1
|
Kitiya J, Chantaramungkorn T, Pantoe A, Chupeerach C, Trachootham D. Short-Term Safety of Nutri-Jelly in Adults Undergoing Hemodialysis. Food Sci Nutr 2024; 12:10507-10516. [PMID: 39723094 PMCID: PMC11666814 DOI: 10.1002/fsn3.4578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 12/28/2024] Open
Abstract
Excessive water consumption from liquid or reconstituted oral nutrition supplements may increase risk of fluid overload in renal patients. Nutri-jelly, a ready-to-eat texture-modified diet with 52.8% water, some protein, low potassium, phosphorus, and sodium, could be an alternative. However, its safety is unknown for adults undergoing hemodialysis (HD). This study investigated the short-term physiological safety of Nutri-Jelly intake and its preliminary impact on renal outcomes. A randomized open-label, single-arm, two-sequence, two-period cross-over trial was conducted in 20 adults undergoing HD with inadequate protein intake (0.50 - 0.70 g/ kg body weight/day). Participants were randomly allocated into 2 groups (n =10 each) and assigned in random sequence into both Without-Jelly (HD 3 times during 7 days) and With-Jelly periods (100 g Nutri-Jelly twice daily along with HD 3 times during 7 days). A two-week washout was between the periods. Outcome measures included adverse symptoms, changes in body weight, heart rate, blood pressure, and blood biochemical parameters relevant to renal outcomes. The results showed no intervention-related adverse symptoms or significant changes in body weight, heart rate, systolic blood pressure, creatinine, albumin, and sodium. Potassium level and pre-HD diastolic blood pressure were better controlled during the With Jelly than the Without Jelly Periods (p < 0.01 and p < 0.05, respectively). The eGFR was improved with no significant difference between the periods. The findings suggest that continuous intake of 100 g Nutri-Jelly twice daily for 7 days is safe in adults undergoing hemodialysis. Its efficacy on renal-related parameters warrants further investigations in long-term studies.
Collapse
Affiliation(s)
- Janjiraporn Kitiya
- Master Program in Toxicology and Nutrition for Food Safety, Institute of NutritionMahidol UniversityNakhon PathomThailand
| | | | - Apinya Pantoe
- Nutrition DepartmentRajavej ChiangMai HospitalChiang MaiThailand
| | | | | |
Collapse
|
2
|
Minniti G, Laurindo LF, Machado NM, Duarte LG, Guiguer EL, Araujo AC, Dias JA, Lamas CB, Nunes YC, Bechara MD, Baldi Júnior E, Gimenes FB, Barbalho SM. Mangifera indica L., By-Products, and Mangiferin on Cardio-Metabolic and Other Health Conditions: A Systematic Review. Life (Basel) 2023; 13:2270. [PMID: 38137871 PMCID: PMC10744517 DOI: 10.3390/life13122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Mango and its by-products have traditional medicinal uses. They contain diverse bioactive compounds offering numerous health benefits, including cardioprotective and metabolic properties. This study aimed to explore the impact of mango fruit and its by-products on human health, emphasizing its metabolic syndrome components. PUBMED, EMBASE, COCHRANE, and GOOGLE SCHOLAR were searched following PRISMA guidelines, and the COCHRANE handbook was utilized to assess bias risks. In vivo and in vitro studies have shown several benefits of mango and its by-products. For this systematic review, 13 studies met the inclusion criteria. The collective findings indicated that the utilization of mango in various forms-ranging from fresh mango slices and mango puree to mango by-products, mango leaf extract, fruit powder, and mangiferin-yielded many favorable effects. These encompassed enhancements in glycemic control and improvements in plasma lipid profiles. Additionally, mango reduces food intake, elevates mood scores, augments physical performance during exercise, improves endothelial function, and decreases the incidence of respiratory tract infections. Utilizing mango by-products supports the demand for healthier products. This approach also aids in environmental conservation. Furthermore, the development of mango-derived nanomedicines aligns with sustainable goals and offers innovative solutions for healthcare challenges whilst being environmentally conscious.
