1
|
Ovari G, Johnson TF, Foroutan F, Malmquist G, Townsend M, Bracewell DG. Fabrication of electrospun ion exchanger adsorbents with morphologies designed for the separation of proteins and plasmid DNA. J Chromatogr A 2024; 1734:465268. [PMID: 39191182 DOI: 10.1016/j.chroma.2024.465268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Electrospun cellulose adsorbents are an emergent class of materials applied to a variety of bioprocess separations as an analogue to conventional packed bed chromatography. Electrospun adsorbents have proven to be effective as rapid cycling media, enabling high throughput separation of proteins and viral vectors without compromising selectivity and recovery. However, there is a current lack of knowledge in relation to the manipulation and control of electrospun adsorbent structure with function and performance to cater to the separation needs of emerging, diverse biological products. In this study, a series of electrospun cellulose adsorbents were fabricated by adjusting their manufacturing conditions. A range of fiber diameters (400 to 600 nm) was created by changing the electrospinning polymer solution. Additionally, a range of porosities (0.4 to 0.7 v/v) was achieved by varying the laminating pressures on the electrospun sheets. The adsorbents were functionalized with different degrees of quaternary amine ligand density to create 18 prototype anion exchangers. Their morphology was characterized by BET nitrogen adsorption surface area, X-ray computed tomography, capillary flow porometry and scanning electron microscopy measurements. The physical characteristics of the adsorbents were used in an adapted semi-empirical model and compared to measured permeability data. Permeabilities of prototypes ranged from 10-2 to 10-4 mDarcy. The measured data showed good adherence to modelled data with possible improvements in acquiring wet adsorbent characteristics instead of dried material. Finally, the electrospun adsorbents were characterized for their binding capacity of model proteins of different sizes (diameters of 3.5 nm and 8.9 nm) and plasmid DNA. Static binding capacities ranged from 5 mg/ml to 25 mg/ml for the proteins and plasmid DNA and showed <20 % deviation from monolayer coverage based on BET surface area. Therefore, it was concluded that the electrospun adsorbents most likely adsorb monolayers of proteins and plasmid DNA on the surface with minimal steric hindrance.
Collapse
Affiliation(s)
- Gyorgy Ovari
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT UK.
| | - Thomas F Johnson
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT UK
| | - Farzad Foroutan
- Cytiva, Sycamore House, Gunnels Wood Road, Stevenage, SG1 2BP UK
| | | | - Matthew Townsend
- Cytiva, Sycamore House, Gunnels Wood Road, Stevenage, SG1 2BP UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT UK
| |
Collapse
|
2
|
Sripada SA, Hosseini M, Ramesh S, Wang J, Ritola K, Menegatti S, Daniele MA. Advances and opportunities in process analytical technologies for viral vector manufacturing. Biotechnol Adv 2024; 74:108391. [PMID: 38848795 DOI: 10.1016/j.biotechadv.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Mahshid Hosseini
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Junhyeong Wang
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Kimberly Ritola
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center, North Carolina State University, 890 Main Campus Dr, Raleigh, NC 27695, USA.
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA.
| |
Collapse
|
3
|
Hengelbrock A, Probst F, Baukmann S, Uhl A, Tschorn N, Stitz J, Schmidt A, Strube J. Digital Twin for Continuous Production of Virus-like Particles toward Autonomous Operation. ACS OMEGA 2024; 9:34990-35013. [PMID: 39157157 PMCID: PMC11325504 DOI: 10.1021/acsomega.4c04985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024]
Abstract
Lentiviral vector and virus-like particle (VLP) manufacturing have been published in fed-batch upstream and batch downstream modes before. Batch downstream and continuous upstream in perfusion mode were reported as well. This study exemplifies development and validation steps for a digital twin combining a physical-chemical-based mechanistic model for all unit operations with a process analytical technology strategy in order to show the efforts and benefits of autonomous operation approaches for manufacturing scale. As the general models are available from various other biologic manufacturing studies, the main step is model calibration for the human embryo kidney cell-based VLPs with experimental quantitative validation within the Quality-by-Design (QbD) approach, including risk assessment to define design and control space. For continuous operation in perfusion mode, the main challenge is the efficient separation of large particle manifolds for VLPs and cells, including cell debris, which is of similar size. Here, innovative tangential flow filtration operations are needed to avoid fast blocking with low mechanical stress pumps. A twofold increase of productivity was achieved using simulation case studies. This increase is similar to improvements previously described for other entities like plasmid DNAs, monoclonal antibodies (mAbs), and single-chain fragments of variability (scFv) fragments. The advantages of applying a digital twin for an advanced process control strategy have proven additional productivity gains of 20% at 99.9% reliability.
