1
|
Okten SB, Ozcan P, Tok OE, Devranoglu B, Cetin C, Tanoglu FB, Ficicioglu C. The Protective Effect of Adipose-Derived Stromal Vascular Fraction on Ovarian Function in Rats with Cyclophosphamide-Induced Ovarian Damage. Gynecol Obstet Invest 2024:1-9. [PMID: 39265557 DOI: 10.1159/000541049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/15/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE The aim of this study was to investigate if adipose-derived stromal vascular fraction (SVF) treatment has any protective effect on ovarian function in rats with cyclophosphamide (CP) induced ovarian damage. DESIGN This was an experimental animal study. PARTICIPANTS/MATERIALS, SETTING, METHODS 25 mature cycling Wistar-Albino rats were randomized into four groups (n = 5 per group). Rats in groups 1 and 2 received single dose of intraperitoneal (i.p.) 1 mL/kg sodium chloride 0.9% (NaCl). Groups 3 and 4 received single dose of 75 mg/kg i.p. CP. On seventh day, SVF was prepared from adipose tissues of 5 additional rats and groups 1 and 3 received 0.9% NaCl i.p. injections while groups 2 and 4 received 0.2 mL i.p. injections of SVF. On day 21 all rats were euthanized, and serum anti-mullerian hormone (AMH) levels, primordial, primary, secondary, antral, and atretic follicle counts, AMH positive staining follicle counts along with AMH staining intensity of the follicles were evaluated. RESULTS Among two CP induced ovarian damaged groups, SVF treated group showed significantly higher secondary and antral follicle and lower atretic follicle counts, significantly higher mean serum AMH levels, AMH positive antral follicle count and higher intensity of AMH positive follicle scores for primary, secondary, and antral follicles when compared to untreated group. Moreover, group 1 showed no significant difference for all parameters except antral follicle count and AMH positive staining intensity scores for antral follicles when compared to group 4. LIMITATIONS This study was conducted on experimental rat model. CONCLUSION Our study demonstrated a significant protective effect of SVF against CP-induced ovarian damage which reveals the apparent need for further investigation of its precise mechanisms of action as it may provide a new treatment approach for women with premature ovarian failure.
Collapse
Affiliation(s)
- Sabri Berkem Okten
- Acibadem Health Group, Acibadem Kozyatagi Hospital, Department of Obstetrics, Gynecology and Reproductive Medicine, İstanbul, Turkey
| | - Pinar Ozcan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Bezmialem University, İstanbul, Turkey
| | - Olgu Enis Tok
- Istanbul Medipol University- School of Medicine and Research Institude for Health Sciences and Technologies, Histology and Embryology, Istanbul, Turkey
| | - Belgin Devranoglu
- Zeynep Kamil Maternity and Children's Training and Research Hospital, Department of Obstetrics and Gynecology, İstanbul, Turkey
| | - Caglar Cetin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Bezmialem University, İstanbul, Turkey
| | - Fatma Basak Tanoglu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Bezmialem University, İstanbul, Turkey
| | - Cem Ficicioglu
- Acibadem Health Group, Acibadem Kozyatagi Hospital, Department of Obstetrics, Gynecology and Reproductive Medicine, İstanbul, Turkey
| |
Collapse
|
2
|
Nouri N, Aghebati-Maleki L, Soltani-Zangbar MS, Kamrani A, Mehdizadeh A, Danaii S, Heris JA, Chakeri-Khiavi F, Yousefi M. Analysis of Th17 cell population and expression of microRNA and factors related to Th17 in patients with premature ovarian failure. J Reprod Immunol 2024; 165:104290. [PMID: 39053202 DOI: 10.1016/j.jri.2024.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Folliculogenesis is the process where follicles in the ovaries develop and eventually lead to ovulation. Any disruption to this process can cause premature ovarian failure. miR-326 is one of the microRNAs whose expression leads to Th17 production. Th17 activates the immune system to respond more vigorously, and by producing interlukins and cytokines causes inflammation and autoimmune disorders. Th17-induced inflammation and Th17/Treg imbalance can result in POF. This investigation took samples from 30 POF patients and 30 healthy people. The study utilized PCR to assess the expression levels of cytokines, specific transcription factor (ROR-γt), and miR-326. Additionally, ELISA was employed to analyze serum levels of IL-17, IL-21, IL-23. Furthermore, flow cytometry was utilized to determine the frequency of Th17. Compared to the control group, our results demonstrated a rise in the transcription factor RORɣt and a considerable rise in the frequency of Th17 cells in patients with POF. The level of inflammatory cytokines IL-17, IL-21, and IL-23 secreted in serum samples of patients with POF increased significantly compared to the control group. Results of investigating microRNA associated with Th17 cells also showed increased expression of miR-326 in females suffering from POF. The elevation of pro-inflammatory markers in women with POF contrary to the control group underscores the significant involvement of the immune system in pregnancy disorders pathogenesis. Consequently, immunological factors may serve as promising biomarkers for predicting POF likelihood in high-risk women in the future.
Collapse
Affiliation(s)
- Narjes Nouri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Sadegh Soltani-Zangbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center,Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART center, Eastern Azerbaijan branch of ACECR, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Liu Z, Zhou Q, He L, Liao Z, Cha Y, Zhao H, Zheng W, Lu D, Yang S. Identification of energy metabolism anomalies and serum biomarkers in the progression of premature ovarian failure via extracellular vesicles' proteomic and metabolomic profiles. Reprod Biol Endocrinol 2024; 22:104. [PMID: 39160560 PMCID: PMC11331654 DOI: 10.1186/s12958-024-01277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is a clinical condition characterized by the cessation of ovarian function, leading to infertility. The underlying molecular mechanisms remain unclear, and no predictable biomarkers have been identified. This study aimed to investigate the protein and metabolite contents of serum extracellular vesicles to investigate underlying molecular mechanisms and explore potential biomarkers. METHODS This study was conducted on a cohort consisting of 14 POF patients and 16 healthy controls. The extracellular vesicles extracted from the serum of each group were subjected to label-free proteomic and unbiased metabolomic analysis. Differentially expressed proteins and metabolites were annotated. Pathway network clustering was conducted with further correlation analysis. The biomarkers were confirmed by ROC analysis and random forest machine learning. RESULTS The proteomic and metabolomic profiles of POF patients and healthy controls were compared. Two subgroups of POF patients, Pre-POF and Pro-POF, were identified based on the proteomic profile, while all patients displayed a distinguishable metabolomic profile. Proteomic analysis suggested that inflammation serves as an early factor contributing to the infertility of POF patients. For the metabolomic analysis, despite the dysfunction of metabolism, oxidative stress and hormone imbalance were other key factors appearing in POF patients. Signaling pathway clustering of proteomic and metabolomic profiles revealed the progression of dysfunctional energy metabolism during the development of POF. Moreover, correlation analysis identified that differentially expressed proteins and metabolites were highly associated, with six of them being selected as potential biomarkers. ROC curve analysis, together with random forest machine learning, suggested that AFM combined with 2-oxoarginine was the best diagnostic biomarker for POF. CONCLUSIONS Omics analysis revealed that inflammation, oxidative stress, and hormone imbalance are factors that damage ovarian tissue, but the progressive dysfunction of energy metabolism might be the critical pathogenic pathway contributing to the development of POF. AFM combined with 2-oxoarginine serves as a precise biomarker for clinical POF diagnosis.
Collapse
Affiliation(s)
- Zhen Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University Medical School, Shenzhen, China
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Qilin Zhou
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Liangge He
- Shenzhen University Medical School, Shenzhen, China
| | - Zhengdong Liao
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Yajing Cha
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Hongyu Zhao
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Wenchao Zheng
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology, Carson International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| | - Sheng Yang
- The Reproductive Medicine Center, The Third Affiliated Hospital of Shenzhen University, No. 47 Youyi Rd, Shenzhen, China.
| |
Collapse
|
4
|
Yang G, Zhang B, Xu M, Wu M, Lin J, Luo Z, Chen Y, Hu Q, Huang G, Hu H. Improving Granulosa Cell Function in Premature Ovarian Failure with Umbilical Cord Mesenchymal Stromal Cell Exosome-Derived hsa_circ_0002021. Tissue Eng Regen Med 2024; 21:897-914. [PMID: 38842768 PMCID: PMC11286897 DOI: 10.1007/s13770-024-00652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The therapeutic potential of exosomes from human umbilical cord mesenchymal stem cells (HUMSCs-Exo) for delivering specific circular RNAs (circRNAs) in treating premature ovarian failure (POF) is not well understood. This study aimed to explore the efficacy of HUMSCs-Exo in delivering hsa_circ_0002021 for POF treatment, focusing on its effects on granulosa cell (GC) senescence and ovarian function. METHODS Bioinformatic analysis was conducted on circRNA profiles using the GSE97193 dataset from GEO, targeting granulosa cells from varied age groups. To simulate granulosa cell senescence, KGN cells were treated with cyclophosphamide (CTX). HUMSCs were transfected with pcDNA 3.1 vectors to overexpress hsa_circ_0002021, and the HUMSCs-Exo secreted were isolated. These exosomes were characterized by transmission electron microscopy (TEM) and Western blotting to confirm exosomal markers CD9 and CD63. Co-culture of these exosomes with CTX-treated KGN cells was performed to assess β-galactosidase activity, oxidative stress markers, ROS levels, and apoptosis via flow cytometry. Interaction between hsa_circ_0002021, microRNA-125a-5p (miR-125a-5p), and cyclin-dependent kinase 6 (CDK6) was investigated using dual-luciferase assays and RNA immunoprecipitation (RIP). A POF mouse model was induced with CTX, treated with HUMSCs-Exo, and analyzed histologically and via immunofluorescence staining. Gene expression was quantified using RT-qPCR and Western blot. RESULTS hsa_circ_0002021 was under expressed in both in vivo and in vitro POF models and was effectively delivered by HUMSCs-Exo to KGN cells, showing a capability to reduce GC senescence. Overexpression of hsa_circ_0002021 in HUMSCs-Exo significantly enhanced these anti-senescence effects. This circRNA acts as a competitive adsorbent of miR-125a-5p, regulating CDK6 expression, which is crucial in modulating cell cycle and apoptosis. Enhanced expression of hsa_circ_0002021 in HUMSCs-Exo ameliorated GC senescence in vitro and improved ovarian function in POF models by modulating oxidative stress and cellular senescence markers. CONCLUSION This study confirms that hsa_circ_0002021, when delivered through HUMSCs-Exo, can significantly mitigate GC senescence and restore ovarian function in POF models. These findings provide new insights into the molecular mechanisms of POF and highlight the therapeutic potential of circRNA-enriched exosomes in treating ovarian aging and dysfunction.
Collapse
Affiliation(s)
- Ge Yang
- Department of Clinical Laboratory, Zigong Maternity and Child Health Care Hospital, Zigong City, 643010, Sichuan Province, China
| | - Bo Zhang
- Stem Cell & Regenerative Medicine Center, Sichuan Neo-Life Stem Cell Biotech Inc, Chengdu City, 610036, Sichuan Province, China
| | - Mei Xu
- Department of Clinical Laboratory, Zigong Maternity and Child Health Care Hospital, Zigong City, 643010, Sichuan Province, China
| | - MingJun Wu
- Stem Cell & Regenerative Medicine Center, Sichuan Neo-Life Stem Cell Biotech Inc, Chengdu City, 610036, Sichuan Province, China
| | - Jie Lin
- Center for Reproductive Medicine, Zigong Maternity and Child Health Care Hospital, Zigong City, 643010, Sichuan Province, China
| | - ZiYu Luo
- Stem Cell & Regenerative Medicine Center, Sichuan Neo-Life Stem Cell Biotech Inc, Chengdu City, 610036, Sichuan Province, China
| | - YueHua Chen
- Department of Clinical Laboratory, Zigong Maternity and Child Health Care Hospital, Zigong City, 643010, Sichuan Province, China
| | - Qin Hu
- Molecular Genetics Laboratory, Zigong Maternity and Child Health Care Hospital, Zigong City, 643010, Sichuan Province, China
| | - GuoPing Huang
- Molecular Genetics Laboratory, Zigong Maternity and Child Health Care Hospital, Zigong City, 643010, Sichuan Province, China
| | - HaiYan Hu
- Department of Pediatrics, Zigong Maternity and Child Health Care Hospital, No.49, Dahuangtong Road, Longjing Street, Da'an District, Zigong City, 643010, Sichuan Province, China.
| |
Collapse
|
5
|
Cheng F, Wang J, Wang R, Pan R, Cui Z, Wang L, Wang L, Yang X. FGF2 promotes the proliferation of injured granulosa cells in premature ovarian failure via Hippo-YAP signaling pathway. Mol Cell Endocrinol 2024; 589:112248. [PMID: 38663484 DOI: 10.1016/j.mce.2024.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Young women undergoing anticancer treatment are at risk of premature ovarian failure (POF). Endometrial-derived stem cells (EnSCs) have demonstrated significant therapeutic potential for treating ovarian insufficiency, although the underlying mechanisms remain to be fully understood. This study aims to further investigate the therapeutic effects of EnSCs, particularly through the paracrine action of fibroblast growth factor 2 (FGF2), on POF. The findings show that exogenous FGF2 enhances the survival of ovarian granulosa cells damaged by cisplatin. FGF2 stimulates the proliferation of these damaged cells by suppressing the Hippo signaling pathway and activating YAP expression. In vivo experiments also revealed that FGF2 treatment significantly improves ovarian reserve and endocrine function in mice with POF. These results suggest that FGF2 can boost the proliferative capacity of damaged ovarian granulosa cells through the Hippo-YAP signaling pathway, providing a theoretical foundation for using EnSCs and FGF2 in clinical treatments for POF.
