1
|
Wang M, Yang J, Wu Y, Li H, Zhong Y, Luo Y, Xie R. Curcumin-activated Wnt5a pathway mediates Ca 2+ channel opening to affect myoblast differentiation and skeletal muscle regeneration. J Cachexia Sarcopenia Muscle 2024; 15:1834-1849. [PMID: 38982896 PMCID: PMC11446719 DOI: 10.1002/jcsm.13535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Skeletal muscle injury is one of the most common sports injuries; if not properly treated or not effective rehabilitation treatment after injury, it can be transformed into chronic cumulative injury. Curcumin, an herbal ingredient, has been found to promote skeletal muscle injury repair and regeneration. The Wnt5a pathway is related to the expression of myogenic regulatory factors, and Ca2+ promotes the differentiation and fusion process of myoblasts. This study explored the effect and mechanism of curcumin on myoblast differentiation during the repair and regeneration of injured skeletal muscle and its relationship with the Wnt5a pathway and Ca2+ channel. METHODS Myogenic differentiation of C2C12 cells was induced with 2% horse serum, and a mouse (male, 10 weeks old) model of acute skeletal muscle injury was established using cardiotoxin (20 μL). In addition, we constructed a Wnt5a knockdown C2C12 cell model and a Wnt5a knockout mouse model. Besides, curcumin was added to the cell culture solution (80 mg/L) and fed to the mice (50 mg/kg). Fluorescence microscopy was used to determine the concentration of Ca2+. Western blot and RT-qPCR were used to detect the protein and mRNA levels of Wnt5a, CaN, NFAT2, MyoD, Myf5, Pax7, and Myogenin. The expression levels of MyoD, Myf5, Myogenin, MHC, Desmin, and NFAT2 were detected using immunofluorescence techniques. In addition, MyoD expression was observed using immunohistochemistry, and morphological changes in mouse muscle tissue were observed using HE staining. RESULTS During myoblast differentiation and muscle regeneration, Wnt5a expression was upregulated (P < 0.001) and the Wnt5a signalling pathway was activated. Wnt5a overexpression promoted the expression of MyoD, Myf5, Myogenin, MHC, and Desmin (P < 0.05), and conversely, knockdown of Wnt5a inhibited their expression (P < 0.001). The Wnt5a pathway mediated the opening of Ca2+ channels, regulated the expression levels of CaN, NFAT2, MyoD, Myf5, Myogenin, MHC, and Desmin (P < 0.01) and promoted the differentiation of C2C12 myoblasts and the repair and regeneration of injured skeletal muscle. The expression of Wnt5a, CaN, NFAT2, MyoD, Myogenin, Myf5, and MHC in C2C12 myoblast was significantly increased after curcumin intervention (P < 0.05); however, their expression decreased significantly after knocking down Wnt5a on the basis of curcumin intervention (P < 0.05). Similarly, in Wnt5a knockout mice, the promotion of muscle regeneration by curcumin was significantly attenuated. CONCLUSIONS Curcumin can activate the Wnt5a signalling pathway and mediate the opening of Ca2+ channels to accelerate the myogenic differentiation of C2C12 cells and the repair and regeneration of injured skeletal muscle.
Collapse
Affiliation(s)
- Mao‐yuan Wang
- Department of Rehabilitation MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- Ganzhou Key Laboratory of Rehabilitation MedicineGanzhouChina
| | - Jia‐ming Yang
- Department of Rehabilitation MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of EducationGannan Medical UniversityGanzhouChina
| | - Hai Li
- Department of Rehabilitation MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Yan‐biao Zhong
- Department of Rehabilitation MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
- Ganzhou Intelligent Rehabilitation Technology Innovation CenterGanzhouChina
| | - Yun Luo
- Department of Rehabilitation MedicineFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Rui‐lian Xie
- Department of OncologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| |
Collapse
|
2
|
Takeuchi M, Sakasai-Sakai A, Takata T, Takino JI, Koriyama Y. Effects of Toxic AGEs (TAGE) on Human Health. Cells 2022; 11:2178. [PMID: 35883620 PMCID: PMC9317028 DOI: 10.3390/cells11142178] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 02/05/2023] Open
Abstract
The habitual and excessive consumption of sugar (i.e., sucrose and high-fructose corn syrup, HFCS) is associated with the onset and progression of lifestyle-related diseases (LSRD). Advanced glycation end-products (AGEs) have recently been the focus of research on the factors contributing to LSRD. Approaches that inhibit the effects of AGEs may be used to prevent and/or treat LSRD; however, since the structures of AGEs vary depending on the type of reducing sugars or carbonyl compounds to which they respond, difficulties are associated with verifying that AGEs are an etiological factor. Cytotoxic AGEs derived from glyceraldehyde, a triose intermediate in the metabolism of glucose and fructose, have been implicated in LSRD and are called toxic AGEs (TAGE). A dietary imbalance (the habitual and excessive intake of sucrose, HFCS, or dietary AGEs) promotes the generation/accumulation of TAGE in vivo. Elevated circulating levels of TAGE have been detected in non-diabetics and diabetics, indicating a strong relationship between the generation/accumulation of TAGE in vivo and the onset and progression of LSRD. We herein outline current findings on "TAGE as a new target" for human health.