Collapse
Affiliation(s)
- Alina Hengelbrock
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Finja Probst
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Simon Baukmann
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Alexander Uhl
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Natalie Tschorn
- Faculty
of Applied Natural Sciences, Technische
Hochschule Köln, Leverkusen 51379, Germany
| | - Jörn Stitz
- Faculty
of Applied Natural Sciences, Technische
Hochschule Köln, Leverkusen 51379, Germany
| | - Axel Schmidt
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| | - Jochen Strube
- Institute
for Separation and Process Technology, Clausthal
University of Technology, Clausthal 38678, Zellerfeld, Germany
| |
Collapse
|
4
|
Perry C, Mujahid N, Takeuchi Y, Rayat ACME. Insights into product and process related challenges of lentiviral vector bioprocessing. Biotechnol Bioeng 2024; 121:2466-2481. [PMID: 37526313 DOI: 10.1002/bit.28498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023]
Abstract
Lentiviral vectors (LVs) are used in advanced therapies to transduce recipient cells for long term gene expression for therapeutic benefit. The vector is commonly pseudotyped with alternative viral envelope proteins to improve tropism and is selected for enhanced functional titers. However, their impact on manufacturing and the success of individual bioprocessing unit operations is seldom demonstrated. To the best of our knowledge, this is the first study on the processability of different Lentiviral vector pseudotypes. In this work, we compared three envelope proteins commonly pseudotyped with LVs across manufacturing conditions such as temperature and pump flow and across steps common to downstream processing. We have shown impact of filter membrane chemistry on vector recoveries with differing envelopes during clarification and observed complete vector robustness in high shear manufacturing environments using ultra scale-down technologies. The impact of shear during membrane filtration in a tangential flow filtration-mimic showed the benefit of employing higher shear rates, than currently used in LV production, to increase vector recovery. Likewise, optimized anion exchange chromatography purification in monolith format was determined. The results contradict a common perception that lentiviral vectors are susceptible to shear or high salt concentration (up to 1.7 M). This highlights the prospects of improving LV recovery by evaluating manufacturing conditions that contribute to vector losses for specific production systems.
Collapse
Affiliation(s)
- Christopher Perry
- Department of Biochemical Engineering, University College London, London, UK
- Division of Infection and Immunology, University College London, London, UK
- Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, UK
| | - Noor Mujahid
- Department of Biochemical Engineering, University College London, London, UK
| | - Yasu Takeuchi
- Division of Infection and Immunology, University College London, London, UK
- Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, UK
| | - Andrea C M E Rayat
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
5
|
Lavoie J, Fan J, Pourdeyhimi B, Boi C, Carbonell RG. Advances in high-throughput, high-capacity nonwoven membranes for chromatography in downstream processing: A review. Biotechnol Bioeng 2024; 121:2300-2317. [PMID: 37256765 DOI: 10.1002/bit.28457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Nonwoven membranes are highly engineered fibrous materials that can be manufactured on a large scale from a wide range of different polymers, and their surfaces can be modified using a large variety of different chemistries and ligands. The fiber diameters, surface areas, pore sizes, total porosities, and thicknesses of the nonwoven mats can be carefully controlled, providing many opportunities for creative approaches for the development of novel membranes with unique properties to meet the needs of the future of downstream processing. Fibrous membranes are already finding use in ultrafiltration, microfiltration, depth filtration, and, more recently, in membrane chromatography for product capture and impurity removal. This article summarizes the various methods of manufacturing nonwoven fabrics, and the many methods available for the modification of the fiber surfaces. It also reviews recent studies focused on the use of nonwoven fabric devices in membrane chromatography and provides some perspectives on the challenges that need to be overcome to increase binding capacities, decrease residence times, and reduce pressure drops so that eventually they can replace resin column chromatography in downstream process operations.