Collapse
Affiliation(s)
- Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jingyuan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
6
|
Li Q, Zhang Z, Shi W, Li Z, Xiao Y, Zhang J, Huang X. Drug-free in vitro activation combined with ADSCs-derived exosomes restores ovarian function of rats with premature ovarian insufficiency. J Ovarian Res 2024; 17:158. [PMID: 39085868 PMCID: PMC11290131 DOI: 10.1186/s13048-024-01475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Drug-free in vitro activation (IVA) is a new protocol to activate residual dormant follicles for fertility restoration in patients with premature ovarian insufficiency (POI). However, several deficiencies have reduced its clinical efficacy rate. Our previous studies have confirmed that the combination of adipose-derived stem cells (ADSCs) and drug-free IVA can improve the effectiveness of drug-free IVA and restore ovarian function of rats with POI. Increasing evidence has demonstrated that mesenchymal stem cell-derived exosomes have similar therapeutic effects as their source cells. Here, we performed a preclinical study to evaluate the therapeutic effects of ADSCs-derived exosomes (ADSCs-Exos) combined with drug-free IVA in the POI rats and the mechanism in restoring ovarian function. RESULTS In vivo, the effects of ADSCs-Exos were comparable to those of ADSCs, and the ADSCs-Exos combined with drug-free IVA was better than ADSCs-Exos alone therapy in promoting follicular development. Moreover, transplantation of ADSCs/ADSCs-Exos lead to up-regulation of BCL-2 expression and down-regulation of the expression of Bax and Cleaved Caspase-3, thus reducing the apoptosis of chemotherapy-induced follicle cells, and further promoting the development of the follicles and rescuing ovarian function in POI-damaged ovary. In vitro, ovarian fragmentation could activate follicular growth and development, and in combination with ADSCs-Exos could prevent the loss of follicles, promote follicular proliferation and inhibit apoptosis. CONCLUSIONS ADSCs-Exos combined drug-free IVA had remarkable therapeutic effects in restoring ovarian function of POI rats, and markedly promoted follicular development and inhibited apoptosis of ovarian cells in vitro. Our study confirmed that the combination therapy might be a promising and effective treatment for POI.
Collapse
Affiliation(s)
- Qian Li
- Department of Gynecology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, P.R. China.
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China.
| | - Zhiqiang Zhang
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China
| | - Wenxin Shi
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China
| | - Zhongkang Li
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China
| | - Yanlai Xiao
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China
| | - Jingkun Zhang
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China.
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China.
| |
Collapse
|
7
|
Cai J, Liang X, Sun Y, Bao S. Beneficial effects of human umbilical cord mesenchymal stem cell (HUCMSC) transplantation on cyclophosphamide (CTX)-induced premature ovarian failure (POF) in Tibetan miniature pigs. Transpl Immunol 2024; 84:102051. [PMID: 38744348 DOI: 10.1016/j.trim.2024.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Premature ovarian failure (POF), also known as primary ovarian insufficiency, is a common endocrine disease in young women. The emergence of regenerative medicine using stem cells may improve ovarian function and structure, and represents a promising prospect for POF treatment. In his study, we explored the therapeutic effects of human umbilical cord mesenchymal stem cell (HUCMSC) transplantation in a Tibetan miniature pig model of cyclophosphamide (CTX)-induced POF. METHODS We cultured and identified HUCMSCs, labeled them with DiR iodide red dye, and implanted them into a CTX-induced model of POF in Tibetan miniature pigs. The daily weight changes were recorded, and the levels of estradiol (E2) and follicle-stimulating hormone (FSH) were measured on days 0, 7, and 14. At the end of the 21-day observation period, in vivo imaging of the bilateral ovaries was performed, and the ovarian index was measured. Ovarian tissue morphology and follicles were examined by hematoxylin-eosin staining. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was employed to assess cell apoptosis, and immunohistochemistry was used to determine the levels of p-AKT, p-ERK1/2, BAX, and BCL2 expression. RESULTS Our analysis indicated successful delivery of HUCMSCs to the ovaries of the POF pig model. Significant increases were observed in body weight, E2 levels, ovarian index, and number of normal follicles (all p < 0.05). Moreover, FSH levels reduced and ovarian tissue morphology improved following HUCMSCs transplantation (all p < 0.05). Importantly, upregulated p-AKT, p-ERK1/2, and BCL2 expression were observed, whereas the expression of BAX was suppressed (all p < 0.05), suggesting the inhibition of ovarian cell apoptosis. CONCLUSION Our study highlights the significant therapeutic effects of HUCMSC transplantation on CTX-induced POF in a Tibetan miniature pig model.
Collapse
Affiliation(s)
- Junhong Cai
- Medical Laboratory Central, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China
| | - Xiaochen Liang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571199, PR China; Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Haikou, Hainan 571199, PR China
| | - Yuting Sun
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571199, PR China; Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Haikou, Hainan 571199, PR China
| | - Shan Bao
- Department of Gynaecology and Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China.
| |
Collapse
|
8
|
Fan W, Lei H, Li X, Zhao Y, Zhang Y, Li Y. Exploring the Mechanism of Yiwei Decoction in the Intervention of a Premature Ovarian Insufficiency Rat Based on Network Pharmacology and the miRNA-mRNA Regulatory Network. ACS OMEGA 2024; 9:19009-19019. [PMID: 38708213 PMCID: PMC11064180 DOI: 10.1021/acsomega.3c09551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE our aim is to explore the mechanism of action of Yiwei decoction (YWD) in addressing premature ovarian insufficiency (POI) through a combination of transcriptomics and network pharmacology. By doing so, we hope to identify important pathways of action, key targets, and active components that contribute to the efficacy of YWD. MATERIALS AND METHODS group A comprised of the model + traditional Chinese medicine group, while group B was the model control group and group C was the normal control group. After gavage, serum AMH and E2 levels were measured by using ELISA. HE staining was used to study the impact of YWD on ovarian follicle recovery in POI rats. Additionally, RNA-seq sequencing technology was employed to analyze the transcription levels of mRNAs and miRNAs in the ovarian tissues of each group, and the resulting data were examined using R. YWD used UPLC-Q-TOF-HRMS to analyze its active ingredients. Upon obtaining the sequencing results, the miRWalk database was utilized to forecast the targets of DEmiRNAs. Network pharmacology was then applied to predict the targets of active ingredients present in YWD, ultimately constructing a regulatory network consisting of active ingredients-mRNA-miRNA. The coexpression relationship between mRNAs and miRNAs was calculated using the Pearson correlation coefficient, and high correlation coefficients between miRNA-mRNA were confirmed through miRanda sequence combination. RESULTS the application of YWD resulted in improved serum levels of AMH and E2, as well as an increased number of ovarian follicles in rats with POI. However, there was a minimal impact on the infiltration of ovarian lymphocytes. Through GSEA pathway enrichment analysis, we found that YWD may have a regulatory effect on PI3K-Akt, ovarian steroidogenesis, and protein digestion and absorption, which could aid in the treatment of POI. Additionally, our research discovered a total of 6 DEmiRNAs between groups A and B, including 2 new DEmiRNAs. YWD contains 111 active compounds, and our analysis of the active component-mRNA regulatory network revealed 27 active components and 73 mRNAs. Furthermore, the coexpression network included 5 miRNAs and 18 mRNAs. Our verification of MiRanda binding demonstrated that 12 of the sequence binding sites were stable. CONCLUSIONS our research has uncovered the regulatory network mechanism of active ingredients, mRNA, and miRNA in YWD POI treatment. However, further research is needed to determine the effect of the active ingredients on key miRNAs and mRNAs.
Collapse
Affiliation(s)
- Weisen Fan
- The
First Clinical College of Medicine, Shandong
University of Traditional Chinese Medicine, Jinan 250013, China
| | - Hong Lei
- The
First Clinical College of Medicine, Shandong
University of Traditional Chinese Medicine, Jinan 250013, China
| | - Xuan Li
- The
First Clinical College of Medicine, Shandong
University of Traditional Chinese Medicine, Jinan 250013, China
| | - Yinghui Zhao
- College
of Traditional Chinese Medicine, Shandong
University of Traditional Chinese Medicine, Jinan 250013, China
| | - Yingjie Zhang
- The
First Clinical College of Medicine, Shandong
University of Traditional Chinese Medicine, Jinan 250013, China
| | - Yalin Li
- The
First Clinical College of Medicine, Shandong
University of Traditional Chinese Medicine, Jinan 250013, China
| |
Collapse
|
9
|
Sun B, Li L, Zhang Y, Wang F, Sun Y. Pregnancy outcomes in women with primary ovarian insufficiency in assisted reproductive technology therapy: a retrospective study. Front Endocrinol (Lausanne) 2024; 15:1343803. [PMID: 38745952 PMCID: PMC11092371 DOI: 10.3389/fendo.2024.1343803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Purpose This study aims to retrospectively estimate cumulative reproductive outcomes in women with primary ovarian insufficiency (POI) in assisted reproductive technology (ART) therapy. Methods A total of 139 patients diagnosed with POI were reviewed in this study. Firstly, they were divided into two groups according to oocyte origin: using their own oocytes (OG group) or accepting oocyte donations (OD I group). Secondly, the patients were split depending on the pregnancy outcome. In the OG group, nine patients decided to use others' oocytes after a failure of attempting to use their own, and this population was the oocyte donation II group (OD II group). Results There were 88 patients who used their own oocytes, while 51 patients accepted oocyte donations. In the OG group, there are only 10 (7.2%) patients who got pregnant, and patients in the OD group had worse hormone levels (FSH 71.37 ± 4.18 vs. 43.98 ± 2.53, AMH 0.06 ± 0.04 vs. 1.15 ± 0.15, and AFC 0.10 ± 0.06 vs. 1.15 ± 0.15) and more years of infertility (5.04 ± 0.48 vs. 3.82 ± 0.30), which explained why they choose oocyte donation. In all the three groups, baseline characteristics were comparable between pregnant women and non-pregnant women. Of the 10 pregnant patients in the OG group, four of them used luteal-phase short-acting long protocol and had pregnancies successfully in their first cycles. Conclusion Ovarian stimulation in POI women requires more cost and time. For those with a stronger desire to have genetic offspring, luteal-phase short-acting long protocol may help them obtain pregnancy rapidly.
