1
|
Chen S, Chen J, Wang C, He T, Yang Z, Huang W, Luo X, Zhu H. Betaine attenuates age-related suppression in autophagy via Mettl21c/p97/VCP axis to delay muscle loss. J Nutr Biochem 2024; 125:109555. [PMID: 38147913 DOI: 10.1016/j.jnutbio.2023.109555] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Age-related impairment of autophagy accelerates muscle loss and lead to sarcopenia. Betaine can delay muscle loss as a dietary methyl donor via increasing S-adenosyl-L-methionine (SAM, a crucial metabolite for autophagy regulation) in methionion cycle. However, whether betaine can regulate autophagy level to attenuate degeneration in aging muscle remains unclear. Herein, male C57BL/6J young mice (YOU, 2-month-old), old mice (OLD, 15-month-old), and 2%-betaine-treated old mice (BET, 15-month-old) were employed and raised for 12 weeks. All mice underwent body composition examination and grip strength test before being sacrificed. Betaine alleviated age-related decline in muscle mass and strength. Meanwhile, betaine preserved the expression autophagy markers (Atg5, Atg7, LC3-II, and Beclin1) both at transcriptional and translational level during the aging process. RNA-sequencing results generated from mice gastrocnemius muscle found Mettl21c, a SAM-dependent autophagy-regulating methyltransferase, was significantly higher expressed in BET and YOU group. Results were further validated by qPCR and western bloting. In vitro, C2C12 cells with or without Mettl21c RNA interference were treated different concentration of betaine (0 mM, 10 mM) under methionine-starved condition. Compared with control group, betaine upregulated autophagy markers expression and autophagy flux. By increasing the SAM level, betaine facilitated trimethylation of p97 (Mettl21c downstream effector) into valosin-containing protein (VCP). Increased VCP promoted autophagic turnover of cellular components, ATP production, and cell differentiation. Knock-down of Metthl21c dismissed improvements mentioned above. Collectively, betaine could enhance aged skeletal muscle autophagy level via Mettl21c/p97/VCP axis to delay muscle loss.
Collapse
Affiliation(s)
- Si Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Jiedong Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Chen Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Tongtong He
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Zhijun Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Wenge Huang
- Center of Experimental Animals, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Luo
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Experimental and Teaching Center for Public Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China.
| |
Collapse
|
2
|
Shelley SP, James RS, Eustace SJ, Eyre ELJ, Tallis J. High-fat diet effects on contractile performance of isolated mouse soleus and extensor digitorum longus when supplemented with high dose vitamin D. Exp Physiol 2024; 109:283-301. [PMID: 37983200 PMCID: PMC10988740 DOI: 10.1113/ep091493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Evidence suggests vitamin D3 (VD) supplementation can reduce accumulation of adipose tissue and inflammation and promote myogenesis in obese individuals, and thus could mitigate obesity-induced reductions in skeletal muscle (SkM) contractility. However, this is yet to be directly investigated. This study, using the work-loop technique, examined effects of VD (cholecalciferol) supplementation on isolated SkM contractility. Female mice (n = 37) consumed standard low-fat diet (SLD) or high-fat diet (HFD), with or without VD (20,000 IU/kg-1 ) for 12 weeks. Soleus and EDL (n = 8-10 per muscle per group) were isolated and absolute and normalized (to muscle size and body mass) isometric force and power output (PO) were measured, and fatigue resistance determined. Absolute and normalized isometric force and PO of soleus were unaffected by diet (P > 0.087). However, PO normalized to body mass was reduced in HFD groups (P < 0.001). Isometric force of extensor digitorum longus (EDL) was unaffected by diet (P > 0.588). HFD reduced EDL isometric stress (P = 0.048) and absolute and normalized PO (P < 0.031), but there was no effect of VD (P > 0.493). Cumulative work during fatiguing contractions was lower in HFD groups (P < 0.043), but rate of fatigue was unaffected (P > 0.060). This study uniquely demonstrated that high-dose VD had limited effects on SkM contractility and did not offset demonstrated adverse effects of HFD. However, small and moderate effect sizes suggest improvement in EDL muscle performance and animal morphology in HFD VD groups. Given effect sizes observed, coupled with proposed inverted U-shaped dose-effect curve, future investigations are needed to determine dose/duration specific responses to VD, which may culminate in improved function of HFD SkM.
Collapse
Affiliation(s)
- Sharn P. Shelley
- Research Centre for Physical Activity, Sport and Exercise ScienceCoventry UniversityCoventryUK
| | - Rob S. James
- Faculty of Life SciencesUniversity of BradfordBradfordUK
| | | | | | - Jason Tallis
- Research Centre for Physical Activity, Sport and Exercise ScienceCoventry UniversityCoventryUK
| |
Collapse
|
3
|
Chen X, Zhang Z, Sun N, Li J, Ma Z, Rao Z, Sun X, Zeng Q, Wu Y, Li J, Zhang J, Chen Y. Vitamin D receptor enhances
NLRC4
inflammasome activation by promoting
NAIPs–NLRC4
association. EMBO Rep 2022; 23:e54611. [DOI: 10.15252/embr.202254611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xin Chen
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Zaikui Zhang
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Naishuang Sun
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Jinzhou Li
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Zemeng Ma
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Zebing Rao
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Xiaomeng Sun
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Qiang Zeng
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Yuxuan Wu
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Jiahuang Li
- School of Biopharmacy China Pharmaceutical University Nanjing China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University Nanjing China
| | - Yunzi Chen
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
- Medical Centre for Digestive Diseases Second Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
4
|
LI A, SHEN P, LIU S, WANG J, ZENG J, DU C. Vitamin D alleviates skeletal muscle loss and insulin resistance by inducing vitamin D receptor expression and regulating the AMPK/SIRT1 signaling pathway in mice. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.47921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
5
|
Vitamin D Supplementation and Impact on Skeletal Muscle Function in Cell and Animal Models and an Aging Population: What Do We Know So Far? Nutrients 2021; 13:nu13041110. [PMID: 33800650 PMCID: PMC8066691 DOI: 10.3390/nu13041110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Aging is associated with impairment in skeletal muscle mass and contractile function, predisposing to fat mass gain, insulin resistance and diabetes. The impact of Vitamin D (VitD) supplementation on skeletal muscle mass and function in older adults is still controversial. The aim of this review was to summarize data from randomized clinical trials, animal dietary intervention and cell studies in order to clarify current knowledge on the effects of VitD on skeletal muscle as reported for these three types of experiments. A structured research of the literature in Medline via PubMed was conducted and a total of 43 articles were analysed (cells n = 18, animals n = 13 and humans n = 13). The results as described by these key studies demonstrate, overall, at cell and animal levels, that VitD treatments had positive effects on the development of muscle fibres in cells in culture, skeletal muscle force and hypertrophy. Vitamin D supplementation appears to regulate not only lipid and mitochondrial muscle metabolism but also to have a direct effect on glucose metabolism and insulin driven signalling. However, considering the human perspective, results revealed a predominance of null effects of the vitamin on muscle in the ageing population, but experimental design may have influenced the study outcome in humans. Well-designed long duration double-blinded trials, standardised VitD dosing regimen, larger sample sized studies and standardised measurements may be helpful tools to accurately determine results and compare to those observed in cells and animal dietary intervention models.
Collapse
|