1
|
Bjerre-Bastos JJ, Sejersen C, Nielsen HB, Boesen M, Secher NH, Distajo G, Flood V, Henrotin Y, Uebelhoer M, Krustrup P, Kitchen CC, Thudium CS, Andersen JR, Bihlet AR. The Impact of Weight-bearing Exercise, Non-Weight-bearing Exercise, and Cardiovascular Stress on Biochemical Markers of Cartilage Turnover in Patients With Mild to Moderate Knee Osteoarthritis: A Sequential, Cross-Over, Clinical Study. Cartilage 2024:19476035241258170. [PMID: 38853398 PMCID: PMC11569697 DOI: 10.1177/19476035241258170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVE To investigate how running, cycling, and sedentary cardiovascular stress impact biomarkers of cartilage turnover acutely in subjects with knee osteoarthritis (OA). DESIGN This was a sequential, cross-over, clinical study. Forty subjects with primary knee OA underwent moderate-to-high-intensity cycling, running, and adrenaline infusion on separate days. Blood was sampled before, during, and at 6-time points after intervention. On a control day, similar samples were taken. Biomarkers of type II collagen degradation (C2M, T2CM, Coll2-1, Coll2-1NO2), formation (PRO-C2), and aggrecan degradation (ARGS) were measured. RESULTS Mean age was 60.4 years, 40% were male, 45% had cumulated Kellgren-Lawrence (KL)-grade (Right + Left knee) of 2 to 3 and 55% had 4 to 6. Analyzing overall changes, area under the curve was significantly lower compared with resting values for ARGS and C2M after cycling and for ARGS after running. Considering individual time points, peak changes in biomarker levels showed reduction in C2M shortly following cycling (T20min = -12.3%, 95% confidence interval [CI]: -19.3% to -5.2%). PRO-C2 increased during cycling (T10min = 14.0%, 95% CI = 4.1% to 23.8%) and running (T20min = 16.5%, 95% CI = 4.3% to 28.6%). T2CM decreased after cycling (T50min = -19.9%, 95% CI = -29.2% to -10.6%), running (T50min = -22.8%, 95% CI = -32.1% to -13.5%), and infusion of adrenaline (peak, T50min = -9.8%, 95% CI = -20.0% to 0.4%). A latent increase was seen in Coll2-1 240 minutes after running (T260min = 21.7%, 95% CI = -1.6% to 45.1%). CONCLUSION Exercise had an impact on cartilage markers, but it did not suggest any detrimental effect on cartilage. Changes following adrenaline infusion suggest a sympathomimetic influence on the serological composition of biomarkers.
Collapse
Affiliation(s)
- Jonathan J. Bjerre-Bastos
- Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- NBCD A/S, Herlev, Denmark
| | - Casper Sejersen
- Department of Anaesthesiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bay Nielsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Anaesthesia and Intensive Care Medicine, Zealand University Hospital, Roskilde, Denmark
- Department of Nutrition, Exercise and Sport, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Boesen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Radiology, Bispebjerg and Frederiksberg Hospitals, Copenhagen, Denmark
| | - Niels H. Secher
- Department of Anaesthesiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Yves Henrotin
- Department of Physical and Rehabilitation, VIVALIA, Marche-en-Famenne, Belgium
- Musculoskeletal Innovative Research Lab (mSKIL), University of Liège, Liège, Belgium
| | | | - Peter Krustrup
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Carl-Christian Kitchen
- Department of Anaesthesiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
2
|
Groen SS, Bay-Jensen AC, Thudium CS, Dziegiel MH, Skougaard M, Thomsen SF, Nielsen SH. Evaluating the inhibition of IL-17A and TNFα in a cartilage explant model cultured with Th17-derived cytokines. J Transl Autoimmun 2024; 8:100231. [PMID: 38292069 PMCID: PMC10826309 DOI: 10.1016/j.jtauto.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Introduction T-helper 17 (Th17) cells produce IL-17A playing a critical role in activating the pathogenic chain leading to joint tissue inflammation and destruction. Elevated levels of Th17 cells and IL-17A have been detected in skin lesions, blood, and synovial fluid from patients with psoriatic arthritis (PsA) and ankylosing spondylitis (AS). Moreover, IL-17A inhibitors suppress disease activity in psoriasis, PsA and AS, supporting the evidence of IL-17A contributing to the disease pathogenesis. Although, IL-17A inhibitors are widely approved, it remains unclear how the inhibitory effect of IL-17A alters the extracellular matrix (ECM) of the joint in a Th17-conditioned inflammatory milieu. Therefore, the aim of this study was to establish a cartilage model cultured with conditioned medium from Th17 cells and inhibitors to explore the effect of IL-17A inhibition on joint tissue remodeling. Methods