Collapse
Affiliation(s)
| | | | | | | | - Yingpu Sun
- Center for Reproductive Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Jaramillo Jaramillo L, Roldan Tabares M, Castañeda Palacio S, Martínez-Sánchez L. Fallo ovárico, una problemática para las mujeres en edad reproductiva y su relación genética. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2023. [DOI: 10.1016/j.gine.2023.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
11
|
Yang X, Yang L. Current understanding of the genomic abnormities in premature ovarian failure: chance for early diagnosis and management. Front Med (Lausanne) 2023; 10:1194865. [PMID: 37332766 PMCID: PMC10274511 DOI: 10.3389/fmed.2023.1194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Premature ovarian failure (POF) is an insidious cause of female infertility and a devastating condition for women. POF also has a strong familial and heterogeneous genetic background. Management of POF is complicated by the variable etiology and presentation, which are generally characterized by abnormal hormone levels, gene instability and ovarian dysgenesis. To date, abnormal regulation associated with POF has been found in a small number of genes, including autosomal and sex chromosomal genes in folliculogenesis, granulosa cells, and oocytes. Due to the complex genomic contributions, ascertaining the exact causative mechanisms has been challenging in POF, and many pathogenic genomic characteristics have yet to be elucidated. However, emerging research has provided new insights into genomic variation in POF as well as novel etiological factors, pathogenic mechanisms and therapeutic intervention approaches. Meanwhile, scattered studies of transcriptional regulation revealed that ovarian cell function also depends on specific biomarker gene expression, which can influence protein activities, thus causing POF. In this review, we summarized the latest research and issues related to the genomic basis for POF and focused on insights gained from their biological effects and pathogenic mechanisms in POF. The present integrated studies of genomic variants, gene expression and related protein abnormalities were structured to establish the role of etiological genes associated with POF. In addition, we describe the design of some ongoing clinical trials that may suggest safe, feasible and effective approaches to improve the diagnosis and therapy of POF, such as Filgrastim, goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding the candidate genomic characteristics in POF is beneficial for the early diagnosis of POF and provides appropriate methods for prevention and drug treatment. Additional efforts to clarify the POF genetic background are necessary and are beneficial for researchers and clinicians regarding genetic counseling and clinical practice. Taken together, recent genomic explorations have shown great potential to elucidate POF management in women and are stepping from the bench to the bedside.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Ju S, He J, Wang H, Yang L, Guo A, Guo Y, Qi M, Wang H, Ai L. Potential therapeutic drug targets and pathways prediction for premature ovarian insufficiency -Based on network pharmacologic method. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116054. [PMID: 36526095 DOI: 10.1016/j.jep.2022.116054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of premature ovarian insufficiency (POI) is gradually increasing, the proportion is rising especially in female infertility patients. The risk of death of POI patients with cardiovascular disease also increases significantly. The cause of POI is complex and unclear, and clinical treatment is still in the exploratory stage, are two major constraints of treating POI. Traditional Chinese medicine (TCM) is widely used in the treatment of POI, and it is a good way to combine the development of modern new drugs with the help of TCM to predict the therapeutic targets. AIM OF THE STUDY In this study, four herbs commonly used in clinical treatment of POI, namely Radix Paeoniae, Polygonatum sibiricum, Rehmannia glutinosa and Eucommia ulmoides were selected to predict their mechanism in the treatment of POI, using network pharmacology methods. Then verify the predicted targets by animal test. Aim to find more effective POI potential core treatment targets and main pathways. MATERIALS AND METHODS We screened the active ingredients of drugs from the TCM System Pharmacology Analysis Platform (TCMSP), Performed target prediction of active ingredients from databases such as SwissTargetPrediction and compare and analyze the POI-related targets retrieved from them to obtain potential targets for drug treatment of POI. Used STRING database to construct a protein interaction network, Cytoscape 3.7.2 software to construct an active ingredient-target-pathway network, and DAVID database to conduct the Kyoto Encyclopedia of Genes and Genomes (KEGG) on the intersection targets and gene ontology (GO) enrichment analysis. RESULTS The result is: there were 25 key targets for the treatment of POI with Radix Paeoniae Alba, 31 for the treatment of POI by Eucommia ulmoides, 28 for the treatment of POI by Polygonatum sibiricum, and 8 key targets for the treatment of Rehmannia glutinosa. The intersection targets of four herbs were defined as the core targets, which are CYP19A1, EGF, ESR1, ESR2, MDM2, AR, PCYP17A1, PPARG. Four Chinese herbs treat POI mainly through HIF-1 signaling pathway, PI3K-Akt signaling pathway, FoxO signaling pathway, Estrogen signaling pathway etc. A mouse model of POI was constructed based on the results of network pharmacology to verify the predicted targets. The results showed that the protein expression of the core target changed, and the estrogen level was increased by reducing the expression of peroxisome proliferator-activated receptor gamma (PPARG). CONCLUSIONS This study predicts the mechanism of multiple herbs in the treatment of POI, screens out more potential therapeutic drug targets and main pathways of POI treatment and provides new ideas for the subsequent development of POI therapeutic drugs.
Collapse
Affiliation(s)
- Shan Ju
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Jialin He
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; NHC Key Laboratory of Reproductive Health Engineering Technology Research(NRIFP), National Research Institute for Family Planning, Beijing, 100081, PR China
| | - Hanbi Wang
- Department of Gynecological Endocrinology & Reproductive Medicine, Peking Union Medical College Hospital, Peking Medical College /Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Liya Yang
- NHC Key Laboratory of Reproductive Health Engineering Technology Research(NRIFP), National Research Institute for Family Planning, Beijing, 100081, PR China
| | - AiXin Guo
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; NHC Key Laboratory of Reproductive Health Engineering Technology Research(NRIFP), National Research Institute for Family Planning, Beijing, 100081, PR China
| | - Yiming Guo
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; NHC Key Laboratory of Reproductive Health Engineering Technology Research(NRIFP), National Research Institute for Family Planning, Beijing, 100081, PR China
| | - Mingkang Qi
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; NHC Key Laboratory of Reproductive Health Engineering Technology Research(NRIFP), National Research Institute for Family Planning, Beijing, 100081, PR China
| | - Huiping Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, PR China; NHC Key Laboratory of Reproductive Health Engineering Technology Research(NRIFP), National Research Institute for Family Planning, Beijing, 100081, PR China.
| | - Lianzhong Ai
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
13
|
Johnson J, Kim SY, Sam PK, Asokan R, Cari EL, Bales ES, Luu TH, Perez L, Kallen AN, Nel-Themaat L, Polotsky AJ, Post MD, Orlicky DJ, Jordan KR, Bitler BG. Expression and T cell regulatory action of the PD-1 immune checkpoint in the ovary and fallopian tube. Am J Reprod Immunol 2023; 89:e13649. [PMID: 36394352 PMCID: PMC10559227 DOI: 10.1111/aji.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
PROBLEM Immune cell trafficking and surveillance within the ovary and fallopian tube are thought to impact fertility and also tumorigenesis in those organs. However, little is known of how native cells of the ovary and fallopian tube interact with resident immune cells. Interaction of the Programmed Cell Death Protein-1 (PD-1/PDCD-1/CD279) checkpoint with PD-L1 is associated with downregulated immune response. We have begun to address the question of whether PD-1 ligand or its receptors (PD-L1/-L2) can regulate immune cell function in these tissues of the female reproductive tract. METHOD OF STUDY PD-1 and ligand protein expression was evaluated in human ovary and fallopian tube specimens, the latter of which included stages of tubal cell transformation and early tumorigenesis. Ovarian expression analysis included the determination of the proteins in human follicular fluid (HFF) specimens collected during in vitro fertilization procedures. Finally, checkpoint bioactivity of HFF was determined by treatment of separately-isolated human T cells and the measurement of interferon gamma (IFNγ). RESULTS We show that membrane bound and soluble variants of PD-1 and ligands are expressed by permanent constituent cell types of the human ovary and fallopian tube, including granulosa cells and oocytes. PD-1 and soluble ligands were present in HFF at bioactive levels that control T cell PD-1 activation and IFNγ production; full-length checkpoint proteins were found to be highly enriched in HFF exosome fractions. CONCLUSION The detection of PD-1 checkpoint proteins in the human ovary and fallopian tube suggests that the pathway is involved in immunomodulation during folliculogenesis, the window of ovulation, and subsequent egg and embryo immune-privilege. Immunomodulatory action of receptor and ligands in HFF exosomes is suggestive of an acute checkpoint role during ovulation. This is the first study in the role of PD-1 checkpoint proteins in human tubo-ovarian specimens and the first examination of its potential regulatory action in the contexts of normal and assisted reproduction.
Collapse
Affiliation(s)
- Joshua Johnson
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
| | - So-Youn Kim
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, Nebraska 68198
| | | | - Rengasamy Asokan
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
| | - Evelyn Llerena Cari
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
| | - Elise S. Bales
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
| | - Thanh-Ha Luu
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
| | | | | | - Liesl Nel-Themaat
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
- Shady Grove Fertility – Colorado, Denver, CO
| | - Alex J. Polotsky
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
- Shady Grove Fertility – Colorado, Denver, CO
| | - Miriam D. Post
- University of Colorado Anschutz Medical Campus, Department of Pathology, Mailstop F768, 12605 East 16th Avenue, Aurora, Colorado 80045
| | - David J. Orlicky
- University of Colorado Anschutz Medical Campus, Department of Pathology, Mailstop F768, 12605 East 16th Avenue, Aurora, Colorado 80045
| | - Kimberly R. Jordan
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Human Immunology and Immunotherapy Initiative, Human Immune Monitoring Shared Resource, RC1-North, 8113, Aurora, Colorado 80045
| | - Benjamin G. Bitler
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
| |
Collapse
|
14
|
Liu YX, Ke Y, Qiu P, Gao J, Deng GP. LncRNA NEAT1 inhibits apoptosis and autophagy of ovarian granulosa cells through miR-654/STC2-mediated MAPK signaling pathway. Exp Cell Res 2023; 424:113473. [PMID: 36634743 DOI: 10.1016/j.yexcr.2023.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Long non-coding RNA (lncRNA) anomalies cause early ovarian failure. LncRNA nuclear enriched abundant transcript 1 (NEAT1) was down-regulated in premature ovarian failure (POF) mice and connected to the illness, however, the mechanism remained unclear. The levels of gene and protein were measured by using quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence. Follicle stimulating hormone (FSH), estradiol (E2), and luteinizing hormone (LH) levels were determined using enzyme-linked immunosorbent assay (ELISA). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and flow cytometry were used to determine cell viability and apoptosis. The interaction of NEAT1, miR-654, and stanniocalcin-2 (STC2) was verified by dual-luciferase reporter assay or RNA binding protein immunoprecipitation (RIP) assays. The results showed NEAT1 and STC2 down-regulated, while miR-654 up-regulated in POF mice. Overexpression of NEAT1 reduced apoptosis and autophagy in cyclophosphamide (CTX)-treated ovarian granulosa cells (OGCs), and Bax, cleaved-caspase3, LC3B, LC3II/LC3I ratio were decreased and Bcl-2 and p62 were raised. NEAT1 suppressed miR-654 expression by directly targeting miR-654. The inhibition of NEAT1 overexpression on apoptosis and autophagy in OGCs was reversed by miR-654 mimics. STC2 was a target gene of miR-654, and miR-654 inhibitor reduced the apoptosis and autophagy by regulating the STC2/MAPK axis. To sum up, NEAT1 reduced miR-654 expression and modulated the STC2/MAPK pathway to decrease apoptosis and autophagy in POF, indicating a potential therapeutic target.
Collapse
Affiliation(s)
- Yu-Xi Liu
- Department of gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong Province, PR China; Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong Province, PR China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, PR China; Department of Traditional Chinese Medicine and Gynecology, Shunde Women and Children's Hospital of Guangdong Medical University (Maternity & Child Healthcare Hospital of Shunde Foshan), Foshan 528000, Guangdong Province, PR China.
| | - Yan Ke
- Department of Gynecology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen 518104, Guangdong Province, PR China
| | - Pin Qiu
- Department of gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong Province, PR China
| | - Jie Gao
- Department of gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong Province, PR China.
| | - Gao-Pi Deng
- Department of gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510080, Guangdong Province, PR China.
| |
Collapse
|
15
|
Li H, Jing Y, Qu X, Yang J, Pan P, Liu X, Gao H, Pei X, Zhang C, Yang Y. The Activation of Reticulophagy by ER Stress through the ATF4-MAP1LC3A-CCPG1 Pathway in Ovarian Granulosa Cells Is Linked to Apoptosis and Necroptosis. Int J Mol Sci 2023; 24:ijms24032749. [PMID: 36769070 PMCID: PMC9917250 DOI: 10.3390/ijms24032749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Female infertility is caused by premature ovarian failure (POF), which is triggered by the endoplasmic reticulum (ER) stress-mediated apoptosis of granulosa cells. The ER unfolded protein response (UPRer) is initiated to promote cell survival by alleviating excessive ER stress, but cellular apoptosis is induced by persistent or strong ER stress. Recent studies have reported that reticulophagy is initiated by ER stress. Whether reticulophagy is activated in the ER stress-mediated apoptosis of granulosa cells and which pathway is initiated to activate reticulophagy during the apoptosis of granulosa cells are unknown. Therefore, the role of reticulophagy in granulosa cell death and the relationship between ER stress and reticulophagy were investigated in this work. Our results suggest that the ER stress inducer tunicamycin causes POF in mice, which is attributed to the apoptosis of granulosa cells and is accompanied by the activation of UPRer and reticulophagy. Furthermore, granulosa cells were treated with tunicamycin, and granulosa cell apoptosis was triggered and increased the expression of UPRer and reticulophagy molecules. The expression of ATF4 was then downregulated by RNAi, which decreased the levels of autophagy and the reticulophagy receptor CCGP1. Furthermore, ATF4 targets MAP1LC3A, as revealed by the ChIP sequencing results, and co-IP results demonstrated that MAP1LC3A interacts with CCPG1. Therefore, reticulophagy was activated by ER stress through the ATF4-MAP1LC3A-CCPG1 pathway to mitigate ER stress. Additionally, the role of reticulophagy in granulosa cells was investigated by the knockdown of CCPG1 with RNAi. Interestingly, only a small number of granulosa cells died by apoptosis, whereas the death of most granulosa cells occurred by necroptosis triggered by STAT1 and STAT3 to impair ER proteostasis and the ER protein quality control system UPRer. Taken together, the results indicate that the necroptosis of granulosa cells is triggered by up- and downregulating the reticulophagy receptor CCPG1 through STAT1/STAT3-(p)RIPK1-(p)RIPK3-(p)MLKL and that reticulophagy is activated by ER stress through the ATF4-MAP1LC3A-CCPG1 pathway.
Collapse
Affiliation(s)
- Huiduo Li
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Yanan Jing
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoya Qu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Jinyi Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Pengge Pan
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Xinrui Liu
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
- Correspondence: or (C.Z.); or (Y.Y.); Tel.: +86-951-6980172 (Y.Y.)