Collapse
Affiliation(s)
- Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (G.M.); (N.M.M.); (E.L.G.); (A.C.A.); (M.D.B.)
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (G.M.); (N.M.M.); (E.L.G.); (A.C.A.); (M.D.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil;
| | - Nathalia Mendes Machado
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (G.M.); (N.M.M.); (E.L.G.); (A.C.A.); (M.D.B.)
| | - Lidiane Gonsalves Duarte
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil; (L.G.D.); (J.A.D.); (E.B.J.); (F.B.G.)
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (G.M.); (N.M.M.); (E.L.G.); (A.C.A.); (M.D.B.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil; (L.G.D.); (J.A.D.); (E.B.J.); (F.B.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Adriano Cressoni Araujo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (G.M.); (N.M.M.); (E.L.G.); (A.C.A.); (M.D.B.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil; (L.G.D.); (J.A.D.); (E.B.J.); (F.B.G.)
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil; (L.G.D.); (J.A.D.); (E.B.J.); (F.B.G.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Yandra Crevelin Nunes
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil;
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (G.M.); (N.M.M.); (E.L.G.); (A.C.A.); (M.D.B.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil; (L.G.D.); (J.A.D.); (E.B.J.); (F.B.G.)
| | - Edgar Baldi Júnior
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil; (L.G.D.); (J.A.D.); (E.B.J.); (F.B.G.)
| | - Fabrício Bertoli Gimenes
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil; (L.G.D.); (J.A.D.); (E.B.J.); (F.B.G.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (G.M.); (N.M.M.); (E.L.G.); (A.C.A.); (M.D.B.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil; (L.G.D.); (J.A.D.); (E.B.J.); (F.B.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
3
|
Zarasvand SA, Haley-Zitlin V, Oladosu O, Esobi I, Powell RR, Bruce T, Stamatikos A. Assessing Anti-Adipogenic Effects of Mango Leaf Tea and Mangiferin within Cultured Adipocytes. Diseases 2023; 11:70. [PMID: 37218883 PMCID: PMC10204365 DOI: 10.3390/diseases11020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Obesity is a condition caused by surplus adipose tissue and is a risk factor for several diet-related diseases. Obesity is a global epidemic that has also been challenging to treat effectively. However, one promoted therapy to safely treat obesity is anti-adipogenic therapeutics. Therefore, identifying potent anti-adipogenic bioactive compounds that can safely be used clinically may effectively treat obesity in humans. Mango leaf has potential medicinal properties due to its many bioactive compounds that may enhance human health. Mangiferin (MGF) is a primary constituent in mango plants, with many health-promoting qualities. Therefore, this study investigated the effect of MGF, and tea brewed with mango leaves in cultured adipocytes. The anti-adipogenic efficacy of mango leaf tea (MLT) and MGF in 3T3-L1 cells were assessed, along with cell viability, triglyceride levels, adiponectin secretion, and glucose uptake analyzed. In addition, changes in the mRNA expression of genes involved in lipid metabolism within 3T3-L1 cells were determined using quantitative real-time PCR. Our results showed while both MLT and MGF increased glucose uptake in adipocytes, only MLT appeared to inhibit adipogenesis, as determined by decreased triglyceride accumulation. We also observed increased secretory adiponectin levels, reduced ACC mRNA expression, and increased FOXO1 and ATGL gene expression in 3T3-L1 cells treated with MLT but not MGF. Together, these results suggest that MLT may exhibit anti-adipogenic properties independent of MGF content.
Collapse
Affiliation(s)
- Sepideh Alasvand Zarasvand
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (S.A.Z.); (V.H.-Z.); (O.O.); (I.E.)
| | - Vivian Haley-Zitlin
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (S.A.Z.); (V.H.-Z.); (O.O.); (I.E.)
| | - Olanrewaju Oladosu
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (S.A.Z.); (V.H.-Z.); (O.O.); (I.E.)
| | - Ikechukwu Esobi
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (S.A.Z.); (V.H.-Z.); (O.O.); (I.E.)
| | - Rhonda Reigers Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Alexis Stamatikos
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (S.A.Z.); (V.H.-Z.); (O.O.); (I.E.)
| |
Collapse
|