Collapse
Affiliation(s)
- Joseph Lavoie
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
| | - Jinxin Fan
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
| | - Behnam Pourdeyhimi
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- Nonwovens Institute, NC State University, Raleigh, North Carolina, USA
| | - Cristiana Boi
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- Department of Civil, Chemical, Environmental, and Materials Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Ruben G Carbonell
- Biomanufacturing Training and Education Center, NC State University, Raleigh, North Carolina, USA
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina, USA
- National Institute for Innovation for Manufacturing Biopharmaceuticals (NIIMBL), University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
Stibbs DJ, Silva Couto P, Takeuchi Y, Rafiq QA, Jackson NB, Rayat AC. Quasi-perfusion studies for intensified lentiviral vector production using a continuous stable producer cell line. Mol Ther Methods Clin Dev 2024; 32:101264. [PMID: 38827249 PMCID: PMC11141457 DOI: 10.1016/j.omtm.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024]
Abstract
Quasi-perfusion culture was employed to intensify lentiviral vector (LV) manufacturing using a continuous stable producer cell line in an 8-day process. Initial studies aimed to identify a scalable seeding density, with 3, 4, and 5 × 104 cells cm-2 providing similar specific productivities of infectious LV. Seeding at 3 × 104 cells cm-2 was selected, and the quasi-perfusion was modulated to minimize inhibitory metabolite accumulation and vector exposure at 37°C. Similar specific productivities of infectious LV and physical LV were achieved at 1, 2, and 3 vessel volumes per day (VVD), with 1 VVD selected to minimize downstream processing volumes. The optimized process was scaled 50-fold to 1,264 cm2 flasks, achieving similar LV titers. However, scaling up beyond this to a 6,320 cm2 multilayer flask reduced titers, possibly from suboptimal gas exchange. Across three independent processes in 25 cm2 to 6,320 cm2 flasks, reproducibility was high with a coefficient of variation of 7.7% ± 2.9% and 11.9% ± 3.0% for infectious and physical LV titers, respectively. The optimized flask process was successfully transferred to the iCELLis Nano (Cytiva) fixed-bed bioreactor, with quasi-perfusion at 1 VVD yielding 1.62 × 108 TU.
Collapse
Affiliation(s)
- Dale J. Stibbs
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Pedro Silva Couto
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
- Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines and Healthcare products Regulatory Agency, South Mimms EN6 3QC, Potters Bar, UK
| | - Qasim A. Rafiq
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Nigel B. Jackson
- Cytiva, 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, UK
| | - Andrea C.M.E. Rayat
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
7
|
Stibbs DJ, Silva Couto P, Takeuchi Y, Rafiq QA, Jackson NB, Rayat AC. Continuous manufacturing of lentiviral vectors using a stable producer cell line in a fixed-bed bioreactor. Mol Ther Methods Clin Dev 2024; 32:101209. [PMID: 38435128 PMCID: PMC10907162 DOI: 10.1016/j.omtm.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024]
Abstract
Continuous manufacturing of lentiviral vectors (LVs) using stable producer cell lines could extend production periods, improve batch-to-batch reproducibility, and eliminate costly plasmid DNA and transfection reagents. A continuous process was established by expanding cells constitutively expressing third-generation LVs in the iCELLis Nano fixed-bed bioreactor. Fixed-bed bioreactors provide scalable expansion of adherent cells and enable a straightforward transition from traditional surface-based culture vessels. At 0.5 vessel volume per day (VVD), the short half-life of LVs resulted in a low total infectious titer at 1.36 × 104 TU cm-2. Higher perfusion rates increased titers, peaking at 7.87 × 104 TU cm-2 at 1.5 VVD. The supernatant at 0.5 VVD had a physical-to-infectious particle ratio of 659, whereas this was 166 ± 15 at 1, 1.5, and 2 VVD. Reducing the pH from 7.20 to 6.85 at 1.5 VVD improved the total infectious yield to 9.10 × 104 TU cm-2. Three independent runs at 1.5 VVD and a culture pH of 6.85 showed low batch-to-batch variability, with a coefficient of variation of 6.4% and 10.0% for total infectious and physical LV yield, respectively. This study demonstrated the manufacture of high-quality LV supernatant using a stable producer cell line that does not require induction.