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology of Basic Medical College, Ningxia Medical University, Yinchuan 750004, China
- Correspondence: or (C.Z.); or (Y.Y.); Tel.: +86-951-6980172 (Y.Y.)
| |
Collapse
|
16
|
Geng Z, Liu P, Yuan L, Zhang K, Lin J, Nie X, Jiang H, Li B, Liu T, Zhang B. Electroacupuncture attenuates ac4C modification of P16 mRNA in the ovarian granulosa cells of a mouse model premature ovarian failure. Acupunct Med 2023; 41:27-37. [PMID: 35475376 DOI: 10.1177/09645284221085284] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Premature ovarian failure (POF) is a type of pathological aging, which seriously interferes with the fertility of affected women. Electroacupuncture (EA) may have a beneficial effect; however, its mechanism of action is unknown. The purpose of this study was to determine the effect of EA on ovarian function in ovarian granulosa cells (OGCs) in a cyclophosphamide (CTX)-induced mouse model of POF. METHODS Mice were divided into three groups: wild type (WT) group, CTX group and CTX + EA group. EA was administered under isoflurane anesthesia at CV4, ST36 and SP6 for 30 min every 2 days, 2-3 times per week for a total of 4 weeks. Effects of EA on ovarian weight and level of estrogen were examined. The mRNA and protein expression levels of cell cycle-associated proteins were detected and mRNA modifications were analyzed. RESULTS EA significantly increased ovarian weight and reduced the proportion of atretic follicles in mice with CTX-induced POF (p < 0.05). EA increased the level of estrogen in the peripheral blood of mice and inhibited the modification of total mRNA N4-acetylcytidine (ac4C). A significant increase in the expression of P16 and N-acetyltransferase 10 (NAT10) and a significant decrease in the expression of Cyclin D (CCND1) and cyclin-dependent kinase 6 (CDK6) were observed in the OGCs of POF mice (p<0.05). After EA, P16 and NAT10 expression was decreased, and CCND1 and CDK6 expression was increased. Finally, EA reduced the ac4C modification of P16 mRNA-specific sites in the OGCs of POF mice. CONCLUSION This study demonstrated that EA promoted the repair of the ovarian microenvironment by inhibiting the ac4C modification of P16 mRNA to decrease its stability and expression intensity, and by altering the activity of the P16/CDK6/CCND1 axis in OGCs.
Collapse
Affiliation(s)
- Zixiang Geng
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Liu
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Yuan
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyong Zhang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Lin
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiru Jiang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingrong Li
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Bimeng Zhang
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Geng Z, Guo H, Li Y, Liu Y, Zhao Y. Stem cell-derived extracellular vesicles: A novel and potential remedy for primary ovarian insufficiency. Front Cell Dev Biol 2023; 11:1090997. [PMID: 36875770 PMCID: PMC9977284 DOI: 10.3389/fcell.2023.1090997] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Primary ovarian insufficiency (POI) is an essential cause of young female fertility loss. At present, there are many treatments for primary ovarian insufficiency, but due to the complexity of the pathogenesis of primary ovarian insufficiency, the efficacy still could not be satisfactory. Stem cell transplantation is a feasible intervention protocol for primary ovarian insufficiency. However, its wide application in the clinic is limited by some defects such as tumorigenic and controversial ethical issues. Stem cell-derived extracellular vesicles (EVs) represent an important mode of intercellular communication attracting increasing interest. It is well documented that stem cell-derived extracellular vesicles for primary ovarian insufficiency with exciting therapeutic effects. Studies have found that stem cell-derived extracellular vesicles could improve ovarian reserve, increase the growth of follicles, reduce follicle atresia, and restore hormone levels of FSH and E2. Its mechanisms include inhibiting ovarian granulosa cells (GCs) apoptosis, reactive oxygen species, and inflammatory response and promoting granulosa cells proliferation and angiogenesis. Thus, stem cell-derived extracellular vesicles are a promising and potential method for primary ovarian insufficiency patients. However, stem cell-derived extracellular vesicles are still a long way from clinical translation. This review will provide an overview of the role and the mechanisms of stem cell-derived extracellular vesicles in primary ovarian insufficiency, and further elaborate on the current challenges. It may suggest new directions for future research.
Collapse
Affiliation(s)
- Zixiang Geng
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hailing Guo
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- Department of Dermatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Yongfang Zhao
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Therapeutic Effect of Melatonin in Premature Ovarian Insufficiency: Hippo Pathway Is Involved. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3425877. [PMID: 36017238 PMCID: PMC9398856 DOI: 10.1155/2022/3425877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
Objective Premature ovarian insufficiency (POI) is a female reproductive disorder of unknown etiology with no definite pathogenesis. Melatonin (MT) is an endogenous hormone synthesized mainly by pineal cells and has strong endogenous effects in regulating ovarian function. To systematically explore the pharmacological mechanism of MT on POI therapy, a literature review approach was conducted at the signaling pathways level. Methods Relevant literatures were searched and downloaded from databases, including PubMed and China National Knowledge Infrastructure, using the keywords “premature ovarian insufficiency,” “Hippo signaling pathways,” and “melatonin.” The search criteria were from 2010 to 2022. Text mining was also performed. Results MT is involved in the regulation of Hippo signaling pathway in a variety of modes and has been correlated with ovarian function. Conclusions The purpose of this review is to summarize the research progress of Hippo signaling pathways and significance of MT in POI, the potential crosstalk between MT and Hippo signaling pathways, and the prospective therapy.
Collapse
|
19
|
Drug-free in vitro activation combined with 3D-bioprinted adipose-derived stem cells restores ovarian function of rats with premature ovarian insufficiency. Stem Cell Res Ther 2022; 13:347. [PMID: 35883196 PMCID: PMC9327214 DOI: 10.1186/s13287-022-03035-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emerging drug-free in vitro activation (IVA) technique enables patients with premature ovarian insufficiency (POI) to restore ovarian function and conceive their own genetic offspring. However, various issues have greatly restricted its clinical application. Transplantation of adipose-derived stem cells (ADSCs) has promising roles in restoring ovarian function of rats with POI, but insufficient retention has greatly hampered their efficiency. Here, we designed a 3D-bioprinted engineering ovary composed of drug-free IVA and ADSCs, which may prolong the retention of ADSCs and construct an early vascular microenvironment, thus compensating for the disadvantages of drug-free IVA to some extent and ameliorating impaired ovarian function in the POI rats. METHODS After intraperitoneal injection of cyclophosphamide, the POI model rats were randomized into 5 groups: (1) POI group; (2) ovarian fragments group; (3) 3D scaffold combined with ovarian fragments group; (4) ovarian fragments combined with ADSCs group; (5) 3D scaffold with ADSCs combined with ovarian fragments as 3D-bioprinted engineering ovary group. Normal rats were identified as the control group. The localization of CM-Dil-labeled ADSCs and co-localization with CD31 were observed to examine the distribution and underlying mechanism of differentiation. Histomorphological and immunohistochemical analyses were performed to calculate follicle number and assess proliferation and apoptosis of granulosa cells (GCs). Immunofluorescence staining was used to evaluate angiogenesis. Hormone levels were measured to evaluate the restoration of endocrine axis. Western blot analysis and RT-PCR were conducted to explore the potential mechanism. RESULTS CM-Dil-labeled ADSCs were distributed in the interstitium of ovaries and had significantly higher retention in the 3D-bioprinted engineering ovary group. Several regions of the co-staining for CM-Dil and CD31 were in the area of vascular endothelial cells. Meanwhile, the follicle counts, GCs proliferation, neoangiogenesis, and hormone levels were significantly improved in the 3D-bioprinted engineering ovary group, as compared with other groups. Furthermore, the ovarian function was ameliorated and angiogenesis was promoted through regulating the PI3K/AKT pathway. CONCLUSION Our results suggested that 3D-bioprinted engineering ovary had great potential for restoring impaired ovarian function of rats with POI, which could compensate for the disadvantages of drug-free IVA to some extent.
Collapse
|
20
|
Geng Z, Chen H, Zou G, Yuan L, Liu P, Li B, Zhang K, Jing F, Nie X, Liu T, Zhang B. Human Amniotic Fluid Mesenchymal Stem Cell-Derived Exosomes Inhibit Apoptosis in Ovarian Granulosa Cell via miR-369-3p/YAF2/PDCD5/p53 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3695848. [PMID: 35936223 PMCID: PMC9346541 DOI: 10.1155/2022/3695848] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/18/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Human amniotic fluid stem cell-derived exosome (HuAFSC-exosome) transplantation is considered a promising treatment for premature ovarian failure (POF). However, its mechanism remains unclear. In this study, exosomes were isolated and enriched from HuAFSC subsets of CD44+/CD105+, and the exosomes were transplanted into a POF model in vitro and in vivo. Our results confirmed that the exosomes produced by CD44+/CD105+ HuAFSCs could achieve therapeutic effects in a mouse POF model. Our research also showed that CD44+/CD105+ HuAFSC-exosomes carrying miR-369-3p could specifically downregulate the expression of YAF2, inhibit the stability of PDCD5/p53, and reduce the apoptosis of ovarian granulosa cells (OGCs), thereby exerting therapeutic effects on POF. Knowledge of these mechanisms demonstrates that miRNAs carried by CD44+/CD105+ HuAFSC-exosomes are critical to the therapy of POF. This will be useful for the clinical application of stem cells.
Collapse
Affiliation(s)
- Zixiang Geng
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haiyang Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Gang Zou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Long Yuan
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Peng Liu
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Bingrong Li
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Fangyuan Jing
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| |
Collapse
|
21
|
Identification and Validation of Autophagy-Related Genes in Primary Ovarian Insufficiency by Gene Expression Profile and Bioinformatic Analysis. Anal Cell Pathol 2022; 2022:9042380. [PMID: 35837294 PMCID: PMC9273469 DOI: 10.1155/2022/9042380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background To investigate the relationship between primary ovarian insufficiency and autophagy, we detected and got the expression profile of human granulosa cell line SVOG, which was with or without LPS induced. The expression profile was analyzed with the focus on the autophagy genes, among which hub genes were identified. Results Totally, 6 genes were selected as candidate hub genes which might correlate with the process of primary ovarian insufficiency. The expression of hub genes was then validated by quantitative real-time PCR and two of them had significant expression change. Bioinformatics analysis was performed to observe the features of hub genes, including hub gene-RBP/TF/miRNA/drug network construction, functional analysis, and protein-protein interaction network. Pearson's correlation analysis was also performed to identify the correlation between hub genes and autophagy genes, among which there were four autophagy genes significantly correlated with hub genes, including ATG4B, ATG3, ATG13, and ULK1. Conclusion The results indicated that autophagy might play an essential role in the process and underlying molecular mechanism of primary ovarian insufficiency, which was revealed for the first time and may help to provide a molecular foundation for the development of diagnostic and therapeutic approaches for primary ovarian insufficiency.
Collapse
|
22
|
Tang X, Dong H, Fang Z, Li J, Yang Q, Yao T, Pan Z. Ubiquitin-like modifier 1 ligating enzyme 1 relieves cisplatin-induced premature ovarian failure by reducing endoplasmic reticulum stress in granulosa cells. Reprod Biol Endocrinol 2022; 20:84. [PMID: 35610622 PMCID: PMC9128268 DOI: 10.1186/s12958-022-00956-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1), the ligase of the UFMylation system, has recently been reported to be involved in apoptosis and endoplasmic reticulum stress (ER stress) in a variety of diseases. Premature ovarian failure (POF) is a gynecological disease that severely reduces the fertility of women, especially in female cancer patients receiving chemotherapy drugs. Whether UFL1 is involved in protection against chemotherapy-induced POF and its mechanism remain unclear. METHODS In this study, we examined the function of UFL1 in ovarian dysfunction and granulosa cell (GC) apoptosis induced by cisplatin through histological examination and cell viability analysis. We used western blotting, quantitative real-time PCR (qPCR) and immunofluorescence (IF) to detect the expression of UFL1 and the levels of ER stress specific markers. Enzyme linked immunosorbent assays were used to detect the levels of follicle-stimulating hormone (FSH) and estrogen (E2) in ovaries and GCs. In addition, we used infection with lentiviral particle suspensions to knock down and overexpress UFL1 in ovaries and GCs, respectively. RESULTS Our data showed that the expression of UFL1 was reduced in POF model ovaries, accompanied by ER stress. In vitro, cisplatin induced a stress-related increase in UFL1 expression in GCs and enhanced ER stress, which was aggravated by UFL1 knockdown and alleviated by UFL1 overexpression. Furthermore, UFL1 knockdown resulted in a decrease in ovarian follicle number, an increase in atretic follicles, and decreased expression of AMH and FSHR. Conversely, the overexpression of UFL1 reduced cisplatin-induced damage to the ovary in vitro. CONCLUSIONS Our research indicated that UFL1 regulates cisplatin-induced ER stress and apoptosis in GCs, and participates in protection against cisplatin-induced POF, providing a potential therapeutic target for the clinical prevention of chemotherapeutic drug-induced POF.
