1
|
Ando Y, Munetsuna E, Yamada H, Ikeya M, Teshigawara A, Kageyama I, Nouchi Y, Wakasugi T, Yamazaki M, Mizuno G, Tsuboi Y, Ishikawa H, Ohgami N, Suzuki K, Ohashi K. Impact of maternal fructose intake on liver stem/progenitor cells in offspring: Insights into developmental origins of health and disease. Life Sci 2024; 336:122315. [PMID: 38035994 DOI: 10.1016/j.lfs.2023.122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
AIMS The developmental origin of health and disease (DOHaD) theory postulates that poor nutrition during fetal life increases the risk of disease later in life. Excessive fructose intake has been associated with obesity, diabetes, and nonalcoholic fatty liver disease, and maternal fructose intake during pregnancy has been shown to affect offspring health. In this study, we investigated the effects of high maternal fructose intake on the liver stem/progenitor cells of offspring. MAIN METHOD A fructose-based DOHaD model was established using Sprague-Dawley rats. Small hepatocytes (SHs), which play an important role in liver development and regeneration, were isolated from the offspring of dams that were fed a high-fructose corn syrup (HFCS) diet. The gene expression and DNA methylation patterns were analyzed on postnatal day (PD) 21 and 60. KEY FINDINGS Maternal HFCS intake did not affect body weight or caloric intake, but differences in gene expression and DNA methylation patterns were observed in the SHs of offspring. Functional analysis revealed an association between metabolic processes and ion transport. SIGNIFICANCE These results suggest that maternal fructose intake affects DNA methylation and gene expression in the liver stem/progenitor cells of offspring. Furthermore, the prolonged retention of these changes in gene expression and DNA methylation in adulthood (PD 60) suggests that maternal fructose intake may exert lifelong effects. These findings provide insights into the DOHaD for liver-related disorders and highlight the importance of maternal nutrition for the health of the next generation.
Collapse
Affiliation(s)
- Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Eiji Munetsuna
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Miyuki Ikeya
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Teshigawara
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Itsuki Kageyama
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuki Nouchi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Takuya Wakasugi
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure-cho Takamatsu, Kagawa 761-0123, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, 5-23-22 Nishi-Kamata, Ota, Tokyo 144-8535, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Nobutaka Ohgami
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
2
|
Mizuno G, Yamada H, Tsuboi Y, Munetsuna E, Yamazaki M, Ando Y, Kageyama I, Nouchi Y, Teshigawara A, Hattori Y, Fujii R, Ishikawa H, Hashimoto S, Ohashi K, Hamajima N, Suzuki K. Low mitochondrial DNA copy number in peripheral blood mononuclear cells is associated with future mortality risk: a long-term follow-up study from Japan. J Nutr Health Aging 2024; 28:100013. [PMID: 38267162 DOI: 10.1016/j.jnha.2023.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/16/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVES The mitochondrial DNA (mtDNA) is unique and circular with multiple copies of the genome. The lower mtDNA copy number (mtDNA-CN) in leukocytes is associated with the risk of all-cause mortality. However, its long-term association is unknown. Thus, the study examined the association between mtDNA-CN and the risk of all-cause mortality in a long-term follow-up study in the Japanese population. DESIGN This longitudinal study included the study cohort from an annual, population-based health checkup in the town of Yakumo, Hokkaido, Japan. SETTING AND PARTICIPANTS 814 participants (baseline age range: 38-80 years, mean: 56.3 years) were included in this study in 1990. They were followed-up regarding mortality for about 30 years (median: 28.1 years) till 2019. MEASURES The genomic DNA was extracted from peripheral blood mononuclear cells and the mtDNA-CN was measured using real-time polymerase chain reaction. The level of the mtDNA-CN was divided into tertiles (low, middle, and high). The participants were categorized based on their age into middle-aged (<60 years old) or old-aged (≥60 years old). Survival analysis was performed for tertile of mtDNA-CN and compared using the log-rank test. Univariate and multivariable Cox proportional hazard regression analyses were performed to assess the association between mtDNA-CN and all-cause mortality. The model adjusted with age, sex, body mass index, systolic blood pressure, smoking habit, alcohol consumption, exercise habit, and education level. RESULTS The low levels of mtDNA-CN resulted in a significant decrease in cumulative survival rate (P < 0.05). The risk of mortality was significantly higher in the middle-aged cohort when mtDNA-CN levels were low (hazard ratios [95% confidence intervals]: 1.98 [1.10-3.56]). CONCLUSION This study demonstrated that leukocyte mtDNA-CN is associated with future mortality risk. Our study findings may lead to further research on the early prediction of mortality and its underlying mechanisms.