Collapse
Affiliation(s)
- Dale J. Stibbs
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Pedro Silva Couto
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
- Biotherapeutics and Advanced Therapies, Scientific Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar EN6 3QC, UK
| | - Qasim A. Rafiq
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Nigel B. Jackson
- Cytiva, 5 Harbourgate Business Park, Southampton Road, Portsmouth PO6 4BQ, UK
| | - Andrea C.M.E. Rayat
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
8
|
Barbieri E, Mollica GN, Moore BD, Sripada SA, Shastry S, Kilgore RE, Loudermilk CM, Whitacre ZH, Kilgour KM, Wuestenhagen E, Aldinger A, Graalfs H, Rammo O, Schulte MM, Johnson TF, Daniele MA, Menegatti S. Peptide ligands targeting the vesicular stomatitis virus G (VSV-G) protein for the affinity purification of lentivirus particles. Biotechnol Bioeng 2024; 121:618-639. [PMID: 37947118 DOI: 10.1002/bit.28594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
The recent uptick in the approval of ex vivo cell therapies highlights the relevance of lentivirus (LV) as an enabling viral vector of modern medicine. As labile biologics, however, LVs pose critical challenges to industrial biomanufacturing. In particular, LV purification-currently reliant on filtration and anion-exchange or size-exclusion chromatography-suffers from long process times and low yield of transducing particles, which translate into high waiting time and cost to patients. Seeking to improve LV downstream processing, this study introduces peptides targeting the enveloped protein Vesicular stomatitis virus G (VSV-G) to serve as affinity ligands for the chromatographic purification of LV particles. An ensemble of candidate ligands was initially discovered by implementing a dual-fluorescence screening technology and a targeted in silico approach designed to identify sequences with high selectivity and tunable affinity. The selected peptides were conjugated on Poros resin and their LV binding-and-release performance was optimized by adjusting the flow rate, composition, and pH of the chromatographic buffers. Ligands GKEAAFAA and SRAFVGDADRD were selected for their high product yield (50%-60% of viral genomes; 40%-50% of HT1080 cell-transducing particles) upon elution in PIPES buffer with 0.65 M NaCl at pH 7.4. The peptide-based adsorbents also presented remarkable values of binding capacity (up to 3·109 TU per mL of resin, or 5·1011 vp per mL of resin, at the residence time of 1 min) and clearance of host cell proteins (up to a 220-fold reduction of HEK293 HCPs). Additionally, GKEAAFAA demonstrated high resistance to caustic cleaning-in-place (0.5 M NaOH, 30 min) with no observable loss in product yield and quality.
Collapse
Affiliation(s)
- Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Gina N Mollica
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Casee M Loudermilk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Zachary H Whitacre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Katie M Kilgour
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | | | | - Thomas F Johnson
- Department of Biochemical Engineering, University College London, London, UK
| | - Michael A Daniele
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- LigaTrap Technologies LLC, Raleigh, North Carolina, USA
| |
Collapse
|
9
|
Kilgore R, Minzoni A, Shastry S, Smith W, Barbieri E, Wu Y, LeBarre JP, Chu W, O'Brien J, Menegatti S. The downstream bioprocess toolbox for therapeutic viral vectors. J Chromatogr A 2023; 1709:464337. [PMID: 37722177 DOI: 10.1016/j.chroma.2023.464337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
Viral vectors are poised to acquire a prominent position in modern medicine and biotechnology owing to their role as delivery agents for gene therapies, oncolytic agents, vaccine platforms, and a gateway to engineer cell therapies as well as plants and animals for sustainable agriculture. The success of viral vectors will critically depend on the availability of flexible and affordable biomanufacturing strategies that can meet the growing demand by clinics and biotech companies worldwide. In this context, a key role will be played by downstream process technology: while initially adapted from protein purification media, the purification toolbox for viral vectors is currently undergoing a rapid expansion to fit the unique biomolecular characteristics of these products. Innovation efforts are articulated on two fronts, namely (i) the discovery of affinity ligands that target adeno-associated virus, lentivirus, adenovirus, etc.; (ii) the development of adsorbents with innovative morphologies, such as membranes and 3D printed monoliths, that fit the size of viral vectors. Complementing these efforts are the design of novel process layouts that capitalize on novel ligands and adsorbents to ensure high yield and purity of the product while safeguarding its therapeutic efficacy and safety; and a growing panel of analytical methods that monitor the complex array of critical quality attributes of viral vectors and correlate them to the purification strategies. To help explore this complex and evolving environment, this study presents a comprehensive overview of the downstream bioprocess toolbox for viral vectors established in the last decade, and discusses present efforts and future directions contributing to the success of this promising class of biological medicines.