1
|
Kuang B, Geng N, Yi M, Zeng Q, Fan M, Xian M, Deng L, Chen C, Pan Y, Kuang L, Luo F, Xie Y, Liu C, Deng Z, Nie M, Du Y, Guo F. Panaxatriol exerts anti-senescence effects and alleviates osteoarthritis and cartilage repair fibrosis by targeting UFL1. J Adv Res 2024:S2090-1232(24)00470-3. [PMID: 39442872 DOI: 10.1016/j.jare.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/01/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA), the most common degenerative joint disease, can eventually lead to disability. However, no safe or effective intervention is currently available. Therefore, there is an urgent need to develop effective drugs that reduce cartilage damage and treat OA. OBJECTIVES This study aimed to ascertain the potential of panaxatriol, a natural small molecule, as a therapeutic drug for alleviating the progression of OA. METHODS An in vitro culture of human cartilage explants and C28/I2 human chondrocytes and an in vivo surgically induced OA mouse model were used to evaluate the chondroprotective effect of panaxatriol. The Drug Affinity Responsive Target Stability assay, CRISPR-Cas9 assay, Whole-transcriptome RNA sequencing analysis and agonist or antagonist assays were used to identify the target and potential signaling pathways of panaxatriol. Poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) was used to construct the sustained-release system of panaxatriol. RESULTS Panaxatriol protected against OA by regulating chondrocyte metabolism. Ubiquitin-fold modifier 1-specific E3 ligase 1 (UFL1) was identified as a novel target of panaxatriol. Whole transcriptome RNA sequencing showed that UFL1 was closely related to cell senescence. Panaxatriol inhibited chondrocyte senescence through UFL1/forkhead box O1 (FOXO1)/P21 and UFL1/NF-κB/SASPs signaling pathways. It also could inhibit fibrocartilage formation during cartilage repair via the UFL1/FOXO1/Collagen 1 signaling pathway. Finally, we constructed a sustained-release system for panaxatriol based on PLGA-PEG, which reduced the number of intra-articular injections, thereby alleviating joint swelling and injury. CONCLUSIONS Panaxatriol exerts anti-senescence effects and has the potential to delay OA progression and reduce cartilage repair fibrosis by targeting UFL1.
Collapse
Affiliation(s)
- Biao Kuang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Miao Yi
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Qiqi Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mao Nie
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| | - Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Xiang J, Du M, Wang H. Dietary Plant Extracts in Improving Skeletal Muscle Development and Metabolic Function. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2087669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Hanning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
Azizi E, Moradi F. The effect of ginseng supplementation on anabolic index, muscle strength, body composition, and testosterone and cortisol response to acute resistance exercise in male bodybuilders. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Sase K, Kido K, Ato S, Fujita S. Effect of resistance training on rat skeletal muscle during severe food restriction. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kohei Sase
- Faculty of Sport and Health Science Ritsumeikan University Kusatsu Shiga Japan
| | - Kohei Kido
- Faculty of Sport and Health Science Ritsumeikan University Kusatsu Shiga Japan
| | - Satoru Ato
- Faculty of Sport and Health Science Ritsumeikan University Kusatsu Shiga Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science Ritsumeikan University Kusatsu Shiga Japan
| |
Collapse
|
5
|
Sase K, Kido K, Ato S, Fujita S. The effect of a bout of resistance exercise on skeletal muscle protein metabolism after severe fasting. Physiol Rep 2019; 7:e14270. [PMID: 31691510 PMCID: PMC6831946 DOI: 10.14814/phy2.14270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 11/24/2022] Open
Abstract
Resistance exercise (RE) activates the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway and increases muscle protein synthesis. Severe fasting induces 5' adenosine monophosphate-activated protein kinase (AMPK), which attenuates mTORC1 activation. However, the effect of RE on the response of mTORC1 signaling proteins after a period of severe fasting is unclear. We investigated the effect of RE on rat skeletal muscle protein metabolism after a period of severe fasting. We hypothesized that RE-induced activation of mTORC1 signaling protein attenuates protein breakdown by autophagy. Male Sprague-Dawley rats were divided into ordinary-fed (C) and 72-h fasting (F) groups. A bout of RE was replicated by percutaneous electrical stimulation in the right gastrocnemius muscle. The tuberous sclerosis complex 2 (TSC2) Ser1387 and autophagy marker of microtubule-associated protein 1A/1B-light chain 3-II (LC3B-II) expression of the F group increased twice that of the C group in sedentary state (P < 0.05). RE activated the mTORC1 signaling pathway in both groups (P < 0.05); however, in the F group, the magnitude of p70S6K (Thr389) phosphorylation was lower by 40% of that of the C group (P < 0.05). Protein synthesis after RE was increased by 50% from the level at sedentary state in the C group (P < 0.05), but not in the F. In the F group, the expression of LC3B-II at 3 h after RE was decreased by almost 25% from the level at sedentary state (P < 0.05). Our results suggest that RE suppressed fasting-induced autophagy but did not increase protein synthesis during severe fasting in rat skeletal muscle.