Collapse
Affiliation(s)
- Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, 5-23-22 Nishi-Kamata, Ota, Tokyo, 144-8535, Japan; Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Eiji Munetsuna
- Department of Animal Science and Biotechnology, Azabu University School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan
| | - Mirai Yamazaki
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure-cho, Takamatsu, Kagawa 761-0123, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Itsuki Kageyama
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuki Nouchi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Teshigawara
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuji Hattori
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
3
|
Prado Spalm FH, Cuervo Sánchez ML, Furland NE, Vallés AS. Lipid peroxidation and neuroinflammation: A possible link between maternal fructose intake and delay of acquisition of neonatal reflexes in Wistar female rats. Dev Neurobiol 2023; 83:167-183. [PMID: 37435772 DOI: 10.1002/dneu.22921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Fructose is a common sweetener found in the daily diet supplemented to many processed and ultra-processed foods and beverages. Consumption of fructose-sweetened beverages has drastically increased in the last decades and is widely associated with metabolic disease, systemic pro-inflammatory status, and adverse transgenerational effects. To date, the impact of maternal fructose intake in brain function of the offspring is less explored. Therefore, the aim of this study was first, to investigate adverse effects in developmental milestones of the progeny of mothers with metabolic syndrome (MetS), induced by ad libitum consumption of a 20% fructose solution, and second to identify possible molecular changes in the nervous system of the newborns associated with maternal fructose intake. Wistar rats were randomly separated into two groups with access to water or fructose (20% w/v in water) for 10 weeks. After MetS was confirmed, dams were mated with control males and continued drinking water or fructose solution during gestation. At postnatal day (PN) 1, a subgroup of offspring of each sex was sacrificed and brains were dissected for oxidative stress and inflammatory status analysis. Changes in the developmental milestones due to maternal fructose consumption were studied (PN3-PN21) in another subgroup of offspring. Sexually dimorphic effects were found on the progeny's acquisition of neurodevelopmental milestones, in brain lipid peroxidation, neuroinflammation, and antioxidative defensive response. Our results suggest that dams' MetS, induced by fructose intake, disrupts brain redox homeostasis in female offspring and affects sensorimotor brain circuitry which may have a translational value for studying neurodevelopmental diseases.