Collapse
Affiliation(s)
- Xiangting Tang
- Basic Medical College, Nanchang University, Nanchang, 330006, China
| | - Hao Dong
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhi Fang
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jingyi Li
- Basic Medical College, Nanchang University, Nanchang, 330006, China
| | - Qi Yang
- Basic Medical College, Nanchang University, Nanchang, 330006, China
| | - Ting Yao
- Basic Medical College, Nanchang University, Nanchang, 330006, China
| | - Zezheng Pan
- Basic Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
23
|
Li X, Li X, Deng L. Chrysin reduces inflammation and oxidative stress and improves ovarian function in D-gal-induced premature ovarian failure. Bioengineered 2022; 13:8291-8301. [PMID: 35311454 PMCID: PMC9161991 DOI: 10.1080/21655979.2021.2005991] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Premature ovarian failure (POF), a frequently occurring pathology. Chrysin has antioxidant, anti-inflammatory, anti-apoptotic and other pharmacological activities. This study was designed to detect the effect of Chrysin on POF. The establishment of POF was depended on the subcutaneous injection of D-gal (200 mg/kg/d). With the adoption of ELISA, the levels of hormones and release of inflammatory cytokines were assayed. The expression of MDA, GSH-px, SOD and ROS was evaluated with corresponding kits. In addition, the pathological changes of ovary and apoptosis of ovarian granulosa cells in D-gal-induced mice were detected using H&E staining and TUNEL, respectively. Moreover, the levels of FSH receptor and apoptosis-related proteins were measured with western blot. Finally, ERβ expression was measured with RT-qPCR and western blot. In this study, we found that chrysin regulated the expression of hormones and weight of D-gal-induced mice. It was also found that chrysin inhibited the inflammation and oxidative stress in mice with D-gal induction. In addition, the number and advancement of follicle in D-gal-induced mice treated with chrysin revealed that chrysin could improve the ovarian function of mice with POF. Furthermore, chrysin exhibited inhibitory effects on the apoptosis of ovarian granulosa cells in D-gal-induced mice. More importantly, chrysin molecule targeted ERβ and activated ERβ expression in POF. Overall, Chrysin reduces inflammation and oxidative stress and improves ovarian function in D-gal-induced premature ovarian failure, suggesting that chrysin is valuable for the treatment of POF.
Collapse
Affiliation(s)
- Xinning Li
- Department of Reproductive Medicine Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Xuelan Li
- Department of Reproductive Medicine Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| | - Ling Deng
- Department of Reproductive Medicine Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, China
| |
Collapse
|
24
|
Yu Y, Zhang Q, Sun K, Xiu Y, Wang X, Wang K, Yan L. Long non-coding RNA BBOX1 antisense RNA 1 increases the apoptosis of granulosa cells in premature ovarian failure by sponging miR-146b. Bioengineered 2022; 13:6092-6099. [PMID: 35188872 PMCID: PMC8973711 DOI: 10.1080/21655979.2022.2031675] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/02/2022] Open
Abstract
Long non-coding RNA (lncRNA) BBOX1 antisense RNA 1 (BBOX1-AS1) was reported to participate in ovarian cancer, while its role in other ovarian disorders is unclear. We speculated that BBOX1-AS1 could interact with microRNA(miR)-146b, which is involved in premature ovarian failure (POF). This study was therefore carried out to explore its role in POF. In this study, 60 patients with POF and 60 controls were enrolled. The expression of BBOX1-AS1 and miR-146b were analyzed by RT-qPCRs. The direct interaction between miR-146b and the wild type BBOX1-AS1 (BBOX1-AS1-WT) or mutant BBOX1-AS1 (BBOX1-AS1-mut) was explored with RNA-RNA pulldown assay. Subcellular location of BBOX1-AS1 in COV434 granulosa cells was detected by subcellular fractionation. The role of BBOX1-AS1 and miR-146b in the apoptosis of COV434 cells was evaluated by cell apoptosis assay. Overexpression assay was applied to explore the relationship between BBOX1-AS1 and miR-146b. We found that the expression levels of BBOX1-AS1 were increased, while the expression levels of miR-146b were decreased in POF patients. BBOX1-AS1-WT, but not BBOX1-AS1-mut, directly interacted with miR-146b. BBOX1-AS1 was detected in both nucleus and cytoplasm, while they did not affect the expression of each other. BBOX1-AS1 suppressed the role of miR-146b in cell apoptosis. Therefore, BBOX1-AS1 may increase the apoptosis of granulosa cells in POF by sponging miR-146b.
Collapse
Affiliation(s)
- Yuexin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| | - Qian Zhang
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| | - Kaixuan Sun
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| | - Yinling Xiu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| | - Xiliang Wang
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| | - Kaiyue Wang
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| | - Li Yan
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| |
Collapse
|
25
|
Ng E, Sztal‐Mazer S, Davis SR. Functional hypothalamic amenorrhoea: a diagnosis of exclusion. Med J Aust 2022; 216:73-76. [DOI: 10.5694/mja2.51376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Affiliation(s)
| | | | - Susan R Davis
- Alfred Health Melbourne VIC
- Women's Health Research Program Monash University Melbourne VIC
| |
Collapse
|
26
|
Zhang L, Mao B, Zhao X, Yuan Y, Wang W, Lin S. Translation regulatory long non-coding RNA 1 (TRERNA1) sponges microRNA-23a to suppress granulosa cell apoptosis in premature ovarian failure. Bioengineered 2022; 13:2173-2180. [PMID: 35034562 PMCID: PMC8973726 DOI: 10.1080/21655979.2021.2023802] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Translation regulatory long non-coding RNA 1 (TRERNA1) plays critical roles in cancer biology. We predicted the direct interaction of TRERNA1 with microRNA (miR)-23a, which promotes granulosa apoptosis. Granulosa apoptosis is involved in premature ovarian failure (POF). This study was therefore carried out to explore the involvement of TRERNA1 and miR-23a in POF. The expression of TRERNA1 and miR-23a in POF and control groups were detected by RT-qPCRs. The subcellular locations of TRERNA1 in granulosa cell line COV434 was detected by subcellular fractionation assay. The interaction between TRERNA1 and miR-23a was predicted using IntaRNA2.0. The direct interaction between COV434 and miR-23a was explored with RNA pull-down assay. In granulosa cells, the direct interaction between TRERNA1 and miR-23a was verified by overexpression assay. Cell apoptosis assay was performed to evaluate cell apoptosis. Both TRERNA1 and miR-23a were downregulated in POF. In addition, TRERNA1 was detected in both cytoplasm and nuclear samples of granulosa cells, and directly interacted with miR-23a. TRERNA1 did not affect the expression of miR-23a in granulosa cells, while TRERNA1 suppressed the role of miR-23a in enhancing cell apoptosis. In conclusion, TRERNA1 may sponge miR-23a to suppress granulosa cell apoptosis in POF.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Reproductive Medicine and Embryo, The Reproductive Medicine Center of the First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Bin Mao
- Key Laboratory of Reproductive Medicine and Embryo, The Reproductive Medicine Center of the First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Xiaodong Zhao
- Key Laboratory of Reproductive Medicine and Embryo, The Reproductive Medicine Center of the First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Yue Yuan
- Key Laboratory of Reproductive Medicine and Embryo, The Reproductive Medicine Center of the First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Wei Wang
- Key Laboratory of Reproductive Medicine and Embryo, The Reproductive Medicine Center of the First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Shaohua Lin
- Reproductive Department of Guangxi International Zhuang Medical Hospital, Nanning City, Guangxi Province, China
| |
Collapse
|
27
|
Zheng C, Liu S, Qin Z, Zhang X, Song Y. LncRNA DLEU1 is overexpressed in premature ovarian failure and sponges miR-146b-5p to increase granulosa cell apoptosis. J Ovarian Res 2021; 14:151. [PMID: 34740384 PMCID: PMC8569989 DOI: 10.1186/s13048-021-00905-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
Background miR-146b-5p has been reported to participate in premature ovarian failure (POF) in mice. However, its role in POF patients is unclear. We predicted that miR-146b-5p might interact with lncRNA DLEU1, a crucial player in ovarian cancer. We then explored the interaction between DLEU1 and miR-146b-5p. Methods Expression of DLEU1 and miR-146b-5p in POF and control ovary tissues was determined by RT-qPCR. The subcellular location of DLEU1 in human KGN cells was analyzed using subcellular fractionation assays. The direct interaction between DLEU1 and miR-146b-5p was analyzed using RNA pull-down assays. The role of DLEU1 in miR-146a expression was analyzed using overexpression assay. Cell proliferation was analyzed using cell apoptosis assay. Results Increased DLEU1 expression and decreased miR-146b-5p expression were observed in POF. DLEU1 directly interacted with MiR-146b-5p and was expressed in both nuclear and cytoplasm samples of KGN cells. In KGN cells, DLEU1 and miR-146b-5p failed to regulate the expression of each other. However, DLEU1 promoted cell apoptosis and reduced the inhibitory effects of miR-146b-5p on cell apoptosis. Conclusions DLEU1 is overexpressed in POF and sponges miR-146b-5p to increase KGN cell apoptosis.
Collapse
Affiliation(s)
- Caihong Zheng
- Department of Endocrinology, Shanxi Bethune Hospital, Taiyuan City, Shanxi Province, 030032, People's Republic of China
| | - Shiwei Liu
- Department of Endocrinology, Shanxi Bethune Hospital, Taiyuan City, Shanxi Province, 030032, People's Republic of China
| | - Zhihong Qin
- Department of Endocrinology, Huhhot First Hospital, Huhhot, The Inner Mongolia, Autonomous Region, 010020, People's Republic of China
| | - Xiaoqian Zhang
- Department of Endocrinology, Jincheng General Hospital, Jincheng City, Shanxi Province, 048006, People's Republic of China
| | - Yubao Song
- Second Department of General Surgery, Shanxi Provincial Cancer Hospital, No. 3, Xincun Worker's Village, Xinghualing District, Taiyuan City, Shanxi Province, 030013, People's Republic of China.
| |
Collapse
|
28
|
Human Papillomavirus Vaccination and Premature Ovarian Failure: A Disproportionality Analysis Using the Vaccine Adverse Event Reporting System. Drugs Real World Outcomes 2021; 9:79-90. [PMID: 34510402 PMCID: PMC8844335 DOI: 10.1007/s40801-021-00271-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 10/27/2022] Open
Abstract
INTRODUCTION There have been public health concerns about a potential association between human papillomavirus (HPV) vaccines and premature ovarian failure (POF) in young women. OBJECTIVE To identify a potential safety signal of POF after HPV vaccination using the United States (US) Vaccine Adverse Event Reporting System (VAERS) database. METHODS We manually selected relevant MedDRA preferred terms related to POF and identified in VAERS all POF reports in women less than 40 years of age between 2 July 1990 and 14 May 2018, followed by a review of narratives to confirm the cases. We conducted descriptive analyses on age, POF type, HPV vaccine type (HPV2, HPV4, HPV9), time to onset of POF, and dose rank. We described trends in reporting over time and assessed a potential safety signal using the proportional reporting ratio (PRR). RESULTS Of the 228,341 eligible POF reports, 281 (0.1%) were suspected to be associated with HPV vaccines. Median patient age was 15 years (range 11-39 years). POF events consisted mainly of amenorrhea (80.4%) and premature menopause (15.3%). Mean number of reported POF events significantly increased after the first HPV vaccine launch in 2006 with 22.2 POF cases/year up from 1.4 POF cases/year before the launch. PRR was 46.1 (95% confidence interval: 31.7-67.2) and sensitivity analyses yielded similar estimates. CONCLUSION Our study suggests the presence of a potential safety signal of POF associated with HPV vaccination, which may only be partly attributed to notoriety bias. Due to the well-known limitations of spontaneous reporting data, further investigations are warranted.
Collapse
|
29
|
Nouri N, Aghebati-Maleki L, Yousefi M. Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of pre mature ovarian failure. J Reprod Immunol 2021; 147:103363. [PMID: 34450435 DOI: 10.1016/j.jri.2021.103363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/03/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022]
Abstract
Despite being rare, primary ovarian insufficiency (POI) is a significant cause of infertility and deficiency of ovarian hormone in women. Several health risks are also associated with POI, which include dry eye syndrome, reduced density of bones and enhanced fracture risks, troublesome menopausal symptoms, early development of cardiovascular disease, and psychological effects such as declined cognition, reduced perceived psychological support, anxiety, and depression. Replacing premenopausal levels of ovarian sex steroids through proper hormone replacement therapy could improve the quality of life for POI women and ameliorate related health risks. Herein, POI and its complications, in addition to hormone replacement therapies, which are safe and effective, are discussed. It is proposed that the use of HRT) Hormone replacement therapy (formulations which mimic normal production of ovarian hormones could reduce POI-associated morbidity rates if they are continued by the age 50, which is approximately the natural age of menopause. Particular populations of POI women are also addressed, which include those with enhanced risk of ovarian or breast cancer, those with Turner syndrome, those approaching natural menopause, and those who are breastfeeding. It is generally predicted that stem cell-based therapies would be both safe and effective. In fact, several types of cells have been described as safe, though their effectiveness and therapeutic application are yet to be defined. Several factors exist which could affect the results of treatment, such as cell handling, ex-vivo preparation strategies, variations in tissue of origin, potency, and immunocompatibility. Accordingly, cell types potentially effective in regenerative medicine could be recognized. Notably, products of MSCs from various sources of tissues show different levels of regenerative capabilities. The ultimate focus of the review is on adipose tissue-derive MCSs (ADMSCs), which possess exceptional features such as general availability, great ability to proliferate and differentiate, immunomodulatory capabilities, and low immunogenicity.