Naïve CD4+ T cells from healthy human buffy coat were differentiated into Th17 cells, followed by Th17 cell activation to secrete Th17-related cytokines and molecules into media. The activated Th17 cells were isolated from the conditioned media (CM) and analyzed using flow cytometry to verify Th17 cell differentiation. The CM were assessed with ELISA to quantify the concentrations of cytokines secreted into the media by the Th17 cells. Healthy bovine cartilage explants were cultured with the Th17-CM and treated with IL-17A and TNFα inhibitors for 21 days. In harvested supernatant from the cartilage cultures, MMP- and ADAMTS-mediated biomarker fragments of type II collagen, aggrecan, and fibronectin were measured by ELISA to investigate the ECM remodeling within the cartilage tissue. Results Th17-CM stimulated a catabolic response in the cartilage. Markers of type II collagen and aggrecan degradation were upregulated, while anabolic marker of type II collagen formation remained on similar levels as the untreated explants. The addition of IL-17A inhibitor to Th17-CM decreased the elevated type II collagen and aggrecan degradation, however, degenerative levels were still elevated compared to untreated group. The addition of TNFα inhibitor completely reduced both type II collagen and aggrecan degradation compared to untreated explants. Moreover, the TNFα inhibitor treatment did not alter the type II collagen formation compared to untreated group. Conclusion This study suggests that inhibition of IL-17A in Th17-conditioned cartilage tissue only partially reduced the MMP-mediated type II collagen degradation and ADAMTS-mediated aggrecan degradation, while the TNFα inhibitor treatment fully reduced both MMP- and ADAMTS-mediated ECM degradation. This exploratory study where ECM biomarkers are combined with Th17-conditioned ex vivo model may hold great potential as output for describing joint disease mechanisms and predicting structural effects of treatment on joint tissue.
Collapse
Affiliation(s)
- Solveig Skovlund Groen
- Immunoscience, Nordic Bioscience, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Morten H. Dziegiel
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie Skougaard
- The Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Francis Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Signe Holm Nielsen
- Immunoscience, Nordic Bioscience, Herlev, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Port H, Holm Nielsen S, Frederiksen P, Madsen SF, Bay-Jensen AC, Sørensen IJ, Jensen B, Loft AG, Madsen OR, Østergaard M, Pedersen SJ. Extracellular matrix turnover biomarkers reflect pharmacodynamic effects and treatment response of adalimumab in patients with axial spondyloarthritis-results from two randomized controlled trials. Arthritis Res Ther 2023; 25:157. [PMID: 37626399 PMCID: PMC10463764 DOI: 10.1186/s13075-023-03132-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE To investigate if extracellular matrix (ECM) blood-based biomarkers reflect the pharmacodynamic effect and response to TNF-α inhibitor therapy (adalimumab, ADA), in patients with axial spondyloarthritis (axSpA). METHODS We investigated ECM biomarkers in two randomized, double-blind, placebo-controlled trials of axSpA patients (DANISH and ASIM, n = 52 and n = 49, respectively) receiving ADA 40 mg or placebo every other week for 12 and 6 weeks, respectively, and thereafter ADA to week 48. Serum concentrations of degraded type I (C1M), II (C2M, T2CM), III (C3M), IV (C4M), VI (C6M), type X (C10C) collagen; metabolite of C-reactive protein (CRPM), prolargin (PROM), citrullinated vimentin (VICM), calprotectin (CPa9-HNE); and formation of type II (PRO‑C2), III (PRO‑C3), and VI (PRO‑C6) turnover of type IV collagen (PRO-C4) were measured at baseline and weeks 6 or 12, 24, and 48. The pharmacodynamic effect and treatment response to ADA was evaluated by linear mixed models, and correlations between biomarkers and clinical scores were assessed by Spearman's correlation. RESULTS C1M, C3M, C4M, C6M, CRP, PRO-C4, and CPa9-HNE levels declined after 6 or 12 weeks in patients receiving ADA compared to placebo (all p < 0.05). Patients with AS Disease Activity Score C-reactive protein (ASDAS CRP) major improvement and/or clinically important improvement had significantly higher C1M, C3M, C4M, C6M, and PRO-C4 levels than patients with no/low improvement at baseline (all p < 0.05). Baseline levels of biomarkers showed weak to moderate correlations with ASDAS and structural damage scores. CONCLUSION ECM metabolites showed a pharmacodynamic effect and were associated with ASDAS response during TNF-α inhibitor treatment in patients with axSpA.