Collapse
Affiliation(s)
- Kohei Sase
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Kohei Kido
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Satoru Ato
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| | - Satoshi Fujita
- Faculty of Sport and Health ScienceRitsumeikan UniversityKusatsuShigaJapan
| |
Collapse
|
6
|
Takamura Y, Nomura M, Uchiyama A, Fujita S. Effects of Aerobic Exercise Combined with Panaxatriol Derived from Ginseng on Insulin Resistance and Skeletal Muscle Mass in Type 2 Diabetic Mice. J Nutr Sci Vitaminol (Tokyo) 2018; 63:339-348. [PMID: 29225319 DOI: 10.3177/jnsv.63.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Insulin resistance reduces insulin-induced muscle protein synthesis and accelerates muscle protein degradation. Ginseng ingestion has been reported to improve insulin resistance through the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. We hypothesized that panaxatriol (PT) derived from ginseng in combination with aerobic exercise (EX) may further promote protein synthesis and suppress protein degradation, and subsequently maintain muscle mass through the amelioration of insulin resistance. KKAy insulin-resistant mice were divided into control, panaxatriol only (PT), exercise only (EX), and EX+PT groups. EX and EX+PT ran on the treadmill for 45 min at 15 m/min 5 d/wk for 6 wk. PT and EX+PT groups were fed a standard diet containing 0.2% PT for 6 wk. Homeostasis model assessment for insulin resistance (HOMA-R) values was significantly improved after exercise for 6 wk. Moreover, EX+PT mice showed improved HOMA-R as compared to EX mice. p70S6K phosphorylation after a 4 h fast was significantly higher in EX than in the non-exercise control, and it was higher in EX+PT mice than in EX mice. Atrogin1 mRNA expression was significantly lower in EX than in the non-exercise control, and was significantly lowered further by PT treatment. EX and EX+PT mice showed higher soleus muscle mass and cross-sectional area (CSA) of the soleus myofibers than control animals, with higher values noted for both parameters in EX+PT than in EX. These results suggest that aerobic exercise and PT ingestion may contribute to maintain skeletal muscle mass through the amelioration of insulin resistance.
Collapse
Affiliation(s)
- Yusuke Takamura
- Research and Development Headquarters, Lion Corporation.,Faculty of Sport and Health Science, Ritsumeikan University
| | | | | | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University
| |
Collapse
|
7
|
Kido K, Ato S, Yokokawa T, Sato K, Fujita S. Resistance training recovers attenuated APPL1 expression and improves insulin-induced Akt signal activation in skeletal muscle of type 2 diabetic rats. Am J Physiol Endocrinol Metab 2018; 314:E564-E571. [PMID: 29406784 DOI: 10.1152/ajpendo.00362.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adapter protein containing Pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (APPL1) has been reported as a positive regulator of insulin-stimulated Akt activation. The expression of APPL1 is reduced in skeletal muscles of type 2 diabetic (T2D) animals, implying that APPL1 may be an important factor affecting insulin sensitivity. However, the regulation of APPL1 expression and the physiological interventions modulating these effects are unclear. Accordingly, we first confirmed that APPL1 expression and insulin-induced Akt phosphorylation were significantly attenuated in skeletal muscles of T2D rats. Additionally, we found that APPL1 expression levels were significantly correlated with fasting blood glucose levels. Next, we identified important signals involved in the expression of APPL1. APPL1 mRNA expression increased upon AMP-activated protein kinase, calcium, p38 mitogen-activated protein kinase, and insulin-like growth factor-1 signal activation. Moreover, acute resistance exercise in vivo significantly activated these signaling pathways. Finally, through in vivo experiments, we found that chronic resistance training (RT) increased APPL1 expression and activated insulin-induced Akt signaling in skeletal muscles of rats with T2D. Furthermore, variations in APPL1 expression (i.e., the difference between control and RT muscles) significantly correlated with variations in insulin-stimulated Akt phosphorylation under the same conditions. Therefore, chronic RT recovered attenuated APPL1 expression and improved insulin-stimulated Akt phosphorylation in skeletal muscles of T2D rats. Accordingly, APPL1 may be a key regulator of insulin resistance in skeletal muscle, and RT may be an important physiological treatment increasing APPL1 expression, which is attenuated in T2D.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Down-Regulation/genetics
- Insulin/metabolism
- Insulin/pharmacology
- Insulin Resistance/genetics
- Mice
- Muscle, Skeletal/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Physical Conditioning, Animal/physiology
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Inbred OLETF
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Resistance Training