Collapse
Affiliation(s)
- Facundo H Prado Spalm
- Nutrition and Neurodevelopmental Laboratory, INIBIBB-CONICET-UNS, Bahía Blanca, Argentina
| | - Marié L Cuervo Sánchez
- Nutrition and Neurodevelopmental Laboratory, INIBIBB-CONICET-UNS, Bahía Blanca, Argentina
| | - Natalia E Furland
- Nutrition and Neurodevelopmental Laboratory, INIBIBB-CONICET-UNS, Bahía Blanca, Argentina
| | - Ana S Vallés
- Nutrition and Neurodevelopmental Laboratory, INIBIBB-CONICET-UNS, Bahía Blanca, Argentina
| |
Collapse
|
4
|
Nouchi Y, Munetsuna E, Yamada H, Yamazaki M, Ando Y, Mizuno G, Ikeya M, Kageyama I, Wakasugi T, Teshigawara A, Hattori Y, Tsuboi Y, Ishikawa H, Suzuki K, Ohashi K. Maternal High-Fructose Corn Syrup Intake Impairs Corticosterone Clearance by Reducing Renal 11β-Hsd2 Activity via miR-27a-Mediated Mechanism in Rat Offspring. Nutrients 2023; 15:2122. [PMID: 37432276 DOI: 10.3390/nu15092122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 07/12/2023] Open
Abstract
We previously reported that maternal fructose consumption increases blood corticosterone levels in rat offspring. However, the underlying mechanism of action remains unclear. In the present study, we aimed to elucidate the molecular mechanism by which maternal high-fructose corn syrup (HFCS) intake increases circulating GC levels in rat offspring (GC; corticosterone in rodents and cortisol in humans). Female Sprague Dawley rats received HFCS solution during gestation and lactation. The male offspring were fed distilled water from weaning to 60 days of age. We investigated the activities of GC-metabolizing enzymes (11β-Hsd1 and 11β-Hsd2) in various tissues (i.e., liver, kidney, adrenal glands, muscle, and white adipose tissue) and epigenetic modification. 11β-Hsd2 activity decreased in the kidney of the HFCS-fed dams. Moreover, the epigenetic analysis suggested that miR-27a reduced Hsd11b2 mRNA expression in the kidney of offspring. Maternal HFCS-induced elevation of circulating GC levels in offspring may be explained by a decrease in 11β-Hsd2 activity via renal miR-27a expression. The present study may allow us to determine one of the mechanisms of GC elevation in rat offspring that is often observed in the developmental origins of the health and disease (DOHaD) phenomenon.
Collapse
Affiliation(s)
- Yuki Nouchi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure-cho, Takamatsu 761-0123, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, 5-23-22 Nishi-Kamata, Ota, Tokyo 144-8535, Japan
| | - Miyuki Ikeya
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Itsuki Kageyama
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Takuya Wakasugi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Atsushi Teshigawara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Yuji Hattori
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| |
Collapse
|
5
|
Developmental Programming in Animal Models: Critical Evidence of Current Environmental Negative Changes. Reprod Sci 2023; 30:442-463. [PMID: 35697921 PMCID: PMC9191883 DOI: 10.1007/s43032-022-00999-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The Developmental Origins of Health and Disease (DOHaD) approach answers questions surrounding the early events suffered by the mother during reproductive stages that can either partially or permanently influence the developmental programming of children, predisposing them to be either healthy or exhibit negative health outcomes in adulthood. Globally, vulnerable populations tend to present high obesity rates, including among school-age children and women of reproductive age. In addition, adults suffer from high rates of diabetes, hypertension, cardiovascular, and other metabolic diseases. The increase in metabolic outcomes has been associated with the combination of maternal womb conditions and adult lifestyle-related factors such as malnutrition and obesity, smoking habits, and alcoholism. However, to date, "new environmental changes" have recently been considered negative factors of development, such as maternal sedentary lifestyle, lack of maternal attachment during lactation, overcrowding, smog, overurbanization, industrialization, noise pollution, and psychosocial stress experienced during the current SARS-CoV-2 pandemic. Therefore, it is important to recognize how all these factors impact offspring development during pregnancy and lactation, a period in which the subject cannot protect itself from these mechanisms. This review aims to introduce the importance of studying DOHaD, discuss classical programming studies, and address the importance of studying new emerging programming mechanisms, known as actual lifestyle factors, during pregnancy and lactation.
