1
|
Pang Y, Tang M, Shi M, Tian Y, Luo Y, Elze T, Pasquale LR, Zebardast N, Boland MV, Friedman DS, Shen LQ, Lokhande A, Wang M. Impact of Demographics on Regional Visual Field Loss and Deterioration in Glaucoma. Transl Vis Sci Technol 2024; 13:25. [PMID: 39136958 PMCID: PMC11323995 DOI: 10.1167/tvst.13.8.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/06/2024] [Indexed: 08/16/2024] Open
Abstract
Purpose To elucidate the impact of demographics, including gender, race, ethnicity, and preferred language, on regional visual field (VF) loss and progression in glaucoma. Methods Multivariable linear mixed regressions were performed to determine the impact of race, ethnicity, and preferred language on regional VF loss with adjustment for age and gender. Regional VF loss was defined by pointwise total deviation values and VF loss patterns quantified by an unsupervised machine learning method termed archetypal analysis. All cross-sectional and longitudinal analyses were performed both without and with adjustment for VF mean deviation, which represented overall VF loss severity. P values were corrected for multiple comparisons. Results All results mentioned had corrected P values less than 0.05. Asian and Black patients showed worse pointwise VF loss than White patients with superior hemifield more affected. Patients with a preferred language other than English demonstrated worse pointwise VF loss than patients with English as their preferred language. Longitudinal analyses revealed Black patients showed worse VF loss/year compared to White patients. Patients with a preferred language other than English demonstrated worse VF loss/year compared to patients preferring English. Conclusions Blacks and non-English speakers have more severe VF loss, with superior hemifield being more affected and faster VF worsening. Translational Relevance This study furthered our understanding of racial, ethnic, and socioeconomic disparities in glaucoma outcomes. Understanding the VF loss burden in different racial, ethnic, and socioeconomic groups may guide more effective glaucoma screening and community outreach efforts. This research could help reduce vision loss and improve quality of life in disproportionately affected populations by guiding public health efforts to promote glaucoma awareness and access to care.
Collapse
Affiliation(s)
- Yueyin Pang
- Harvard Ophthalmology AI Lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- New York University, New York, NY, USA
| | - Melody Tang
- Harvard Ophthalmology AI Lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Andover High School, Andover, MA, USA
| | - Min Shi
- Harvard Ophthalmology AI Lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Yu Tian
- Harvard Ophthalmology AI Lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Yan Luo
- Harvard Ophthalmology AI Lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Tobias Elze
- Harvard Ophthalmology AI Lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Louis R. Pasquale
- Eye and Vision Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nazlee Zebardast
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | | | - Lucy Q. Shen
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Anagha Lokhande
- Harvard Ophthalmology AI Lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Mengyu Wang
- Harvard Ophthalmology AI Lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Braun M, Saini C, Sun JA, Shen LQ. The Role of Optical Coherence Tomography Angiography in Glaucoma. Semin Ophthalmol 2024; 39:412-423. [PMID: 38643350 DOI: 10.1080/08820538.2024.2343049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Glaucoma is the leading cause of irreversible vision loss and comprises a group of chronic optic neuropathies characterized by progressive retinal ganglion cell (RGC) loss. Various etiologies, including impaired blood supply to the optic nerve, have been implicated for glaucoma pathogenesis. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality for visualizing the ophthalmic microvasculature. Using blood flow as an intrinsic contrast agent, it distinguishes blood vessels from the surrounding tissue. Vessel density (VD) is mainly used as a metric for quantifying the ophthalmic microvasculature. The key anatomic regions for OCTA in glaucoma are the optic nerve head area including the peripapillary region, and the macular region. Specifically, VD of the superficial peripapillary and superficial macular microvasculature is reduced in glaucoma patients compared to unaffected subjects, and VD correlates with functional deficits measured by visual field (VF). This renders OCTA similar in diagnostic capabilities compared to structural retinal nerve fiber layer (RNFL) thickness measurements, especially in early glaucoma. Furthermore, in cases where RNFL thickness measurements are limited due to artifact or floor effect, OCTA technology can be used to evaluate and monitor glaucoma, such as in eyes with high myopia and eyes with advanced glaucoma. However, the clinical utility of OCTA in glaucoma management is limited due to the prevalence of imaging artifacts. Overall, OCTA can play a complementary role in structural OCT imaging and VF testing to aid in the diagnosis and monitoring of glaucoma.
