1
|
Elbaek Pedersen J, Hansen J. Risk of breast cancer in daughters of agricultural workers in Denmark. ENVIRONMENTAL RESEARCH 2024; 240:117374. [PMID: 37866542 DOI: 10.1016/j.envres.2023.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVES Agricultural workers face unique occupational hazards such as pesticide exposure, which has been associated with breast cancer. However, research considering the association between parental agricultural work and breast cancer in female offspring is lacking. Therefore, the aim of the present nested case-control study was to explore this association. METHODS The Danish Cancer Registry was utilized to identify women diagnosed with primary breast cancer. A total of 5587 cases were included in the study, and for each case, 20 cancer-free female controls were selected, matched on year of birth. It was a requisition that both cases and controls were born in Denmark and that either maternal or paternal employment history was available. RESULTS Adverse associations were consistently noted for different time windows of maternal employment in "Horticulture" and breast cancer. Inverse associations were observed for paternal employment in most of the examined agricultural industries, although a small increased risk was indicated for perinatal employment in "Horticulture". Furthermore, maternal preconceptional employment in "Horticulture" was observed to increase the risk of ER positive tumors (odds ratio [OR] = 1.79, 95% confidence interval [CI]: 1.13-2.85, whereas parental perinatal employment was linked to an elevated risk of ER negative tumors (maternal employment: OR = 2.48, 95% CI: 1.18-5.21; paternal employment: OR = 1.62, 95% CI: 0.70-3.77). CONCLUSIONS The present study indicates that maternal horticultural employment in different potential susceptible time windows may elevate the risk of breast cancer subtypes in daughters. These findings need to be reproduced in future prospective cohort studies, including information on e.g., pesticide exposure withing agricultural job categories and lifestyle factors.
Collapse
Affiliation(s)
| | - Johnni Hansen
- The Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
2
|
Newman TM, Clear KYJ, Wilson AS, Soto-Pantoja DR, Ochs-Balcom HM, Cook KL. Early-life dietary exposures mediate persistent shifts in the gut microbiome and visceral fat metabolism. Am J Physiol Cell Physiol 2023; 324:C644-C657. [PMID: 35848617 PMCID: PMC9970661 DOI: 10.1152/ajpcell.00380.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In utero dietary exposures are linked to the development of metabolic syndrome in adult offspring. These dietary exposures can potentially impact gut microbial composition and offspring metabolic health. Female BALB/c mice were administered a lard, lard + flaxseed oil, high sugar, or control diet 4 wk before mating, throughout mating, pregnancy, and lactation. Female offspring were offered low-fat control diet at weaning. Fecal 16S sequencing was performed. Untargeted metabolomics was performed on visceral adipose tissue (VAT) of adult female offspring. Immunohistochemistry was used to determine adipocyte size, VAT collagen deposition, and macrophage content. Hippurate was administered via weekly intraperitoneal injections to low-fat and high-fat diet-fed female mice and VAT fibrosis and collagen 1A (COL1A) were assessed by immunohistochemistry. Lard diet exposure was associated with elevated body and VAT weight and dysregulated glucose metabolism. Lard + flaxseed oil attenuated these effects. Lard diet exposures were associated with increased adipocyte diameter and VAT macrophage count. Lard + flaxseed oil reduced adipocyte diameter and fibrosis compared with the lard diet. Hippurate-associated bacteria were influenced by lard versus lard + flax exposures that persisted to adulthood. VAT hippurate was increased in lard + flaxseed oil compared with lard diet. Hippurate supplementation mitigated VAT fibrosis pathology. Maternal high-fat lard diet consumption resulted in long-term metabolic and gut microbiome programming in offspring, impacting VAT inflammation and fibrosis, and was associated with reduced VAT hippurate content. These traits were not observed in maternal high-fat lard + flaxseed oil diet-exposed offspring. Hippurate supplementation reduced VAT fibrosis. These data suggest that detrimental effects of early-life high-fat lard diet exposure can be attenuated by dietary omega-3 polyunsaturated fatty acid supplementation.