Collapse
|
6
|
High-fructose corn syrup intake increases hepatic mitochondrial DNA copy number and methylation in adolescent rats. Nutr Res 2023; 110:57-65. [PMID: 36682228 DOI: 10.1016/j.nutres.2022.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
High-fructose corn syrup (HFCS) is consumed worldwide. However, it has been demonstrated that an increased intake of sweetened beverages, including those sweetened using fructose, is associated with the development of childhood obesity. It is unknown why the negative effects of fructose are stronger in young persons than in elderly individuals. In recent years, mitochondria have been identified as 1 of the targets of the negative effects of fructose; they possess their own genome called mitochondrial DNA (mtDNA), which encodes genes involved in metabolic functions. We hypothesized that HFCS intake affects mtDNA in the livers of rats, and that the intensity of these effects is age-dependent. The experimental period was divided into 3 parts: childhood and adolescence (postnatal day [PD] 21-60), young adulthood (PD61-100), and adulthood (PD101-140). Rats in the different age groups were assigned to receive either water (control group [CONT]) or a 20% HFCS solution (HFCS). The hepatic mtDNA copy number of the HFCS group was higher than that of the CONT group in childhood and adolescence. In addition, the mtDNA methylation level was increased in the HFCS group in the same experimental period. No significant differences were observed between the CONT and HFCS groups during the other experimental periods. We demonstrated that HFCS has the strongest effect on mtDNA during childhood and adolescence, suggesting a need to analyze the HFCS intake of young people.
Collapse
|
7
|
Nouchi Y, Munetsuna E, Yamada H, Yamazaki M, Ando Y, Mizuno G, Fujii R, Kageyama I, Wakasugi T, Sakakibara T, Teshigawara A, Ishikawa H, Shimono Y, Suzuki K, Hashimoto S, Ohashi K. Effects of High-Fructose Corn Syrup Intake on Glucocorticoid
Metabolism in Rats During Childhood, Adolescence and Adulthood. Exp Clin Endocrinol Diabetes 2022; 130:814-820. [DOI: 10.1055/a-1936-3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractThe consumption of high-fructose corn syrup (HFCS) has been increasing in recent
decades, especially among children. Some reports suggest that children and
adolescents are more sensitive to the adverse effects of fructose intake than
adults. However, the underlying mechanism of the difference in vulnerability
between adolescence and adulthood have not yet been elucidated. In this study,
we attempted to elucidate the different effects of HFCS intake at different
growth stages in rats: childhood and adolescence (postnatal day (PD)
21–60), young adulthood (PD60–100), and adulthood
(PD100–140). Since alterations in hepatic glucocorticoid (GC) metabolism
can cause diseases including insulin resistance, we focused on GC metabolizing
enzymes such as 11 beta-hydroxysteroid dehydrogenase 1 and 2 (Hsd11b1 and
Hsd11b2) and steroid 5 alpha-reductase 1 (Srd5a1). Western blotting showed an
increase in Hsd11b1 expression and a decrease in Hsd11b2 expression in childhood
and adolescence but not in adulthood. We also observed changes in Hsd11b1 and
Hsd11b2 activities only in childhood and adolescence, consistent with the
results of mRNA and protein expression analysis. The effect of high-fructose
intake with regards to GC metabolism may therefore vary with developmental
stage. This study provides insight into the adverse effects of fructose on GC
metabolism in children in the context of increasing rates of HFCS
consumption.