Collapse
Affiliation(s)
- Maximilian Braun
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Chhavi Saini
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jessica A Sun
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Lucy Q Shen
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Chen N, Zhu Z, Yang W, Wang Q. Progress in clinical research and applications of retinal vessel quantification technology based on fundus imaging. Front Bioeng Biotechnol 2024; 12:1329263. [PMID: 38456011 PMCID: PMC10917897 DOI: 10.3389/fbioe.2024.1329263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Retinal blood vessels are the only directly observed blood vessels in the body; changes in them can help effective assess the occurrence and development of ocular and systemic diseases. The specificity and efficiency of retinal vessel quantification technology has improved with the advancement of retinal imaging technologies and artificial intelligence (AI) algorithms; it has garnered attention in clinical research and applications for the diagnosis and treatment of common eye and related systemic diseases. A few articles have reviewed this topic; however, a summary of recent research progress in the field is still needed. This article aimed to provide a comprehensive review of the research and applications of retinal vessel quantification technology in ocular and systemic diseases, which could update clinicians and researchers on the recent progress in this field.
Collapse
Affiliation(s)
- Naimei Chen
- Department of Ophthalmology, Huaian Hospital of Huaian City, Huaian, China
| | - Zhentao Zhu
- Department of Ophthalmology, Huaian Hospital of Huaian City, Huaian, China
| | - Weihua Yang
- Department of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Qiang Wang
- Department of Ophthalmology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, China
| |
Collapse
|
4
|
Xu C, Saini C, Wang M, Devlin J, Wang H, Greenstein SH, Brauner SC, Shen LQ. Combined Model of OCT Angiography and Structural OCT Parameters to Predict Paracentral Visual Field Loss in Primary Open-Angle Glaucoma. Ophthalmol Glaucoma 2023; 6:255-265. [PMID: 36252920 PMCID: PMC10102259 DOI: 10.1016/j.ogla.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To assess a model combining OCT angiography (OCTA) and OCT parameters to predict the severity of paracentral visual field (VF) loss in primary open-angle glaucoma (POAG). DESIGN Cross-sectional study. PARTICIPANTS Forty-four patients with POAG and 42 control subjects underwent OCTA and OCT imaging with a swept-source OCT device. METHODS The circumpapillary microvasculature was quantified for vessel density (cpVD) and flow (cpFlow) after delineation of Bruch's membrane opening and removal of large vessels. Retinal nerve fiber layer thickness (RNFLT) and Bruch's membrane opening-minimum rim width (BMO-MRW) were measured from structural OCT. Paracentral total deviation (PaTD) was defined as the average of the total deviation values within the central 10 degrees on Humphrey VF testing (24-2) for upper and lower hemifields. The OCT and OCTA parameters were measured in the affected hemisphere corresponding to the hemifield with lower PaTD for POAG patients. Models were created to predict affected PaTD based on RNFLT alone; RNFLT and BMO-MRW; OCTA alone; or RNFLT, BMO-MRW and OCTA parameters. The models were compared using coefficient of determination (r2) and Bayesian information criterion (BIC) score. Bayesian information criterion decrease of ≥6 indicates strong evidence for model improvement. MAIN OUTCOME MEASURES Performance of models containing OCT and OCTA parameters in predicting PaTD. RESULTS Patients with POAG and controls were similar in age and sex (65.9 ± 9.5 years and 38.4% male overall, P ≥ 0.56 for both). Average RNFLT, minimum RNFLT, average BMO-MRW, minimum BMO-MRW, cpVD, and cpFlow were all significantly lower (all P < 0.001) in the affected hemisphere in patients with POAG than in controls. In patients with POAG, the average mean