1
|
Paapstel K, Kals J. Metabolomics of Arterial Stiffness. Metabolites 2022; 12:370. [PMID: 35629874 PMCID: PMC9146333 DOI: 10.3390/metabo12050370] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
Arterial stiffness (AS) is one of the earliest detectable signs of structural and functional alterations of the vessel wall and an independent predictor of cardiovascular events and death. The emerging field of metabolomics can be utilized to detect a wide spectrum of intermediates and products of metabolism in body fluids that can be involved in the pathogenesis of AS. Research over the past decade has reinforced this idea by linking AS to circulating acylcarnitines, glycerophospholipids, sphingolipids, and amino acids, among other metabolite species. Some of these metabolites influence AS through traditional cardiovascular risk factors (e.g., high blood pressure, high blood cholesterol, diabetes, smoking), while others seem to act independently through both known and unknown pathophysiological mechanisms. We propose the term 'arteriometabolomics' to indicate the research that applies metabolomics methods to study AS. The 'arteriometabolomics' approach has the potential to allow more personalized cardiovascular risk stratification, disease monitoring, and treatment selection. One of its major goals is to uncover the causal metabolic pathways of AS. Such pathways could represent valuable treatment targets in vascular ageing.
Collapse
Affiliation(s)
- Kaido Paapstel
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Cardiology, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Heart Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
| | - Jaak Kals
- Endothelial Research Centre, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia;
- Department of Surgery, Institute of Clinical Medicine, University of Tartu, 8 Puusepa Street, 51014 Tartu, Estonia
- Surgery Clinic, Tartu University Hospital, 8 Puusepa Street, 51014 Tartu, Estonia
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| |
Collapse
|
2
|
Abdoul-Aziz SKA, Zhang Y, Wang J. Milk Odd and Branched Chain Fatty Acids in Dairy Cows: A Review on Dietary Factors and Its Consequences on Human Health. Animals (Basel) 2021; 11:3210. [PMID: 34827941 PMCID: PMC8614267 DOI: 10.3390/ani11113210] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
This review highlights the importance of odd and branched chain fatty acids (OBCFAs) and dietary factors that may affect the content of milk OBCFAs in dairy cows. Historically, OBCFAs in cow milk had little significance due to their low concentrations compared to other milk fatty acids (FAs). The primary source of OBCFAs is ruminal bacteria. In general, FAs and OBCFAs profile in milk is mainly affected by dietary FAs and FAs metabolism in the rumen. Additionally, lipid mobilization in the body and FAs metabolism in mammary glands affect the milk OBCFAs profile. In cows, supplementation with fat rich in linoleic acid and α-linolenic acid decrease milk OBCFAs content, whereas supplementation with marine algae or fish oil increase milk OBCFAs content. Feeding more forage rather than concentrate increases the yield of some OBCFAs in milk. A high grass silage rate in the diet may increase milk total OBCFAs. In contrast to saturated FAs, OBCFAs have beneficial effects on cardiovascular diseases and type II diabetes. Furthermore, OBCFAs may have anti-cancer properties and prevent Alzheimer's disease and metabolic syndrome.
Collapse
Affiliation(s)
| | | | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (S.K.A.A.-A.); (Y.Z.)
| |
Collapse
|
3
|
Han P, Man J, Hao Y, Wu L, Wang J, Yang W, Wang F, Tian Y. Metabolomic analysis of plasma from normal-weight adults with hypo-HDL cholesterolemia by UPLC-QTOF MS. Biomed Chromatogr 2021; 35:e5073. [PMID: 33453122 DOI: 10.1002/bmc.5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/09/2022]
Abstract
High-density lipoprotein cholesterol (HDL-C) is negatively correlated with atherosclerotic cardiovascular disease. The prevalence of hypo-HDL cholesterolemia is as high as 33.9%. The plasma metabolomic differences between hypo-HDL cholesterolemia populations and normal controls were investigated using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Participants with hypo-HDL cholesterolemia and normal controls were clearly discriminated from each other on the orthogonal partial least squares-discriminant analysis score plot and a total of 90 differential metabolites were identified, including down-regulated phosphatidylserine [18:0/20:3(8Z,11Z,14Z)], phosphatidylcholine [19:0/18:3(6Z,9Z,12Z)], phosphatidylserine, phosphatidylethanolamine [18:0/20:4(5Z,8Z,11Z,13E) (15Ke)], etc., and up-regulated triglyceride [15:0/18:1(9Z)/18:3(9Z,12Z,15Z)][iso6], 13-methyl-1-tritriacontene, tridodecylamine, etc. Most of the changed metabolites were lipids, notably, a significant part of which were odd chain fatty acid incorporated lipids. Carnitine shuttle was the most significant metabolic pathway, except for the disturbed glycerophospholipid metabolism, glycosphingolipid metabolism and sphingolipid metabolism in participants with hypo-HDL cholesterolemia. We identified the key metabolites and metabolic pathways that may be changed in hypo-HDL cholesterolemia participants, providing useful clues for studying the metabolic mechanisms and for early prevention of hypo-HDL cholesterolemia and dyslipidemia.
