food intake, weight, and appetite change to yield preliminary data for future trials. I also suggest that data from previous trials that have administered CLA supplements to cancer patients be re-analyzed retrospectively to attempt to find out any effect from routine nutritional measures such as weight, serum albumin and such as those.
Collapse
Affiliation(s)
- Reza Rastmanesh
- Department of Clinical Nutrition and Dietetics, Shahid Beheshti University of Medical Sciences, National Nutrition and Food Technology Research Institute, Arghavene Gharbi, Farahzadi Blvd, Shahrake Gharb, PO Box 19395-4741, Tehran, Iran.
| |
Collapse
|