deviation was -4.33 ± 3.25 dB; the PaTD of the affected hemifield averaged -4.55 ± 5.26 dB and correlated significantly with both OCTA and structural OCT parameters (r ≥ 0.43, P ≤ 0.004 for all). The model containing RNFLT, BMO-MRW, and OCTA parameters was superior in predicting affected PaTD (r2 = 0.47, BIC = 290.7), with higher r2 and lower BIC compared with all 3 other models. CONCLUSIONS A combined model of OCTA and structural OCT parameters can predict the severity of paracentral VF loss of the affected hemifield, supporting clinical utility of OCTA in patients with POAG with paracentral VF loss. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Christine Xu
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Chhavi Saini
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Mengyu Wang
- Harvard Ophthalmology AI Lab, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Julia Devlin
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Haobing Wang
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Scott H Greenstein
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Stacey C Brauner
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Lucy Q Shen
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
5
|
Shoji MK, Cousins CC, Saini C, Nascimento E Silva R, Wang M, Brauner SC, Greenstein SH, Pasquale LR, Shen LQ. Paired Optic Nerve Microvasculature and Nailfold Capillary Measurements in Primary Open-Angle Glaucoma. Transl Vis Sci Technol 2021; 10:13. [PMID: 34110389 PMCID: PMC8196412 DOI: 10.1167/tvst.10.7.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose To assess microvascular beds in the optic nerve head (ONH), peripapillary tissue, and the nailfold in patients with primary open-angle glaucoma (POAG) versus controls. Methods Patients with POAG (n = 22) and controls (n = 12) underwent swept-source optical coherence tomography angiography of ophthalmic microvasculature and nailfold video capillaroscopy of the hand. The main outcomes were vessel density (VD) and blood flow of the ONH, the peripapillary and the nailfold microvasculatures. Results Patients with POAG were younger than controls (63.5 ± 9.4 vs. 69.9 ± 6.5 years, P = 0.03). Deep ONH VD and blood flow were lower in patients with POAG than controls (39.1% ± 3.5% vs. 43.8% ± 5.7%; 37.8% ± 5.3% vs. 46.0% ± 7.8%, respectively, P < 0.02 for both); similar results were observed with peripapillary VD (37.9 ± 2.6%, 43.4 ± 7.6%, respectively, P = 0.03). Nailfold capillary density and blood flow were lower in patients with POAG than controls (8.8 ± 1.0 vs. 9.8 ± 0.9 capillaries/mm; 19.9 ± 9.4 vs. 33.7 ± 9.8 pL/s, respectively; P < 0.009 for both). After adjusting for age and gender, deep ONH VD and blood flow, peripapillary VD, and nailfold capillary blood flow were lower in POAG than controls (β = −0.04, −0.07, −0.05, −13.19, respectively, P ≤ 0.046 for all). Among all participants, there were positive correlations between deep ONH and nailfold capillary blood flow (Pearson's correlation coefficient r = 0.42, P = 0.02), peripapillary and nailfold capillary density (r = 0.43, P = 0.03), and peripapillary and nailfold capillary blood flow (r = 0.49, P = 0.01). Conclusions Patients with POAG demonstrated morphologic and hemodynamic alterations in both ophthalmic and nailfold microvascular beds compared to controls. Translational Relevance The concomitant abnormalities in nailfold capillaries and relevant ocular vascular beds in POAG suggest that the microvasculature may be a target for POAG treatment.
Collapse
Affiliation(s)
- Marissa K Shoji
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Clara C Cousins
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Chhavi Saini
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Mengyu Wang
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stacey C Brauner
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Scott H Greenstein
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lucy Q Shen
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|