Collapse
Affiliation(s)
- Yuki Nouchi
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of
Medicine, Toyoake, Aichi, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine,
Toyoake, Aichi, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of
Health Sciences, Takamatsu, Kagawa, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Genki Mizuno
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Itsuki Kageyama
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Takuya Wakasugi
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Tomohide Sakakibara
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Atsushi Teshigawara
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of
Medicine, Toyoake, Aichi, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine,
Toyoake, Aichi, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| |
Collapse
|
8
|
Mizuno G, Yamada H, Munetsuna E, Yamazaki M, Ando Y, Fujii R, Tsuboi Y, Teshigawara A, Kageyama I, Osakabe K, Sugimoto K, Ishikawa H, Ichino N, Ohta Y, Ohashi K, Hashimoto S, Suzuki K. Association between the Extent of Peripheral Blood DNA Methylation of HIF3A and Accumulation of Adiposity in community-dwelling Women: The Yakumo Study. Endocr Res 2022; 47:130-137. [PMID: 36104828 DOI: 10.1080/07435800.2022.2121967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION DNA methylation in the CpG sites of intron 1 of HIF3A is associated with body mass index (BMI). This cross-sectional study investigated correlations between DNA methylation of HIF3A and BMI or adiposity parameters in the Japanese population. METHOD DNA methylation of HIF3A was quantified via pyrosequencing. RESULT DNA methylation of HIF3A differed only in women; DNA methylation level at cg27146050 was associated with visceral adipose tissue thickness and correlated with BMI and percent (%) body fat after excluding smokers. CONCLUSION Peripheral blood DNA methylation at the CpG site (cg27146050) of HIF3A correlated with VAT thickness in Japanese women.
Collapse
Affiliation(s)
- Genki Mizuno
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Atsushi Teshigawara
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake, Japan
| | - Itsuki Kageyama
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Keisuke Osakabe
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Keiko Sugimoto
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Naohiro Ichino
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yoshiji Ohta
- Department of Chemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
9
|
Kageyama I, Yamada H, Munetsuna E, Yamazaki M, Ando Y, Mizuno G, Fujii R, Nouchi Y, Wakasugi T, Sakakibara T, Teshigawara A, Ishikawa H, Shimono Y, Suzuki K, Hashimoto S, Ohashi K. Differential effects of excess high-fructose corn syrup on the DNA methylation of hippocampal neurotrophic factor in childhood and adolescence. PLoS One 2022; 17:e0270144. [PMID: 35714129 PMCID: PMC9205497 DOI: 10.1371/journal.pone.0270144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Consumption of fructose-containing beverages such as high-fructose corn syrup (HFCS) is increasing, raising concerns about the negative effects of excessive fructose intake. A recent report indicated that excess HFCS intake impairs hippocampal function. In this study, we focused on neurotrophic factors (NFs) in the hippocampus from the viewpoint of epigenetics to clarify the adverse effects of fructose. We analyzed the effects of HFCS intake on hippocampal function in three age categories: childhood and adolescence (postnatal day (PD) 21–60), young adulthood (PD60-100), and late adulthood (PD100-140). For the experiments, male Sprague-Dawley rats were divided into three age categories, the control group was received distilled water and the HFCS group was received 20% HFCS solution for 40 days in each period. We analyzed mRNA and protein levels for qPCR and western blotting, respectively, of a hippocampal NF, brain-derived neurotrophic factor (Bdnf). HFCS consumption reduced hippocampal Bdnf mRNA and protein expressions in childhood and adolescence. Moreover, pyrosequencing assays revealed increased DNA methylation at the Bdnf promoter in childhood and adolescence. This Bdnf levels reduction may be due to hypermethylation of the promoter regions. It should be noted that this phenomenon was observed only in childhood and adolescence fructose consumption. Our results indicate that the sensitivity of the hippocampus to fructose may vary with age. This study provides insight into the adverse effects of excessive HFCS consumption on the hippocampus in children.