Collapse
Affiliation(s)
- Tiffany M. Newman
- 1Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina,2Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kenysha Y. J. Clear
- 2Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Adam S. Wilson
- 2Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David R. Soto-Pantoja
- 1Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina,2Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina,3Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Heather M. Ochs-Balcom
- 4Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Katherine L. Cook
- 1Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina,2Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina,3Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
3
|
Zapaterini JR, Fonseca ARB, Bidinotto LT, Colombelli KT, Rossi ALD, Kass L, Justulin LA, Barbisan LF. Maternal Low-Protein Diet Deregulates DNA Repair and DNA Replication Pathways in Female Offspring Mammary Gland Leading to Increased Chemically Induced Rat Carcinogenesis in Adulthood. Front Cell Dev Biol 2022; 9:756616. [PMID: 35178394 PMCID: PMC8844450 DOI: 10.3389/fcell.2021.756616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Studies have shown that maternal malnutrition, especially a low-protein diet (LPD), plays a key role in the developmental mechanisms underlying mammary cancer programming in female offspring. However, the molecular pathways associated with this higher susceptibility are still poorly understood. Thus, this study investigated the adverse effects of gestational and lactational low protein intake on gene expression of key pathways involved in mammary tumor initiation after a single dose of N-methyl-N-nitrosourea (MNU) in female offspring rats. Pregnant Sprague-Dawley rats were fed a normal-protein diet (NPD) (17% protein) or LPD (6% protein) from gestational day 1 to postnatal day (PND) 21. After weaning (PND 21), female offspring (n = 5, each diet) were euthanized for histological analysis or received NPD (n = 56 each diet). At PND 28 or 35, female offspring received a single dose of MNU (25 mg/kg body weight) (n = 28 each diet/timepoint). After 24 h, some females (n = 10 each diet/timepoint) were euthanized for histological, immunohistochemical, and molecular analyses at PDN 29 or 36. The remaining animals (n = 18 each diet/timepoint) were euthanized when tumors reached ≥2 cm or at PND 250. Besides the mammary gland development delay observed in LPD 21 and 28 groups, the gene expression profile demonstrated that maternal LPD deregulated 21 genes related to DNA repair and DNA replication pathways in the mammary gland of LPD 35 group after MNU. We further confirmed an increased γ-H2AX (DNA damage biomarker) and in ER-α immunoreactivity in mammary epithelial cells in the LPD group at PND 36. Furthermore, these early postnatal events were followed by significantly higher mammary carcinogenesis susceptibility in offspring at adulthood. Thus, the results indicate that maternal LPD influenced the programming of chemically induced mammary carcinogenesis in female offspring through increase in DNA damage and deregulation of DNA repair and DNA replication pathways. Also, Cidea upregulation gene in the LPD 35 group may suggest that maternal LPD could deregulate genes possibly leading to increased risk of mammary cancer development and/or poor prognosis. These findings increase the body of evidence of early-transcriptional mammary gland changes influenced by maternal LPD, resulting in differential response to breast tumor initiation and susceptibility and may raise discussions about lifelong prevention of breast cancer risk.
Collapse
Affiliation(s)
- Joyce R Zapaterini
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Antonio R B Fonseca
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Lucas T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Botucatu, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, Brazil
| | - Ketlin T Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luis A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Luis F Barbisan
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
4
|
Machida Y, Imai T. Different properties of mammary carcinogenesis induced by two chemical carcinogens, DMBA and PhIP, in heterozygous BALB/c Trp53 knockout mice. Oncol Lett 2021; 22:738. [PMID: 34466150 PMCID: PMC8387855 DOI: 10.3892/ol.2021.12999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/02/2021] [Indexed: 12/31/2022] Open
Abstract
Chemical carcinogens, such as 7,12-dimethylbenz[a]anthracene (DMBA) and 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), are known to induce mammary carcinomas in mice and rats. In the present study, the phenotypic and genotypic characteristics of carcinogen-induced mammary carcinogenesis in heterozygous BALB/c tumor protein p53 (Trp53) knockout mice were examined with reference to published data surrounding human breast cancer. A significantly accelerated induction of mammary carcinomas was observed following a single dose of DMBA (50 mg/kg of body weight at 7 weeks of age), and a modest acceleration was induced by PhIP (50 mg/kg of body weight) administered by gavage 6 times/2 weeks from 7 weeks of age. DMBA-induced mammary carcinomas were histopathologically characterized by distinct biphasic structures with luminal and myoepithelial cells, as well as a frequent estrogen receptor expression, and PhIP-induced carcinomas with solid/microacinar structures consisted of pleomorphic cells. Of note, DMBA-induced mammary carcinomas were characterized by a HRas proto-oncogene (Hras) mutation at codon 61, and gene/protein expression indicating MAPK stimulation. PhIP-induced lesions were suspected to be caused by different molecular mechanisms, including Wnt/β-catenin signaling and/or gene mutation-independent PI3K/AKT signaling activation. In conclusion, the present mouse mammary carcinogenesis models, induced by a combination of genetic and exogenous factors, may be utilized (such as the DMBA-induced model with Trp53 gene function deficiency as a model of adenomyoepithelioma, characterized by distinct biphasic cell constituents and Hras mutations), but PhIP-induced models are required to further analyze the genetic/epigenetic mechanisms promoting mammary carcinomas.