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Will Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Juliana O'Brien
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States; North Carolina Viral Vector Initiative in Research and Learning, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
10
|
Moreira AS, Bezemer S, Faria TQ, Detmers F, Hermans P, Sierkstra L, Coroadinha AS, Peixoto C. Implementation of Novel Affinity Ligand for Lentiviral Vector Purification. Int J Mol Sci 2023; 24:3354. [PMID: 36834764 PMCID: PMC9966744 DOI: 10.3390/ijms24043354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
The use of viral vectors as therapeutic products for multiple applications such as vaccines, cancer treatment, or gene therapies, has been growing exponentially. Therefore, improved manufacturing processes are needed to cope with the high number of functional particles required for clinical trials and, eventually, commercialization. Affinity chromatography (AC) can be used to simplify purification processes and generate clinical-grade products with high titer and purity. However, one of the major challenges in the purification of Lentiviral vectors (LVs) using AC is to combine a highly specific ligand with a gentle elution condition assuring the preservation of vector biological activity. In this work, we report for the first time the implementation of an AC resin to specifically purify VSV-G pseudotyped LVs. After ligand screening, different critical process parameters were assessed and optimized. A dynamic capacity of 1 × 1011 total particles per mL of resin was determined and an average recovery yield of 45% was found for the small-scale purification process. The established AC robustness was confirmed by the performance of an intermediate scale providing an infectious particles yield of 54%, which demonstrates the scalability and reproducibility of the AC matrix. Overall, this work contributes to increasing downstream process efficiency by delivering a purification technology that enables high purity, scalability, and process intensification in a single step, contributing to time-to-market reduction.
Collapse
Affiliation(s)
- Ana Sofia Moreira
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- ITQB Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sandra Bezemer
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | - Tiago Q. Faria
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Frank Detmers
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | - Pim Hermans
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | | | - Ana Sofia Coroadinha
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Cristina Peixoto
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| |
Collapse
|
11
|
Paganini C, Capasso Palmiero U, Picciotto S, Molinelli A, Porello I, Adamo G, Manno M, Bongiovanni A, Arosio P. High-Yield Separation of Extracellular Vesicles Using Programmable Zwitterionic Coacervates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204736. [PMID: 36367966 DOI: 10.1002/smll.202204736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Programmable coacervates based on zwitterionic polymers are designed as dynamic materials for ion exchange bioseparation. These coacervates are proposed as promising materials for the purification of soft nanoparticles such as liposomes and extracellular vesicles (EVs). It is shown that the stimulus-responsiveness of the coacervates and the recruitment of desired molecules can be independently programmed by polymer design. Moreover, the polymeric coacervates can recruit and release intact liposomes, human EVs, and nanoalgosomes in high yields and separate vesicles from different types of impurities, including proteins and nucleic acids. This approach combines the speed and simplicity of precipitation methods and the programmability of chromatography with the gentleness of aqueous two-phase separation, thereby guaranteeing product stability. This material represents a promising alternative for providing a low-shear, gentle, and selective purification method for EVs.