Collapse
Affiliation(s)
- Helena Port
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
- Nordic Bioscience A/S, Immunoscience, Herlev, Denmark.
| | - Signe Holm Nielsen
- Nordic Bioscience A/S, Immunoscience, Herlev, Denmark
- Biomedicine and Biotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Sofie Falkenløve Madsen
- Nordic Bioscience A/S, Immunoscience, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Inge Juul Sørensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Rheumatology and Spine Diseases, Righospitalet, Copenhagen, Denmark
| | - Bente Jensen
- Department of Rheumatology and Spine Diseases, Righospitalet, Copenhagen, Denmark
| | - Anne Gitte Loft
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Ole Rintek Madsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Rheumatology and Spine Diseases, Righospitalet, Copenhagen, Denmark
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel Østergaard
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Rheumatology and Spine Diseases, Righospitalet, Copenhagen, Denmark
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Susanne Juhl Pedersen
- Department of Rheumatology and Spine Diseases, Righospitalet, Copenhagen, Denmark
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
4
|
Rapp AE, Zaucke F. Cartilage extracellular matrix-derived matrikines in osteoarthritis. Am J Physiol Cell Physiol 2023; 324:C377-C394. [PMID: 36571440 DOI: 10.1152/ajpcell.00464.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osteoarthritis (OA) is among the most frequent diseases of the musculoskeletal system. Degradation of cartilage extracellular matrix (ECM) is a hallmark of OA. During the degradation process, intact/full-length proteins and proteolytic fragments are released which then might induce different downstream responses via diverse receptors, therefore leading to different biological consequences. Collagen type II and the proteoglycan aggrecan are the most abundant components of the cartilage ECM. However, over the last decades, a large number of minor components have been identified and for some of those, a role in the manifold processes associated with OA has already been demonstrated. To date, there is still no therapy able to halt or cure OA. A better understanding of the matrikine landscape occurring with or even preceding obvious degenerative changes in joint tissues is needed and might help to identify molecules that could serve as biomarkers, druggable targets, or even be blueprints for disease modifying drug OA drugs. For this narrative review, we screened PubMed for relevant literature in the English language and summarized the current knowledge regarding the function of selected ECM molecules and the derived matrikines in the context of cartilage and OA.
Collapse
Affiliation(s)
- Anna E Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Port H, Bay-Jensen AC, He Y, Karsdal MA, Gantzel T, Thudium CS, Holm Nielsen S. A Highly Sensitive Biomarker of Type II Collagen C-Terminal Pro-Peptide Associated with Cartilage Formation. Int J Mol Sci 2022; 24:ijms24010454. [PMID: 36613894 PMCID: PMC9820484 DOI: 10.3390/ijms24010454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
The type II collagen C-terminal pro-peptide is one of the most abundant polypeptides in cartilage. The purpose of this study was to develop a competitive chemiluminescence enzyme-linked immunosorbent assay, CALC2, targeting this pro-peptide as a marker of cartilage formation. Technical assay parameters were evaluated. CALC2 level was measured after in vitro cleavage of recombinant type II collagen with bone morphogenetic protein-1 (BMP-1) and treatment of ex vivo human osteoarthritis (OA) cartilage explant model (HEX) with insulin-like growth factor-1 (IGF-1). Serum CALC2 levels were assessed in 18 patients with rheumatoid arthritis (RA), 19 patients with ankylosing spondylitis (AS), and 18 age- and sex-matched controls in cohort 1 and 8 patients with OA and 14 age- and sex-matched controls in cohort 2. Type II collagen cleavage with BMP-1 increased the CALC2 level. IGF-1 treatment increased the CALC2 levels in HEX compared with the untreated explants (p < 0.05). Results were confirmed using Western blot analysis. CALC2 levels were decreased in the patients with RA and AS compared with the healthy controls (p = 0.01 and p = 0.02, respectively). These findings indicate that CALC2 may be a novel biomarker of type II collagen formation. However, further preclinical and clinical studies are required to validate these findings.