Collapse
Affiliation(s)
- Narges Nouri
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
30
|
Li Z, Zhang M, Tian Y, Li Q, Huang X. Mesenchymal Stem Cells in Premature Ovarian Insufficiency: Mechanisms and Prospects. Front Cell Dev Biol 2021; 9:718192. [PMID: 34414193 PMCID: PMC8369507 DOI: 10.3389/fcell.2021.718192] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a complex endocrine disease that severely affects the physiological and reproductive functions of females. The current conventional clinical treatment methods for POI are characterized by several side effects, and most do not effectively restore the physiological functions of the ovaries. Transplantation of mesenchymal stem cells (MSCs) is a promising regenerative medicine approach, which has received significant attention in the management of POI with high efficacy. Associated pre-clinical and clinical trials are also proceeding orderly. However, the therapeutic mechanisms underlying the MSCs-based treatment are complex and have not been fully elucidated. In brief, proliferation, apoptosis, immunization, autophagy, oxidative stress, and fibrosis of ovarian cells are modulated through paracrine effects after migration of MSCs to the injured ovary. This review summarizes therapeutic mechanisms of MSCs-based treatments in POI and explores their therapeutic potential in clinical practice. Therefore, this review will provide a theoretical basis for further research and clinical application of MSCs in POI.
Collapse
Affiliation(s)
- Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingle Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
31
|
Çil N, Mete GA. The effect of adipose-derived mesenchymal stem cell treatment on mTOR and p-mTOR expression in ovarian damage due to cyclophosphomide. Reprod Toxicol 2021; 103:71-78. [PMID: 34098046 DOI: 10.1016/j.reprotox.2021.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Our aim is to investigate the effect of the Mesenchymal stem cell (MSC) administration on the release of Mammalian Target of Rapamycin (mTOR) and Phosphorylated- mTOR(p-mTOR) in Cyclophosphomide (CTX) induced ovarian damage. Rats divided into three groups. The first group was categorized as the control(C group;n = 6), the second group as CTX-administered group (CTX group;n = 6), and the third group as CTX and MSC-administered group (CTX + SC group;n = 6). CTX was injected intraperitoneally at 50 mg/kg on the first day and at 8 mg/kg during the following 13 days. In Group 3, adipose-derived MSCs (5 × 104) were injected locally into the ovary. Both ovaries were removed at the end of the 8th week. The follicle count was made. The expression of mTOR and p-mTOR was analyzed immunohistochemically. The follicles in the ovary of Group C were observed in normal structures. Degeneration was evident in the CTX group. In the CTX + SC group, the degenerative appearance monitored in the CTX group vanished in most areas, and fibrosis was greatly reduced. The number of follicles in the CTX group was lower than that of both C and CTX + SC groups (p < 005). In the C group, mTOR showed strong positive staining while mTOR and p-mTOR expression was negative in all follicles in the CTX group. Both mTOR and p-mTOR revealed moderate positive expression in the CTX + SC group. MSC therapy rescued the damage ovarian function created by CTX, reducing follicle loss. MSCs were shown to inhibit the loss of mTOR and p-mTOR signaling, which is key to meiosis in oocytes.
Collapse
Affiliation(s)
- Nazlı Çil
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Gülçin Abban Mete
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
32
|
Chon SJ, Umair Z, Yoon MS. Premature Ovarian Insufficiency: Past, Present, and Future. Front Cell Dev Biol 2021; 9:672890. [PMID: 34041247 PMCID: PMC8141617 DOI: 10.3389/fcell.2021.672890] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Premature ovarian insufficiency (POI) is the loss of normal ovarian function before the age of 40 years, a condition that affects approximately 1% of women under 40 years old and 0.1% of women under 30 years old. It is biochemically characterized by amenorrhea with hypoestrogenic and hypergonadotropic conditions, in some cases, causing loss of fertility. Heterogeneity of POI is registered by genetic and non-genetic causes, such as autoimmunity, environmental toxins, and chemicals. The identification of possible causative genes and selection of candidate genes for POI confirmation remain to be elucidated in cases of idiopathic POI. This review discusses the current understanding and future prospects of heterogeneous POI. We focus on the genetic basis of POI and the recent studies on non-coding RNA in POI pathogenesis as well as on animal models of POI pathogenesis, which help unravel POI mechanisms and potential targets. Despite the latest discoveries, the crosstalk among gene regulatory networks and the possible therapies targeting the same needs to explore in near future.
Collapse
Affiliation(s)
- Seung Joo Chon
- Department of Obstetrics and Gynecology, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Zobia Umair
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, South Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| |
Collapse
|
33
|
Turan V, Sonmezer M, Sonmezer M. Ongoing pregnancy and healthy live births following very short ovarian stimulation of incidentally observed big antral follicles in oligoamenorrheic patients with extremely decreased ovarian reserve. JBRA Assist Reprod 2021; 25:324-327. [PMID: 33507715 PMCID: PMC8083869 DOI: 10.5935/1518-0557.20200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present case series our aim is to present seven patients with extremely decreased ovarian reserve and oligomenorrhea, conceived with in vitro fertilization following a very short ovarian stimulation of incidentally detected big antral follicles. The study included women pursuing in vitro fertilization due to premature ovarian failure risk. When an incidental growing antral follicle was detected under ultrasound, immediate ovarian stimulation was initiated if the blood estradiol, luteinizing hormone and progesterone levels were correlated. Serum anti-Mullerian hormone measurements of all patients were consistent with extremely diminished ovarian reserve (ranged between 0.01 and 0.09ng/ml) and FSH levels varied between 13-104IU/l. The mean stimulation length ranged between 2-4 days. A total of 8 oocytes were retrieved; 6 MII, 1 GV and 1 degenerated. All 6 MII oocytes were fertilized with intracytoplasmic sperm injection. Two patients conceived after fresh embryo transfer, whereas the one conceived following frozen thawed embryo transfer. The ongoing pregnancy rate was 50% per transfer, and two of them resulted in a healthy live birth. In conclusion, close monitoring of oligoamenorrheic infertile patients who are at high risk of imminent ovarian failure using ultrasound and blood hormone levels is very important. Albeit low, the possibility of having a healthy pregnancy following “a very short ovarian stimulation” in such a specific patient group is emphasized.
Collapse
Affiliation(s)
- Volkan Turan
- Health and Technology University School of Medicine, Istanbul, Turkey
| | | | | |
Collapse
|
34
|
Li Z, Zhang M, Zheng J, Tian Y, Zhang H, Tan Y, Li Q, Zhang J, Huang X. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Improve Ovarian Function and Proliferation of Premature Ovarian Insufficiency by Regulating the Hippo Signaling Pathway. Front Endocrinol (Lausanne) 2021; 12:711902. [PMID: 34456868 PMCID: PMC8397419 DOI: 10.3389/fendo.2021.711902] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is associated with severe physical damage and psychological burden on women. Transplantation of exosomes is an encouraging regenerative medicine method, which has the potential for restoring ovarian functions on POI with high efficiency. This study aims at evaluating the therapeutic efficacy of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos) on ovarian dysfunction of POI and the role of Hippo pathway in this exosome-mediated treatment. METHODS POI mice models were established through intraperitoneal injection of cyclophosphamide. Subsequently, transplantation of hUCMSC-Exos was conducted to administer POI mice. Ovaries and plasma of these mice models were harvested after two weeks of treatment. Ovarian morphology and follicle number were assessed by hematoxylin and eosin staining. Moreover, ELISA was used to detect hormone levels, which are related to ovarian function in serum. To assess the recovery of reproductive ability, we recorded the rate of pregnancy, the amount of offspring, and the time of birth in different groups. To explore the underlying mechanisms of exosome-mediated treatment for ovarian function recovery, the proliferation of ovarian cells in vivo was detected by immunohistochemistry and immunofluorescence staining. Additionally, we conducted EdU and CCK-8 assays to assess the proliferative ability of ovarian granulosa cells (GCs) that were cultured in vitro. Western blot analysis was conducted to estimate the proteins levels of Hippo- and proliferation-associated molecules in vivo and in vitro. RESULTS After transplantation of hUCMSC-Exos, the ovarian function-related hormone levels and the number of ovarian follicles returned to nearly normal degrees. Meanwhile, there was a significant improvement in reproductive outcomes after exosomal treatment. Furthermore, the improvement of ovarian function and proliferation was associated with the regulation of Hippo pathway. In vitro, co-culture with exosomes significantly elevated the proliferation of ovarian GCs by regulating Hippo pathway. However, the positive effects on the proliferation of GCs were significantly depressed when key Hippo pathway molecule was inhibited. CONCLUSION This study suggested that hUCMSC-Exos promoted ovarian functions and proliferation by regulating the Hippo pathway. Therefore, exosomal transplantation could be a promising and efficient clinical therapy for POI in the near future.
Collapse
Affiliation(s)
- Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingle Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiahua Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huihui Zhang
- R & D Department, Qilu Cell Therapy Technology Co., Ltd, Jinan, China
| | - Yi Tan
- R & D Department, Qilu Cell Therapy Technology Co., Ltd, Jinan, China
- Institute of Immunotherapy, Shandong Yinfeng Life Science Research Institute, Jinan, China
| | - Qian Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingkun Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
35
|
Impact of Ovarian Aging in Reproduction: From Telomeres and Mice Models to Ovarian Rejuvenation. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:561-569. [PMID: 33005120 PMCID: PMC7513441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The trend in our society to delay procreation increases the difficulty to conceive spontaneously. Thus, there is a growing need to use assisted reproduction technologies (ART) to form a family. With advanced maternal age, ovaries not only produce a lower number of oocytes after ovarian stimulation but also a lower quality-mainly aneuploidies-requiring further complex analysis to avoid complications during implantation and pregnancy. Although there are different options to have a child at advanced maternal age (like donor eggs), this is not the preferred choice for most patients. Unless women had cryopreserved their eggs at a younger age, reproductive medicine should try to optimize their opportunities to become pregnant with their own oocytes, when chances of success are reasonable. Aging has many causes, but telomere attrition is ultimately one of the main pathways involved in this process. Several reports link telomere biology and reproduction, but the molecular reasons for the rapid loss of ovarian function at middle age are still elusive. This review will focus on the knowledge acquired during the last years about ovarian aging and disease, both in mouse models of reproductive senescence and in humans with ovarian failure, and the implication of telomeres in this process. In addition, the review will discuss recent results on ovarian rejuvenation, achieved with stem cell therapies that are currently under study, or ovarian reactivation by tissue fragmentation and the attempts to generate oocytes in vitro.
Collapse
|
36
|
Li M, Peng J, Zeng Z. Overexpression of long non-coding RNA nuclear enriched abundant transcript 1 inhibits the expression of p53 and improves premature ovarian failure. Exp Ther Med 2020; 20:69. [PMID: 32963599 DOI: 10.3892/etm.2020.9197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
It has been previously reported that the long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) can regulate cell apoptosis. The present study aimed to investigate the involvement of NEAT1 in premature ovarian failure (POF). A total of 60 patients with POF admitted at the Sixth Affiliated Hospital of Sun Yat-sen University between December 2016 and December 2018 were enrolled in the present study. Reverse transcription-quantitative PCR (RT-qPCR) was performed to measure NEAT1 expression level in tissue samples from patients with POF and healthy controls. Transient transfections were performed on two normal Chinese hamster ovary cell lines Lec8 and CHO, followed by RT-qPCR and western blot to evaluate gene interaction. Flow cytometry was performed to assess cell apoptosis. The results from the present study demonstrated that NEAT1 expression in ovarian tissues was significantly downregulated in patients with POF compared with healthy controls. Furthermore, the expression of p53 was upregulated in ovarian tissues from patients with POF compared with healthy controls and was inversely associated with NEAT1 expression. In hamster ovary cells, overexpression of NEAT1 led to inhibition of p53, whereas NEAT1 knockdown promoted the expression of p53. In addition, ovary cell apoptosis was inhibited following NEAT1 overexpression and stimulated following p53 overexpression. In conclusion, overexpression of NEAT1 may inhibit the expression of p53 and improve premature ovarian failure.