Collapse
Affiliation(s)
- Pei Han
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Man
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Hao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Longjie Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jia Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjie Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fudi Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongmei Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Liquid-Chromatographic Methods for Carboxylic Acids in Biological Samples. Molecules 2020; 25:molecules25214883. [PMID: 33105855 PMCID: PMC7660098 DOI: 10.3390/molecules25214883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Carboxyl-bearing low-molecular-weight compounds such as keto acids, fatty acids, and other organic acids are involved in a myriad of metabolic pathways owing to their high polarity and solubility in biological fluids. Various disease areas such as cancer, myeloid leukemia, heart disease, liver disease, and lifestyle diseases (obesity and diabetes) were found to be related to certain metabolic pathways and changes in the concentrations of the compounds involved in those pathways. Therefore, the quantification of such compounds provides useful information pertaining to diagnosis, pathological conditions, and disease mechanisms, spurring the development of numerous analytical methods for this purpose. This review article addresses analytical methods for the quantification of carboxylic acids, which were classified into fatty acids, tricarboxylic acid cycle and glycolysis-related compounds, amino acid metabolites, perfluorinated carboxylic acids, α-keto acids and their metabolites, thiazole-containing carboxylic acids, and miscellaneous, in biological samples from 2000 to date. Methods involving liquid chromatography coupled with ultraviolet, fluorescence, mass spectrometry, and electrochemical detection were summarized.
Collapse
|
5
|
Ahmadi E, Abdollahzad H, Pasdar Y, Rezaeian S, Moludi J, Nachvak SM, Mostafai R. Relationship Between the Consumption of Milk-Based Oils Including Butter and Kermanshah Ghee with Metabolic Syndrome: Ravansar Non-Communicable Disease Cohort Study. Diabetes Metab Syndr Obes 2020; 13:1519-1530. [PMID: 32440181 PMCID: PMC7211326 DOI: 10.2147/dmso.s247412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The prevalence of metabolic syndrome (MetS) in recent years has been growing in different societies, which may be due to lifestyle changes including changes in diet, in particular the consumption pattern of edible oils. The purpose of this study was to investigate the relationship between the consumption of animal oils including butter and Kermanshah ghee with MetS and its components in the adult population of Ravansar Non-Communicable Disease (RaNCD) cohort study. METHODS This cross-sectional study was carried out on 5550 adults aged 35-65 years using baseline data of Ravansar's prospective study center in Iran. MetS was defined according to the criteria of modified NCEP ATP III for Iranian adults. Relationship between the consumption of butter and Kermanshah ghee and MetS was analyzed by logistic regression model using STATA software. RESULTS In our study, the frequency of MetS was 31.40%. The mean body mass index and mean age were 27.1±4.6 kg/m2 and 47.6±8.2 years. The mean values of consumed butter and Kermanshah ghee were 3.3±1.8 and 5.1±2.3 g/day, respectively. After adjusting the confounding variables, the highest to the lowest quintile of butter and Kermanshah ghee consumption showed a reverse correlation with the MetS (OR = 0.7, 95% CI = 0.5-0.9) and (OR= 0.7, 95% CI=0.6-0.9), respectively. CONCLUSION This study revealed a reverse relationship between milk and Kermanshah ghee consumption with MetS and its components. Therefore, consumption of milk-based oils may be associated with lower cardiovascular risk factors.