Collapse
Affiliation(s)
- Yukino Machida
- Central Animal Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Department of Veterinary Pathology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Toshio Imai
- Central Animal Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
5
|
Prenatal exposure to a mixture of different phthalates increases the risk of mammary carcinogenesis in F1 female offspring. Food Chem Toxicol 2021; 156:112519. [PMID: 34428494 DOI: 10.1016/j.fct.2021.112519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022]
Abstract
Phthalates metabolites have been detected in the urine of pregnant and breastfeeding women. Thus, this study evaluated the adverse effects of maternal exposure to a mixture of six phthalates (Pth mix) on the mammary gland development and carcinogenesis in F1 female offspring. Pregnant female Sprague-Dawley rats were exposed daily to vehicle or Pth mix (35.22% diethyl-phthalate, 21.03% di-(2-ethylhexyl)-phthalate, 14.91% dibutyl-phthalate, 15.10% diisononyl-phthalate, 8.61% diisobutyl-phthalate, and 5.13% benzylbutyl-phthalate) by gavage at 20 μg/kg, 200 μg/kg or 200 mg/kg during gestational day 10 (GD 10) to postnatal day 21 (PND 21). After weaning (PND 22), some female offspring were euthanized for mammary gland analyses while other females received a single dose of N-methyl-N-nitrosourea (MNU, 50 mg/kg) or vehicle and then tumor incidence and multiplicity were recorded until PND 180. Maternal Pth mix exposure increased the number of Ki-67 and progesterone receptor-positive epithelial cells in the mammary gland from Pth mix 200 at μg/kg and 200 mg/kg groups. In addition, tumor incidence and mean number were higher only in Pth mix at 200 mg/kg when compared to the vehicle-treated group, and percentage of tumor-free animals was lower in Pth mix at 200 μg/kg and 200 mg/kg groups. The findings indicate that perinatal Pth mixture exposure increased susceptibility to MNU-induced mammary carcinogenesis in adult F1 female offspring.
Collapse
|
6
|
Hue-Beauvais C, Faulconnier Y, Charlier M, Leroux C. Nutritional Regulation of Mammary Gland Development and Milk Synthesis in Animal Models and Dairy Species. Genes (Basel) 2021; 12:genes12040523. [PMID: 33916721 PMCID: PMC8067096 DOI: 10.3390/genes12040523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
In mammals, milk is essential for the growth, development, and health. Milk quantity and quality are dependent on mammary development, strongly influenced by nutrition. This review provides an overview of the data on nutritional regulations of mammary development and gene expression involved in milk component synthesis. Mammary development is described related to rodents, rabbits, and pigs, common models in mammary biology. Molecular mechanisms of the nutritional regulation of milk synthesis are reported in ruminants regarding the importance of ruminant milk in human health. The effects of dietary quantitative and qualitative alterations are described considering the dietary composition and in regard to the periods of nutritional susceptibly. During lactation, the effects of lipid supplementation and feed restriction or deprivation are discussed regarding gene expression involved in milk biosynthesis, in ruminants. Moreover, nutrigenomic studies underline the role of the mammary structure and the potential influence of microRNAs. Knowledge from three lactating and three dairy livestock species contribute to understanding the variety of phenotypes reported in this review and highlight (1) the importance of critical physiological stages, such as puberty gestation and early lactation and (2) the relative importance of the various nutrients besides the total energetic value and their interaction.
Collapse
Affiliation(s)
- Cathy Hue-Beauvais
- INRAE, AgroParisTech, GABI, University of Paris-Saclay, F-78350 Jouy-en-Josas, France;
- Correspondence:
| | - Yannick Faulconnier
- INRAE, VetAgro Sup, UMR Herbivores, University of Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France; (Y.F.); (C.L.)
| | - Madia Charlier
- INRAE, AgroParisTech, GABI, University of Paris-Saclay, F-78350 Jouy-en-Josas, France;
| | - Christine Leroux
- INRAE, VetAgro Sup, UMR Herbivores, University of Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France; (Y.F.); (C.L.)
| |
Collapse
|