Collapse
Affiliation(s)
- Itsuki Kageyama
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- * E-mail:
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Kagawa, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Genki Mizuno
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Yuki Nouchi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Takuya Wakasugi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Tomohide Sakakibara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Atsushi Teshigawara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan
| |
Collapse
|
10
|
Mizuno G, Yamada H, Munetsuna E, Ando Y, Teshigawara A, Ito M, Kageyama I, Nouchi Y, Wakasugi T, Sakakibara T, Yamazaki M, Fujii R, Ishikawa H, Suzuki K, Hashimoto S, Ohashi K. High-fructose corn syrup intake has stronger effects on the transcription level of hepatic lipid metabolism-related genes, via DNA methylation modification, in childhood and adolescence than in other generations. Life Sci 2022; 301:120638. [PMID: 35588866 DOI: 10.1016/j.lfs.2022.120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022]
Abstract
AIMS This study aimed to analyze differences in sensitivity to hepatic lipid metabolism at different ages, through DNA methylation, using an experimental rat model of high-fructose corn syrup (HFCS) intake. MAIN METHODS The experimental was divided into three periods: childhood and adolescence (postnatal day (PD) 21-60), young adulthood (PD61-100), and adulthood (PD101-140). Rats in the different age groups were assigned to receive either water (C: control group) or 20% HFCS solution (H: HFCS-fed group). We measured hepatic mRNA levels of peroxisome proliferator-activated receptor alpha (Ppara), carnitine palmitoyltransferase 1A (Cpt1a), fatty acid synthase (Fasn), and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (Pgc1a) using real-time PCR. Additionally, we examined the DNA methylation levels of Ppara, Cpt1a, Fasn, and Pgc1a using pyrosequencing. KEY FINDINGS Gene expressions of Cpt1a and Ppara in childhood and adolescence were significantly lower in the H group than in the C group. Conversely, Fasn and Pgc1a expressions were significantly higher in the H group than in the C group. Additionally, there was hypermethylation of Cpt1a and Ppara and hypomethylation of Fasn and Pgc1a in the H groups of childhood and adolescence. However, only one gene expression and methylation change was observed in young adulthood and adulthood groups. We found that HFCS intake in rats had stronger lipid metabolic effects in childhood and adolescence than in other generations, and that its mechanism involved epigenetic regulation. SIGNIFICANCE We anticipate that these research findings will be a breakthrough for elucidating the varying effects of growth stage in the future.
Collapse
Affiliation(s)
- Genki Mizuno
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; Department of Medical Technology, Tokyo University of Technology School of Health Sciences, 5-23-22 Nishi-Kamata, Ota, Tokyo 144-8535, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Teshigawara
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Manaka Ito
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Itsuki Kageyama
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuki Nouchi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Takuya Wakasugi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Tomohide Sakakibara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure Town Takamatsu, Kagawa 761-0123, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
11
|
Yamazaki M, Yamada H, Munetsuna E, Maeda K, Ando Y, Mizuno G, Fujii R, Tsuboi Y, Ohashi K, Ishikawa H, Hashimoto S, Hamajima N, Suzuki K. DNA methylation level of the gene encoding thioredoxin-interacting protein in peripheral blood cells is associated with metabolic syndrome in the Japanese general population. Endocr J 2022; 69:319-326. [PMID: 34645728 DOI: 10.1507/endocrj.ej21-0339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metabolic syndrome (MetS) is cluster of metabolic diseases, including abdominal obesity, hyperglycemia, high blood pressure, and dyslipidemia, that directly escalate the risk of type 2 diabetes, heart disease, and stroke. Thioredoxin-interacting protein (TXNIP) is a binding protein for thioredoxin, a molecule that is a key inhibitor of cellular oxidation, and thus regulates the cellular redox state. Epigenetic alteration of the TXNIP-encoding locus has been associated with components of MetS. In the present study, we sought to determine whether the level of TXNIP methylation in blood is associated with MetS in the general Japanese population. DNA was extracted from the peripheral blood cells of 37 subjects with and 392 subjects without MetS. The level of TXNIP methylation at cg19693031 was assessed by the bisulfite-pyrosequencing method. We observed that TXNIP methylation levels were lower in MetS subjects (median 74.9%, range 71.7-78.4%) than in non-MetS subjects (median 77.7%, range 74.4-80.5%; p = 0.0024). Calculation of the confounding factor-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for hypomethylation revealed that subjects with MetS exhibited significantly higher ORs for hypomethylation than did those without MetS (OR, 2.92; 95% CI, 1.33-6.62; p = 0.009). Our findings indicated that lower levels of TXNIP methylation are associated with MetS in the general Japanese population. Altered levels of DNA methylation in TXNIP at cg19693031 might play an important role in the pathogenesis of MetS.