Collapse
Affiliation(s)
- Manchao Li
- Department of Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Jintao Peng
- Department of Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhi Zeng
- Department of Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
37
|
Kong D, Yao G, Bai Y, Yang G, Xu Z, Kong Y, Fan H, He Q, Sun Y. Expression of sirtuins in ovarian follicles of postnatal mice. Mol Reprod Dev 2020; 87:1097-1108. [PMID: 32902077 DOI: 10.1002/mrd.23418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/17/2020] [Accepted: 08/15/2020] [Indexed: 01/07/2023]
Abstract
Mammalian ovarian follicular development is an intricate, elaborate, and well-organized phenomenon regulated by various signaling pathways; however, the underlying mechanism remains unclear. Mammalian sirtuins (sirtuin 1 to sirtuin 7) are a group of NAD+ -dependent deacetylases implicated in various physiological processes including cell proliferation, apoptosis, cell cycle progression, and insulin signaling. Mammalian ovarian sirtuins have been studied using adult and aged bovine, porcine, and murine models. However, limited information is available regarding their precise expression patterns and the localization of follicle development in mice. This study aimed to assess the dynamic expression and localization of all seven sirtuins in early postnatal mouse ovaries through real-time polymerase chain reaction analysis and immunohistochemistry, respectively. During postnatal ovarian follicle development, sirtuin 1, sirtuin 4, and sirtuin 6 were downregulated compared with those in 1-day postnatal mouse ovaries (p < .05), indicating that these three sirtuin genes may be markers of follicular development. Combining their localization in granulosa cells through immunohistochemical studies, sirtuin 1, sirtuin 4, and sirtuin 6 are suggested to play negative regulatory roles in mammal ovarian follicular granulosa cell development. Furthermore, we found that sirtuin 2 (p < .05) and sirtuin 7 (p < .05) mRNA were constantly upregulated relative to sirtuin 1, although limited information is available regarding sirtuin 7. Among all sirtuins in mouse ovaries, sirtuin 1 was relatively and steadily downregulated. Upon sirtuin 1 overexpression in 1-day postnatal mouse ovaries via sirtuin 1-harboring adenoviruses in vitro, the emergence of primary follicles was delayed, as was the emergence of secondary follicles in 4-day postnatal ovaries. Further studies on KGN cell lines reported that interfering with sirtuin 1 expression in granulosa cell significantly affected granulosa cell proliferation and the expression of mitochondrial genes. This study presents the first systemic analysis of dynamic patterns of sirtuin family expression in early postnatal mice ovaries, laying the foundation for further studies on less discussed sirtuin subtypes, such as sirtuin 5 and sirtuin 7.
Collapse
Affiliation(s)
- Deqi Kong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yucheng Bai
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziwen Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Kong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiying Fan
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qina He
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Noory P, Navid S, Zanganeh BM, Talebi A, Borhani-Haghighi M, Gholami K, Manshadi MD, Abbasi M. Human Menstrual Blood Stem Cell-Derived Granulosa Cells Participate in Ovarian Follicle Formation in a Rat Model of Premature Ovarian Failure In Vivo. Cell Reprogram 2020; 21:249-259. [PMID: 31596622 DOI: 10.1089/cell.2019.0020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We recently reported the application of human menstrual blood stem cells' (HuMenSCs) transplantation as a treatment modality in a rat model of premature ovarian failure (POF). We continued to investigate further in this respect. Female rats were injected intraperitoneally with 36 mg/kg busulfan. HuMenSCs were obtained, grown, and analyzed for immunophenotypic features at passage three. The cells were labeled with CM-Dil and infused into the rats. There were four groups: normal, negative control, treatment, and Sham. One month after treatment, the ovaries were collected and weighed. Histological sections were prepared from the ovary and HuMenSCs were tracking. Subsequently, we examined the changes of expression of Bax and B cell lymphoma 2 (Bcl2) genes by real-time polymerase chain reaction assay. One month after HuMenSCs transplantation, these cells were located in the ovarian interstitium and granulosa cells (GCs). The number of TUNEL-positive cells significantly decreased in the treatment group. Also the expression level of Bax genes, unlike Bcl2 gene, significantly decreased compared with negative and sham groups. In our study, HuMenSCs were tracked in ovarian tissues within 2 months after transplantation, and they differentiated into GCs. Therefore, the use of these cells can be a practical and low-cost method for the treatment of POF patients.
Collapse
Affiliation(s)
- Parastoo Noory
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadan Navid
- Department of Anatomy, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Bagher Minaee Zanganeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Clinical Research Development Unit, Bahar Hospital, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maryam Borhani-Haghighi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keykavos Gholami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Dehghan Manshadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Liu Z, Li F, Xue J, Wang M, Lai S, Bao H, He S. Esculentoside A rescues granulosa cell apoptosis and folliculogenesis in mice with premature ovarian failure. Aging (Albany NY) 2020; 12:16951-16962. [PMID: 32759462 PMCID: PMC7521512 DOI: 10.18632/aging.103609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023]
Abstract
Follicular atresia is one of the main processes for the loss of granulosa cells and oocytes from the mammalian ovary and any impairment to premature ovarian failure. Large numbers of studies have demonstrated that granulosa cell apoptosis causes follicular atresia, yet the rescue of these cells remains elusive. We aimed to use Esculentoside A (3-O-b-D-glucopyranosyl-1, 4-b-D-xylopyranosyl) phytolaccagenin, a saponin extracted from Phytolacca esculenta roots, as a potential rescue agent for the apoptosis of granulosa cells. Our results revealed the rescue of normal body and ovary weights, normal ovarian histo-architecture of ovaries, and hormones levels with regular estrus cycle. Consistently, the expression of proliferating and anti-apoptotic markers, i.e. KI67 and BCL-2 in granulosa cells, was enhanced. Meanwhile, the expressions of pro-apoptotic markers, which were BAX and CASPASEs (CASPASE-9 and CASPASE-3), were prominently reduced in Esculentoside A-induced premature ovarian failure mice. Additionally, PPARγ, a potential therapeutic target, has also rescued its expression by treating the premature ovarian failure mice with Esculentoside A. Our results advocated that Esculentoside A could restore folliculogenesis in premature ovarian failure mice. Furthermore, it has the potential to be investigated as a therapeutic agent for premature ovarian failure.
Collapse
Affiliation(s)
- Zhenteng Liu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Fenghua Li
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Jingwen Xue
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Meimei Wang
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Shoucui Lai
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Hongchu Bao
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Shunzhi He
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| |
Collapse
|
40
|
Bompoula MS, Valsamakis G, Neofytou S, Messaropoulos P, Salakos N, Mastorakos G, Kalantaridou SN. Demographic, clinical and hormonal characteristics of patients with premature ovarian insufficiency and those of early menopause: data from two tertiary premature ovarian insufficiency centers in Greece. Gynecol Endocrinol 2020; 36:693-697. [PMID: 32208770 DOI: 10.1080/09513590.2020.1739266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The aim of the study was to compare demographic, hormonal and clinical parameters in patients with premature ovarian insufficiency (POI) and women with early menopause in Greece. One hundred thirty-nine women of Greek origin, aged 14-45 years, referring for oligomenorrhea and having elevated FSH concentrations were divided into three groups regarding the age of menstrual disturbances onset [POI1: </=30 years (n = 42); POI2: 31-39 years (n = 36); early menopause: 40-45 years (n = 61)]. The mean age of menstrual disturbances onset and that of diagnosis in all POI and early menopause patients were 28.7 years (28.7 ± 7.7) versus 42.1 years (42.1 ± 1.5) and 33.8 years (33.8 ± 7.2) versus 43.3 years (43.3 ± 1.4), respectively. POI patients and women with early menopause were diagnosed, respectively, five years and approximately four to six months later than the age of menstrual disturbances onset. Moreover, FSH2 (second confirmatory FSH measurement at 4-to-6-weeks interval) was greater in all POI patients than in early menopause women (55.4 ± 33.9 vs. 32.4 ± 19.4; p < .05) whereas mean age of menarche was greater in early menopause women than in POI patients (13 ± 1.3 vs. 12 ± 2.2; p < .05). Furthermore, FSH2 was increased in all POI and decreased in early menopause patients.
Collapse
Affiliation(s)
- Maria Sotiria Bompoula
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Valsamakis
- Unit of Reproductive Endocrinology, 3rd Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridoula Neofytou
- 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Messaropoulos
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Salakos
- 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia N Kalantaridou
- 3rd Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Unit of Reproductive Endocrinology, 3rd Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
41
|
Cao LB, Liu HB, Lu G, Lv Y, Leung CK, Du YZ, Wang WM, Xiong ZQ, Su XW, Li HJ, Chen ZJ, Ma JL, Chan WY. Hormone-Like Effects of 4-Vinylcyclohexene Diepoxide on Follicular Development. Front Cell Dev Biol 2020; 8:587. [PMID: 32850784 PMCID: PMC7412635 DOI: 10.3389/fcell.2020.00587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
Background 4-vinylcyclohexene diepoxide (VCD) has long been considered a hazardous occupational chemical that promotes ovarian failure. However, VCD is also used as a research compound to chemically induce animal models of premature ovarian insufficiency (POI), and in related work we unexpectedly found that VCD apparently exhibits both dose- and duration-dependent opposing, hormone-like effects on the maintenance of the primordial follicle pool, follicle development, and ovulation induction. Results We conducted experiments with cultured murine ovaries and performed transplantation experiments using postnatal day (PD) 2 and PD12 mice and found that low-dose, short-term exposure to VCD (VCDlow) actually protects the primordial/primary follicle pool and improves the functional ovarian reserve (FOR) by disrupting follicular atresia. VCDlow inhibits follicular apoptosis and regulates the Pten-PI3K-Foxo3a pathway. Short-term VCD exposure in vivo (80 mg/kg, 5 days) significantly increases the number of superovulated metaphase II oocytes, preovulatory follicles, and corpus luteum in middle-aged mice with diminished ovarian reserve (DOR). We demonstrate that low-dose but not high-dose VCD promotes aromatase levels in granulosa cells (GCs), thereby enhancing the levels of estradiol secretion. Conclusion Our study illustrates a previously unappreciated, hormone-like action for the occupational “ovotoxin” molecule VCD and strongly suggests that VCDlow should be explored for its potential utility for treating human ovarian follicular development disorders, including subfertility in perimenopausal women.
Collapse
Affiliation(s)
- Lian Bao Cao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Hong Bin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yue Lv
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Chi Kwan Leung
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Sha Tin, China
| | - Yan Zhi Du
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wu Ming Wang
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Zhi Qiang Xiong
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Sha Tin, China
| | - Xian Wei Su
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Sha Tin, China
| | - Hong Jian Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Sha Tin, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Long Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,SDIVF R&D Centre, Hong Kong Science and Technology Parks, Sha Tin, China
| | - Wai Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| |
Collapse
|
42
|
Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN. J Transl Med 2020; 100:342-352. [PMID: 31537899 DOI: 10.1038/s41374-019-0321-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Chemotherapy-induced premature ovarian failure (POF) in women is currently clinically irreversible. Bone marrow mesenchymal stem cells (BMSCs) are a promising cellular therapeutic strategy for POF. However, the underlying mechanism governing the efficacy of BMSCs in treating POF has not been determined. In this study, we show that BMSC and BMSC-derived exosome transplantation can significantly recover the estrus cycle, increase the number of basal and sinus follicles in POF rats, increase estradiol (E2) and anti-Mullerian hormone (AMH) levels, and reduce follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels in the serum. Furthermore, we demonstrate that BMSC-derived exosomes prevent ovarian follicular atresia in cyclophosphamide (CTX)-treated rats via the delivery of miR-144-5p, which can be transferred to cocultured CTX-damaged granulosa cells (GCs) to decrease GC apoptosis. A functional assay revealed that overexpression of miR-144-5p in BMSCs showed efficacy against CTX-induced POF, and the improvement in the repair was related to the inhibition of GC apoptosis by targeting PTEN. The opposite effect was exhibited when miR-144-5p was inhibited. Taken together, our experimental results provide new information regarding the potential of using exosomal miR-144-5p to treat ovarian failure.
Collapse
|
43
|
Ma Q, Tan Y, Mo G. Effectiveness of Cotreatment with Kuntai Capsule and Climen for Premature Ovarian Failure: A Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:4367359. [PMID: 32215038 PMCID: PMC7053475 DOI: 10.1155/2020/4367359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To compare the treatment efficacy of Kuntai capsule with Climen only in the therapy of premature ovarian failure. METHODS Randomized controlled trials were electronically retrieved from PubMed, Cochrane Library, Web of science, CBM, CNKI, Wanfang, and Weipu database. In addition, some related papers were manually checked. All papers were assessed according to the Cochrane Handbook for Systematic Reviews of Interventions, and the effective data were analyzed by Revman 5.3 Software. RESULTS 11 randomized control trials involving 1068 patients were included. Results of meta-analysis showed that E2 (estrogen), the total therapeutic effective rate of the group of Kuntai capsule, and hormone were higher than hormone only. The LH (luteinizing hormone), FSH (follicle-stimulating hormone), and Kupperman score of the group of Kuntai capsule and Climen were lower than Climen only. CONCLUSION Available evidence shows that Kuntai capsule with Climen is more effective than Climen in the therapy of premature ovarian failure. Nowadays, the quality of the research studies is low. More large-scaled randomized trials will need to be carried out.