Collapse
Affiliation(s)
- Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku 920-0293, Ishikawa, Japan;
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku 920-0293, Ishikawa, Japan;
| | - Takanobu Takata
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku 920-0293, Ishikawa, Japan;
| | - Jun-ichi Takino
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure 737-0112, Hiroshima, Japan;
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka 513-8670, Mie, Japan;
| |
Collapse
|
3
|
Zhang Y, Yao Y, Wang Z, Lu D, Zhang Y, Adetula AA, Liu S, Zhu M, Yang Y, Fan X, Chen M, Tang Y, Chen Y, Liu Y, Yi G, Tang Z. MiR-743a-5p regulates differentiation of myoblast by targeting Mob1b in skeletal muscle development and regeneration. Genes Dis 2020; 9:1038-1048. [PMID: 35685465 PMCID: PMC9170581 DOI: 10.1016/j.gendis.2020.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/26/2020] [Indexed: 01/21/2023] Open
Abstract
The microRNAs (miRNAs) play an important role in regulating myogenesis by targeting mRNA. However, the understanding of miRNAs in skeletal muscle development and diseases is unclear. In this study, we firstly performed the transcriptome profiling in differentiating C2C12 myoblast cells. Totally, we identified 187 miRNAs and 4260 mRNAs significantly differentially expressed that were involved in myoblast differentiation. We carried out validation of microarray data based on 5 mRNAs and 5 miRNAs differentially expressed and got a consistent result. Then we constructed and validated the significantly up- and down-regulated mRNA-miRNA interaction networks. Four interaction pairs (miR-145a-5p-Fscn1, miR-200c-5p-Tmigd1, miR-27a-5p-Sln and miR-743a-5p-Mob1b) with targeted relationships in differentiated myoblast cells were demonstrated. They are all closely related to myoblast development. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated cell cycle signals important for exploring skeletal muscle development and disease. Functionally, we discovered that miR-743a targeting gene Mps One Binder Kinase Activator-Like 1B (Mob1b) gene in differentiated C2C12. The up-regulated miR-743a can promote the differentiation of C2C12 myoblast. While the down-regulated Mob1b plays a negative role in differentiation. In addition, the expression profile of miR-743a and Mob1b are consistent with skeletal muscle recovery after Cardiotoxin (CTX) injury. Our study revealed that miR-743a-5p regulates myoblast differentiation by targeting Mob1b involved in skeletal muscle development and regeneration. Our findings made a further exploration for mechanisms in myogenesis and might provide potential possible miRNA-based target therapies for skeletal muscle regeneration and disease in the near future.
Collapse
Affiliation(s)
- YongSheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - YiLong Yao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - ZiShuai Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - Dan Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - YuanYuan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Adeyinka Abiola Adetula
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - SiYuan Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - Min Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - YaLan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - XinHao Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - MuYa Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - YiJie Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - Yun Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - YuWen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - GuoQiang Yi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - ZhongLin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Corresponding author. Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China.
| |
Collapse
|
4
|
Takata T, Sakasai-Sakai A, Takeuchi M. Impact of intracellular toxic advanced glycation end-products (TAGE) on murine myoblast cell death. Diabetol Metab Syndr 2020; 12:54. [PMID: 32684984 PMCID: PMC7362572 DOI: 10.1186/s13098-020-00561-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Sarcopenia is a progressive condition that is characterized by decreases in skeletal muscle mass and function. Although sarcopenia is associated with lifestyle-related diseases (LSRD), the mechanisms underlying cell death in myoblasts, which differentiate to myotubes, remain unclear. We previously designated glyceraldehyde (an intermediate of glucose/fructose metabolism)-derived advanced glycation end-products (AGEs) as toxic AGEs (TAGE) because of their cytotoxicity and involvement in LSRD, and hypothesized that TAGE contribute to cell death in myoblasts. METHODS C2C12 cells, which are murine myoblasts, were treated with 0, 0.5, 1, 1.5, and 2 mM glyceraldehyde for 24 h. Cell viability and intracellular TAGE were then assessed using 5-[2,4,-bis(sodioxysulfonyl)phenyl]-3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-tetrazole-3-ium (WST-8) and slot blot assays. Cells were pretreated with 8 mM aminoguanidine, an inhibitor of AGE production, for 2 h, followed by 0, 1.5, and 2 mM glyceraldehyde for 24 h. Cell viability and intracellular TAGE levels were then assessed. Serum TAGE levels in STAM mice, in which there were four stages (no steatosis, simple steatosis, steatohepatitis, and fibrosis), were measured using a competitive enzyme-linked immunosorbent assay. Results were expressed as TAGE units (U) per milliliter of serum, with 1 U corresponding to 1.0 μg of glyceraldehyde-derived AGE-bovine serum albumin (BSA) (TAGE-BSA). The viability of cells treated with 20, 50, and 100 μg/mL non-glycated BSA and TAGE-BSA for 24 h was assessed using the WST-8 assay. RESULTS In C2C12 cells treated with 1.5 and 2 mM glyceraldehyde, cell viability decreased to 47.7% (p = 0.0021) and 5.0% (p = 0.0001) and intracellular TAGE levels increased to 6.0 and 15.9 μg/mg protein, respectively. Changes in cell viability and TAGE production were completely inhibited by 8 mM aminoguanidine. Serum TAGE levels at the steatohepatitis and fibrosis stages were 10.51 ± 1.16 and 10.44 ± 0.95 U/mL, respectively, and were higher than those at the no steatosis stage (7.27 ± 0.18 U/mL). Cell death was not induced by 20 or 50 μg/mL TAGE-BSA. The viabilities of C2C12 cells treated with 100 μg/mL non-glycated BSA and TAGE-BSA were 105.0% (p = 0.2890) and 85.3% (p = 0.0217), respectively. CONCLUSION Intracellular TAGE strongly induced cell death in C2C12 cells and may also induce myoblast cell death in LSRD model mice.
Collapse
Affiliation(s)
- Takanobu Takata
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293 Japan
| | - Akiko Sakasai-Sakai
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293 Japan
| | - Masayoshi Takeuchi
- Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada-machi, Ishikawa, 920-0293 Japan
| |
Collapse
|