Collapse
Affiliation(s)
- Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu 761-0123, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Keisuke Maeda
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Yoshitaka Ando
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Genki Mizuno
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake 470-1192, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Koji Ohashi
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| |
Collapse
|
12
|
xu C, Yu J. Pathophysiological Mechanisms of Hypertension Development Induced by Fructose Consumption. Food Funct 2022; 13:1702-1717. [DOI: 10.1039/d1fo03381f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the past several decades, there has been a dramatic increase in fructose consumption worldwide in parallel with epidemics of metabolic diseases. Accumulating evidence has suggested that excessive fructose consumption...
Collapse
|
13
|
Munetsuna E, Yamada H, Yamazaki M, Ando Y, Mizuno G, Hattori Y, Kageyama I, Teshigawara A, Nouchi Y, Ishikawa H, Fujii R, Ohta Y, Suzuki K, Shimono Y, Ohashi K, Hashimoto S. Maternal fructose intake predisposes rat offspring to metabolic disorders via abnormal hepatic programming. FASEB J 2021; 35:e22030. [PMID: 34748238 DOI: 10.1096/fj.202101276r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023]
Abstract
Given that fructose consumption has increased by more than 10-fold in recent decades, it is possible that excess maternal fructose consumption causes harmful effects in the next generation. This study attempted to elucidate the mechanism of the harmful effects of excessive maternal fructose intake from the perspective of offspring liver function. Female rats during gestation and lactation were fed water containing fructose, and their offspring were fed normal water. We attempted to elucidate the mechanism of fructose-induced transgenerational toxicity by conducting a longitudinal study focusing on hepatic programming prior to disease onset. Impaired Insulin resistance and decreased high-density lipoprotein-cholesterol levels were observed at 160 days of age. However, metabolic disorders were not observed in 60-day-old offspring. Microarray analysis of 60-day-old offspring livers showed the reduction of hepatic insulin-like growth factor-1 (Igf1) mRNA expression. This reduction continued until the rats were aged 160 days and attenuated Igf1 signaling. Hepatic microRNA-29 (miR-29a) and miR-130a, which target Igf1 mRNA, were also found to be upregulated. Interestingly, these miRNAs were upregulated in the absence of metabolic disorder. In this study, we found that maternal fructose intake resulted in dysregulated expression of Igf1 and its target miRNAs in the offspring liver, and that these offspring were more likely to develop metabolic disorders. Abnormal hepatic programming induced by an imbalanced maternal nutritional environment is maintained throughout life, implying that it may contribute to metabolic disorders.
Collapse
Affiliation(s)
- Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Yoshitaka Ando
- Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Genki Mizuno
- Deparment of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake, Japan.,Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yuji Hattori
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Itsuki Kageyama
- Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Atsushi Teshigawara
- Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake, Japan.,Deparment of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake, Japan
| | - Yuki Nouchi
- Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yoshiji Ohta
- Department of Chemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Ohashi
- Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
14
|
Maternal Fructose Diet-Induced Developmental Programming. Nutrients 2021; 13:nu13093278. [PMID: 34579155 PMCID: PMC8467222 DOI: 10.3390/nu13093278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Developmental programming of chronic diseases by perinatal exposures/events is the basic tenet of the developmental origins hypothesis of adult disease (DOHaD). With consumption of fructose becoming more common in the diet, the effect of fructose exposure during pregnancy and lactation is of increasing relevance. Human studies have identified a clear effect of fructose consumption on maternal health, but little is known of the direct or indirect effects on offspring. Animal models have been utilized to evaluate this concept and an association between maternal fructose and offspring chronic disease, including hypertension and metabolic syndrome. This review will address the mechanisms of developmental programming by maternal fructose and potential options for intervention.
Collapse
|