Collapse
Affiliation(s)
- Qianwen Ma
- Gynecology Department, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang, China
- Reproductive Medicine Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Tan
- Reproductive Medicine Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Genlin Mo
- Advanced Manufacturing Institution, Jiangsu University, Zhenjiang, China
| |
Collapse
|
44
|
Fàbregues F, Ferreri J, Méndez M, Calafell JM, Otero J, Farré R. In Vitro Follicular Activation and Stem Cell Therapy as a Novel Treatment Strategies in Diminished Ovarian Reserve and Primary Ovarian Insufficiency. Front Endocrinol (Lausanne) 2020; 11:617704. [PMID: 33716954 PMCID: PMC7943854 DOI: 10.3389/fendo.2020.617704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023] Open
Abstract
Usually poor ovarian response (POR) to gonadotropins reflects a diminished ovarian reserve (DOR) that gives place to few recruitable follicles despite aggressive stimulation. The reduction in the quantity and quality of the oocytes with advanced age is physiological. However, some women experience DOR much earlier and become prematurely infertile, producing an accelerated follicular depletion towards primary ovarian insufficiency (POI). Up to now, egg donation has been commonly used to treat their infertility. In the last thirty years, specialists in assisted reproduction have focused their attention on the final stages of folliculogenesis, those that depend on the action of gonadotrophins. Nevertheless, recently novel aspects have been known to act in the initial phases, with activating and inhibiting elements. In vitro activation (IVA) combining the in vitro stimulation of the ovarian Akt signaling pathway in ovarian cortex fragments with a method named Hippo-signaling disruption. Later, a simplification of the technique designated Drug-Free IVA have shown encouraging results in patients with POI. Another innovative therapeutic option in these patients is the infusion of bone marrow-derived stem cells (BMDSC) in order to supply an adequate ovarian niche to maintain and/or promote follicular rescue in patients with impaired or aged ovarian reserves. In this review, for the first time, both therapeutic options are addressed together in a common clinical setting. The aim of this review is to analyze the physiological aspects on which these innovative techniques are based; the preliminary results obtained up to now; and the possible therapeutic role that they may have in the future with DOR and POI patients.
Collapse
Affiliation(s)
- Francesc Fàbregues
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clinic of Barcelona, Barcelona, Spain
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- *Correspondence: Francesc Fàbregues,
| | - Janisse Ferreri
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Marta Méndez
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Josep María Calafell
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Jordi Otero
- Biophysics and Bioengineering Unit, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ramon Farré
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biophysics and Bioengineering Unit, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
45
|
Abstract
Premature ovarian insufficiency (POI) is a global health concern for women and affects several systems, such as cardiovascular system, autoimmune disease, and psychological status. The aim of this study was to investigate the effect of POI on nasal mucociliary clearance time via saccharin test by comparing postmenopausal women and healthy controls. Thirty-five (35) patients with POI, 35 healthy postmenopausal women and 35 healthy controls were recruited in this study. All study participants underwent measurements of nasal mucociliary clearance time via saccharine test. When women with POI and postmenopausal women compared with the controls, nasal mucociliary clearance time was longer in both women with POI and postmenopausal women. When women with POI were compared with postmenopausal women, the nasal mucociliary clearance time was not difference between two groups. There was a significant prolonged nasal mucociliary clearance time in the women with POI and postmenopausal women. Lower serum estradiol levels in women with POI as well as postmenopausal women had an adverse effect of nasal mucociliary clearance time.
Collapse
Affiliation(s)
- Isil Karaer
- ENT Clinic, Malatya Training and Research Hospital, Ministry of Health, Malatya, Turkey
| | - Gorkem Tuncay
- School of Medicine Department of Obstetrics and Gynecology Division of Reproductive Endocrinology and Infertility Malatya, Inonu University, Turkey
| |
Collapse
|
46
|
Ghahremani-Nasab M, Ghanbari E, Jahanbani Y, Mehdizadeh A, Yousefi M. Premature ovarian failure and tissue engineering. J Cell Physiol 2019; 235:4217-4226. [PMID: 31663142 DOI: 10.1002/jcp.29376] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
Premature ovarian failure (POF) usually happens former to the age of 40 and affects the female physiological state premenopausal period. In this condition, ovaries stop working long before the expected menopausal time. Of diagnostic symptoms of the disease, one can mention amenorrhea and hypoestrogenism. The cause of POF in most cases is idiopathic; however, cancer therapy may also cause POF. Commonly utilized therapies such as hormone therapy, in-vitro activation, and regenerative medicine are the most well-known treatments for POF. Hence, these therapies may be associated with some complications. The aim of the present study is to discuss the beneficial effects of tissue engineering for fertility rehabilitation in patients with POF as a newly emerging therapy.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Jahanbani
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Comprehensive Health Lab, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Liu R, Zhang X, Fan Z, Wang Y, Yao G, Wan X, Liu Z, Yang B, Yu L. Human amniotic mesenchymal stem cells improve the follicular microenvironment to recover ovarian function in premature ovarian failure mice. Stem Cell Res Ther 2019; 10:299. [PMID: 31578152 PMCID: PMC6775662 DOI: 10.1186/s13287-019-1315-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many adult women younger than 40 years old have premature ovarian failure (POF) and infertility. Previous studies confirmed that different tissue-derived stem cells could restore ovarian function and folliculogenesis in chemotherapy-induced POF mice. The aim of this study was to explore the therapeutic efficacy and underlying mechanisms of human amniotic mesenchymal stem cells (hAMSCs) transplantation for hydrogen peroxide-induced ovarian damage. METHODS Bilateral ovaries of female mice were burned with 10% hydrogen peroxide to establish a POF model. After 24 h of treatment, hAMSCs and diethylstilbestrol were administered to POF mice by intraperitoneal injection and intragastric administration, respectively. After either 7 or 14 days, ovarian function was evaluated by the oestrus cycle, hormone levels, ovarian index, fertility rate, and ovarian morphology. The karyotype was identified in offspring by the G-banding technique. hAMSCs tracking, immunohistochemical staining, and real-time polymerase chain reaction (PCR) were used to assess the molecular mechanisms of injury and repair. RESULTS The oestrus cycle was recovered after hAMSCs transplantation at 7 and 14 days. Oestrogen levels increased, while follicle-stimulating hormone levels decreased. The ovarian index, fertility rate, and population of follicles at different stages were significantly increased. The newborn mice had no obvious deformity and showed normal growth and development. The normal offspring mice were also fertile. The tracking of hAMSCs revealed that they colonized in the ovarian stroma. Immunohistochemical and PCR analyses indicated that changes in proteins and genes might affect mature follicle formation. CONCLUSIONS These results suggested that hAMSCs transplantation can improve injured ovarian tissue structure and function in oxidatively damaged POF mice. Furthermore, the mechanisms of hAMSCs are related to promoting follicular development, granulosa cell proliferation, and secretion function by improving the local microenvironment of the ovary.
Collapse
Affiliation(s)
- Rongxia Liu
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Xiaoyu Zhang
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Zhenhai Fan
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Yuying Wang
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Guanping Yao
- Reproductive Center, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Xue Wan
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Zulin Liu
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Bing Yang
- Department of Gynecology, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
- Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi City, 563003 China
| |
Collapse
|
48
|
Zhao H, Shan Y, Ma Z, Yu M, Gong B. A network pharmacology approach to explore active compounds and pharmacological mechanisms of epimedium for treatment of premature ovarian insufficiency. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2997-3007. [PMID: 31692519 PMCID: PMC6710481 DOI: 10.2147/dddt.s207823] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022]
Abstract
Background and purpose Premature ovarian insufficiency (POI) refers to a hypergonadotropic hypoestrogenism and the condition of pre-onset ovarian function failure. Epimedium is a common traditional Chinese herbal medicine that is widely used to relieve POI in China. To systematically explore the pharmacological mechanism of epimedium on POI therapy, a network pharmacology approach was conducted at the molecular level. Methods In this study, we adopt the network pharmacology method, which mainly includes active ingredients prescreening, target prediction, gene enrichment analysis and network analysis. Results The network analysis revealed that 6 targets (ESR1, AR, ESR2, KDR, CYP19A1 and ESRRG) might be the therapeutic targets of epimedium on POI. In addition, gene-enrichment analysis suggested that epimedium appeared to play a role in POI by modulating 6 molecular functions, 5 cellular components, 15 biological processes and striking 52 potential targets involved in 13 signaling pathways. Conclusion This study predicted the pharmacological and molecular mechanism of epimedium against POI from a holistic perspective, as well as provided a powerful tool for exploring pharmacological mechanisms and rational clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Yinghua Shan
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Zhi Ma
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Mingwei Yu
- Department of Orthopaedics and Traumatology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| | - Benjiao Gong
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China
| |
Collapse
|
49
|
Lu X, Cui J, Cui L, Luo Q, Cao Q, Yuan W, Zhang H. The effects of human umbilical cord-derived mesenchymal stem cell transplantation on endometrial receptivity are associated with Th1/Th2 balance change and uNK cell expression of uterine in autoimmune premature ovarian failure mice. Stem Cell Res Ther 2019; 10:214. [PMID: 31331391 PMCID: PMC6647296 DOI: 10.1186/s13287-019-1313-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 01/02/2023] Open
Abstract
Background To explore the mechanism of human umbilical cord-derived mesenchymal stem cell (hUMSC) transplantation to improve ovarian function and the endometrial receptivity in autoimmune premature ovarian failure (POF) mice. Methods The POF model was established in mice treated with zona pellucida 3 polypeptide fragment (zona pellucida 3, ZP3). The hUMSCs were transplanted into the POF mice through tail vein injection. Following the transplantation, the serum hormone levels of follicle stimulating hormone (FSH), estrogen (E2), progesterone (P), γ-interferon (IFN-γ), interleukin-2 (IL-2), and interleukin-4 (IL-4) were evaluated by ELISA analysis. Morphological changes of ovarian and uterus tissues were examined by HE staining and immunohistochemistry. The expression of Th1/Th2 cytokines of T cells in spleen and CD56+CD16− cells (uterine natural killer cells, uNK cells) in uterine was measured by flow cytometry (FCM) and immunohistochemistry. The expression of HOXA10 in uterine endometrium was examined by immunohistochemistry and RT-PCR analysis. The pinopodes of epithelial cells in uterine endometrium were examined by scanning electron microscopy. Results Following hUMSC transplantation, the serum levels of E2, P, and IL-4 were increased but FSH, IFN-γ, and IL-2 levels were decreased in POF mice. Also, the transplantation of hUMSCs caused an increase in total number of healthy follicles and decrease of atresia follicles. The expression of HOXA10 gene was significantly increased but the CD56+CD16− uNK cells decreased in the endometrium of uterine. The ratio of Th1/Th2 cytokines was also significantly decreased. Conclusion The data suggest that the recovery of ovarian function and endometrial receptivity in POF mice was regulated by the balance of Th1/Th2 cytokines and expression of uNK cells in the endometrium following hUMSC transplantation.
Collapse
Affiliation(s)
- Xueyan Lu
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.,College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Jingjing Cui
- The Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, China
| | - Linlu Cui
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.,College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Qianqian Luo
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.,College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Qizhi Cao
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Wendan Yuan
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.
| | - Hongqin Zhang
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China. .,College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
50
|
Yan H, Wen J, Zhang T, Zheng W, He M, Huang K, Guo Q, Chen Q, Yang Y, Deng G, Xu J, Wei Z, Zhang H, Xia G, Wang C. Oocyte-derived E-cadherin acts as a multiple functional factor maintaining the primordial follicle pool in mice. Cell Death Dis 2019; 10:160. [PMID: 30770786 PMCID: PMC6377673 DOI: 10.1038/s41419-018-1208-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023]
Abstract
In mammals, female fecundity is determined by the size of the primordial follicle (PF) pool, which is established during the perinatal period. As a non-renewable resource, the preservation of dormant PFs is crucial for sustaining female reproduction throughout life. Although studies have revealed that several oocyte-derived functional genes and pathways, such as newborn ovary homeobox (NOBOX) and 3-phosphoinositide-dependent protein kinase-1, participate in maintaining the PF pool, our understanding of the underlying molecular mechanisms is still incomplete. Here, we demonstrate that E-cadherin (E-cad) plays a crucial role in the maintenance of PFs in mice. E-cad is specifically localized to the cytomembrane of oocytes in PFs. Knockdown of E-cad in neonatal ovaries resulted in significant PF loss owing to oocyte apoptosis. In addition, the expression pattern of NOBOX is similar to that of E-cad. Knockdown of E-cad resulted in a decreased NOBOX level, whereas overexpression of Nobox partially rescued the follicle loss induced by silencing E-cad. Furthermore, E-cad governed NOBOX expression by regulating the shuttle protein, β-catenin, which acts as a transcriptional co-activator. Notably, E-cad, which is a transmembrane protein expressed in the oocytes, was also responsible for maintaining the PF structure by facilitating cell–cell adhesive contacts with surrounding pregranulosa cells. In conclusion, E-cad in oocytes of PFs plays an indispensable role in the maintenance of the PF pool by facilitating follicular structural stability and regulating NOBOX expression. These findings shed light on the physiology of sustaining female reproduction.
Collapse
Affiliation(s)
- Hao Yan
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, Ningxia, 750021, China.,State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Jia Wen
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Tuo Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Wenying Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Meina He
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Kun Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Qirui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Qian Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, Ningxia, 750021, China
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, Ningxia, 750021, China
| | - Jinrui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, Ningxia, 750021, China
| | - Zhiqing Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, Ningxia, 750021, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| | - Guoliang Xia
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, Ningxia, 750021, China. .,State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|