Collapse
Affiliation(s)
- Elham Ahmadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Abdollahzad
- Department of Nutrition Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Correspondence: Hadi Abdollahzad Department of Nutrition Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Isar Sq., KermanshahP.O. Box 6719851351, Iran Email
| | - Yahya Pasdar
- Department of Nutrition Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahab Rezaeian
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jalal Moludi
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mostafa Nachvak
- Department of Nutrition Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roghayeh Mostafai
- Department of Nutrition Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Messedi M, Naifar M, Grayaa S, Frikha F, Messoued M, Sethom MM, Feki M, Kaabach N, Bahloul Z, Jamoussi K, Ayedi F. Plasma Saturated and Monounsaturated Fatty Acids in Behçet's Disease. Open Rheumatol J 2018; 12:139-151. [PMID: 30258503 PMCID: PMC6128021 DOI: 10.2174/1874312901812010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/09/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Fatty Acid (FA) composition of serum has been associated with many markers of inflammation. In this study, we tried to examine plasma Saturated Fatty Acid (SFA) and Monounsaturated Fatty Acid (MUFA) composition in Behçet's Disease (BD) patients. The associations between the circulating FA levels and some markers of inflammation have also been investigated. Methods: This study is a cross-sectional one. In fact, a total of 101 BD patients and healthy controls group of 99 subjects are enrolled. Gas Chromatograph equipped with a Capillary Split/Splitless Injector and flame ionization detector was used to analyze the plasma SFA and MUFA compositions. The high sensitivity C-Reactive Protein (hsCRP) and fibrinogen levels were measured using standard techniques. Results: BD patients had significantly higher proportions of Mystiric Acid (MA), Palmitic Acid (PAM), Palmitoleic Acid (POA) and Stearoyl-CoA Desaturase (SCD)-16, compared to controls. The results revealed that patients with severe involvements had high levels of POA and total MUFA associated with higher SCD-16 activity compared to those with minor ones. The receiver operator characteristic curve analysis revealed that POA could well discriminate BD patients with severe clinical manifestations. In the bivariate analysis, hsCRP was found to be positively correlated with total SAFA and POA elongase activity index but negatively correlated with SCD-18 activity index. The STA, POA, elongase and SCD-16 activity index are correlated with fibrinogen. On the other hand, the multivariate analysis showed that POA remained associated with higher levels of hsCRP. Conclusion: Unfavourable plasma SFA and MUFA profile were reported in BD patients. POA, which is associated with higher plasma hsCRP level, may play a role in the pathogenesis of BD.
Collapse
Affiliation(s)
- Meriam Messedi
- Unit of Research Molecular Bases of Human Diseases, 12ES17, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Sfax, Tunisia
| | - Manel Naifar
- Biochemistry laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Sfax, Tunisia
| | - Sahar Grayaa
- Unit of Research Molecular Bases of Human Diseases, 12ES17, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Sfax, Tunisia
| | - Faten Frikha
- Internal Medicine Department, Hedi Chaker Hospital, 3029 Sfax, Sfax, Tunisia
| | - Mariem Messoued
- Unit of Research Molecular Bases of Human Diseases, 12ES17, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Sfax, Tunisia
| | - Mohamed Marouene Sethom
- Faculty of Medicine of Tunis, Biochemistry laboratory, La Rabta Hospital and UR05/08-08, Tunis 1007, Tunisia
| | - Moncef Feki
- Faculty of Medicine of Tunis, Biochemistry laboratory, La Rabta Hospital and UR05/08-08, Tunis 1007, Tunisia
| | - Naziha Kaabach
- Faculty of Medicine of Tunis, Biochemistry laboratory, La Rabta Hospital and UR05/08-08, Tunis 1007, Tunisia
| | - Zouheir Bahloul
- Internal Medicine Department, Hedi Chaker Hospital, 3029 Sfax, Sfax, Tunisia
| | - Kamel Jamoussi
- Unit of Research Molecular Bases of Human Diseases, 12ES17, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Sfax, Tunisia
| | - Fatma Ayedi
- Unit of Research Molecular Bases of Human Diseases, 12ES17, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Sfax, Tunisia.,Biochemistry laboratory, Habib Bourguiba University Hospital, 3029 Sfax, Sfax, Tunisia
| |
Collapse
|