Collapse
Affiliation(s)
- Helena Port
- Biomarkers and Research, Nordic Bioscience, 2730 Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 København, Denmark
- Correspondence: ; Tel.: +45-445-252-52
| | | | - Yi He
- Biomarkers and Research, Nordic Bioscience, 2730 Herlev, Denmark
| | | | - Thorbjørn Gantzel
- Orthopedic Surgery Unit, Gentofte University Hospital, 2820 Gentofte, Denmark
| | | | | |
Collapse
|
6
|
Jurj A, Ionescu C, Berindan-Neagoe I, Braicu C. The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes? J Exp Clin Cancer Res 2022; 41:276. [PMID: 36114508 PMCID: PMC9479349 DOI: 10.1186/s13046-022-02484-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
The extracellular matrix (ECM) is an important component of the tumor microenvironment (TME), having several important roles related to the hallmarks of cancer. In cancer, multiple components of the ECM have been shown to be altered. Although most of these alterations are represented by the increased or decreased quantity of the ECM components, changes regarding the functional alteration of a particular ECM component or of the ECM as a whole have been described. These alterations can be induced by the cancer cells directly or by the TME cells, with cancer-associated fibroblasts being of particular interest in this regard. Because the ECM has this wide array of functions in the tumor, preclinical and clinical studies have assessed the possibility of targeting the ECM, with some of them showing encouraging results. In the present review, we will highlight the most relevant ECM components presenting a comprehensive description of their physical, cellular and molecular properties which can alter the therapy response of the tumor cells. Lastly, some evidences regarding important biological processes were discussed, offering a more detailed understanding of how to modulate altered signalling pathways and to counteract drug resistance mechanisms in tumor cells.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Calin Ionescu
- 7Th Surgical Department, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania
- Surgical Department, Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139, Targu Mures, Romania.
| |
Collapse
|
7
|
Bay-Jensen AC, Mobasheri A, Thudium CS, Kraus VB, Karsdal MA. Blood and urine biomarkers in osteoarthritis - an update on cartilage associated type II collagen and aggrecan markers. Curr Opin Rheumatol 2022; 34:54-60. [PMID: 34652292 PMCID: PMC8635261 DOI: 10.1097/bor.0000000000000845] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Osteoarthritis (OA) is a painful disease for which drug development has proven difficult. One major reason for this is the heterogeneity of the disease and the current lack of operationalized means to distinguish various disease endotypes (molecular subtypes). Biomarkers measured in blood or urine, reflecting joint tissue turnover, have been developed and tested during the last decades. In this narrative review, we provide highlights on biomarkers derived from the two most studied and abundant cartilage proteins - type II collagen and aggrecan. RECENT FINDINGS Multiple biomarkers assessing type II collagen degradation and formation, and aggrecan turnover have been developed. Several markers, such as uCTX-II, have been validated for their association with disease severity and prognosis, as well as pharmacodynamically used to describe the mode of action and efficacy of drugs in development. There is a great need for biomarkers for subdividing patients (i.e., endotyping) and recent scientific advances have not yet come closer to achieving this goal. SUMMARY There is strong support for using biomarkers for understanding OA, reflecting degradation and formation of the joint tissues, focused on type II collagen and aggrecan. There is still a lack of in vitro diagnostics, in all contexts of use.
Collapse
Affiliation(s)
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- University Medical Center Utrecht, Department of Orthopedics, Rheumatology and Clinical Immunology, Utrecht, The Netherlands
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, University of Liege, Liege, Belgium
| | | | - Virginia B. Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | | |
Collapse
|