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Kohei Kido
- Faculty of Sport and Health Science, Ritsumeikan University , Kusatsu , Japan
| | - Satoru Ato
- Faculty of Sport and Health Science, Ritsumeikan University , Kusatsu , Japan
| | - Takumi Yokokawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University , Kyoto , Japan
| | - Koji Sato
- Graduate School of Human Development and Environment, Kobe University , Kobe , Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University , Kusatsu , Japan
| |
Collapse
|
8
|
Zarabi L, Arazi H, Izadi M. The effects of Panax ginseng supplementation on growth hormone, cortisol and lactate response to high-intensity resistance exercise. BIOMEDICAL HUMAN KINETICS 2018. [DOI: 10.1515/bhk-2018-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Summary
Study aim: Growth hormone, cortisol, and lactate play an effective role in regulating and stimulating the muscle building process. The current study aimed to investigate the impact of Panax ginseng supplementation on growth hormone, cortisol, and lactate response to intense resistance exercise in young female non-athletes. Materials and methods: Ten non-athlete girls participated in this double-blind counter-balanced crossover study. They were assigned to two groups: the ginseng group and the placebo group. In two 4-week periods, they received the supplement and the placebo. In the first four weeks, 5 participants received ginseng (100 mg daily) and 5 others received placebo (maltodextrin). At the end of the 4 weeks, blood samples (5 ml) were taken to measure blood levels of the factors. Afterwards, the resistance exercise protocol was implemented, and immediately after that blood samples were taken. In the second four-week period, the five participants who had taken ginseng received placebo, and the five subjects who had received placebo took ginseng. The same tests were administered again. Results: The results showed that except for cortisol in the ginseng group, there were significant pre - to post-exercise changes for all 3 indicators in both groups. No significant difference was observed in pre - to post-exercise changes in the levels of GH (p = 0.71), cortisol (p = 0.34), or lactate (p = 0.90) between groups. Conclusions: 100 mg ginseng consumption daily for 4 weeks does not have an impact on the response of GH, cortisol, or lactate to high-intensity resistance exercise in young female non-athletes.
Collapse
Affiliation(s)
- Leila Zarabi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht , Iran
| | - Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht , Iran
| | - Mani Izadi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht , Iran
| |
Collapse
|
9
|
Go GY, Lee SJ, Jo A, Lee J, Seo DW, Kang JS, Kim SK, Kim SN, Kim YK, Bae GU. Ginsenoside Rg1 from Panax ginseng enhances myoblast differentiation and myotube growth. J Ginseng Res 2017; 41:608-614. [PMID: 29021711 PMCID: PMC5628345 DOI: 10.1016/j.jgr.2017.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Ginsenoside Rg1 belongs to protopanaxatriol-type ginsenosides and has diverse pharmacological activities. In this report, we investigated whether Rg1 could upregulate muscular stem cell differentiation and muscle growth. METHODS C2C12 myoblasts, MyoD-transfected 10T1/2 embryonic fibroblasts, and HEK293T cells were treated with Rg1 and differentiated for 2 d, subjected to immunoblotting, immunocytochemistry, or immunoprecipitation. RESULTS Rg1 activated promyogenic kinases, p38MAPK (mitogen-activated protein kinase) and Akt signaling, that in turn promote the heterodimerization with MyoD and E proteins, resulting in enhancing myogenic differentiation. Through the activation of Akt/mammalian target of rapamycin pathway, Rg1 induced myotube growth and prevented dexamethasone-induced myotube atrophy. Furthermore, Rg1 increased MyoD-dependent myogenic conversion of fibroblast. CONCLUSION Rg1 upregulates promyogenic kinases, especially Akt, resulting in improvement of myoblast differentiation and myotube growth.
Collapse
Affiliation(s)
- Ga-Yeon Go
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Sang-Jin Lee
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ayoung Jo
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jaecheol Lee
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, CA, USA
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Si-Kwan Kim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Yong Kee Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
- Corresponding author. Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-Gu, Seoul 04310, Republic of Korea.Research Center for Cell Fate ControlCollege of PharmacySookmyung Women's UniversityCheongpa-ro 47-gil 100, Yongsan-GuSeoul04310Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
- Corresponding author. Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-Gu, Seoul 04310, Republic of Korea.Research Center for Cell Fate ControlCollege of PharmacySookmyung Women's UniversityCheongpa-ro 47-gil 100, Yongsan-GuSeoul04310Republic of Korea
| |
Collapse
|