Collapse
Affiliation(s)
- Carolina Paganini
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Sabrina Picciotto
- Institute for Research and Biomedical Innovation, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, 90146, Italy
| | - Alessandro Molinelli
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Ilaria Porello
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Giorgia Adamo
- Institute for Research and Biomedical Innovation, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation, National Research Council of Italy, Via Ugo la Malfa 153, Palermo, 90146, Italy
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| |
Collapse
|
12
|
Fan J, Barbieri E, Shastry S, Menegatti S, Boi C, Carbonell RG. Purification of Adeno-Associated Virus (AAV) Serotype 2 from Spodoptera frugiperda (Sf9) Lysate by Chromatographic Nonwoven Membranes. MEMBRANES 2022; 12:membranes12100944. [PMID: 36295703 PMCID: PMC9606886 DOI: 10.3390/membranes12100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/02/2023]
Abstract
The success of adeno-associated virus (AAV)-based therapeutics in gene therapy poses the need for rapid and efficient processes that can support the growing clinical demand. Nonwoven membranes represent an ideal tool for the future of virus purification: owing to their small fiber diameters and high porosity, they can operate at high flowrates while allowing full access to target viral particles without diffusional limitations. This study describes the development of nonwoven ion-exchange membrane adsorbents for the purification of AAV2 from an Sf9 cell lysate. A strong anion-exchange (AEX) membrane was developed by UV grafting glycidyl methacrylate on a polybutylene terephthalate nonwoven followed by functionalization with triethylamine (TEA), resulting in a quaternary amine ligand (AEX-TEA membrane). When operated in bind-and-elute mode at a pH higher than the pI of the capsids, this membrane exhibited a high AAV2 binding capacity (9.6 × 1013 vp·mL-1) at the residence time of 1 min, and outperformed commercial cast membranes by isolating AAV2 from an Sf9 lysate with high productivity (2.4 × 1013 capsids·mL-1·min-1) and logarithmic reduction value of host cell proteins (HCP LRV ~ 1.8). An iminodiacetic acid cation-exchange nonwoven (CEX-IDA membrane) was also prepared and utilized at a pH lower than the pI of capsids to purify AAV2 in a bind-and-elute mode, affording high capsid recovery and impurity removal by eluting with a salt gradient. To further increase purity, the CEX-IDA and AEX-TEA membranes were utilized in series to purify the AAV2 from the Sf9 cell lysate. This membrane-based chromatography process also achieved excellent DNA clearance and a recovery of infectivity higher that that reported using ion-exchange resin chromatography.
Collapse
Affiliation(s)
- Jinxin Fan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Shriarjun Shastry
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
| | - Cristiana Boi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
- Department of Civil, Chemical Environmental and Materials Engineering, DICAM, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Ruben G. Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27606, USA
- National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), Newark, DE 19711, USA
| |
Collapse
|
13
|
Ghosh R, Koley S, Gopal S, Rodrigues AL, Dordick JS, Cramer SM. Evaluation of Lentiviral Vector Stability and Development of Ion Exchange Purification Processes. Biotechnol Prog 2022; 38:e3286. [PMID: 35808852 DOI: 10.1002/btpr.3286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/05/2022]
Abstract
In this manuscript we employ parallel batch stability and chromatographic screens in concert with linear and step gradient experiments to develop a high yield, HCP clearance anion exchange capture process for lentiviral vector (LVV) purification. An initial broad resin screen is carried out to determine anion exchange-based resins that exhibit high recovery of LVV. LVV stability is then evaluated and conditions are established where the vector exhibits good stability, namely phosphate buffer at pH 6.5-7.5, with low to moderate salt concentrations. A subsequent high-throughput batch screen is then carried out with a subset of resins selected from the first screen under stable conditions to identify optimal wash and elution steps to further improve product yield and protein clearance. Linear gradient experiments are also conducted in mini-column format to refine the operating conditions and final step gradient processes are established that exhibit greater than 70% yield of infectious LVV while also achieving up to 2.89 log reduction values (LRV) of HCPs during the process. The large set of stability and chromatographic data provided in this work represent an important contribution to knowledge in the field about the chromatographic efficacy of a wide range of resins for LVV bioprocessing under stable conditions.
Collapse
Affiliation(s)
- Ronit Ghosh
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sushmita Koley
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sneha Gopal
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Andre L Rodrigues
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Steven M Cramer
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
14
|
Labisch JJ, Kassar M, Bollmann F, Valentic A, Hubbuch J, Pflanz K. Steric exclusion chromatography of lentiviral vectors using hydrophilic cellulose membranes. J Chromatogr A 2022; 1674:463148. [DOI: 10.1016/j.chroma.2022.463148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
|
15
|
A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste)water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Shi R, Jia S, Liu H, Nie H. Clinical grade lentiviral vector purification and quality control requirements. J Sep Sci 2022; 45:2093-2101. [PMID: 35247228 DOI: 10.1002/jssc.202100937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/10/2022]
Abstract
Lentiviral vectors have been proven to be a powerful tool in gene therapies that includes the ability to perform long-term gene editing in both dividing and non-dividing cells. In order to meet the rising demand of clinical grade lentiviral vectors for future clinical trials and requirements by regulatory agencies, new methods and technologies were developed, including the rapid optimization of production and purification processes. However, gaps still exist in achieving ideal yields and recovery rates in large-scale manufacturing process steps. The downstream purification process is a critical step required to obtain sufficient quantity and high-quality lentiviral vectors products, which is challenged by the low stability of the LV particles and large production volumes associated with the manufacturing process. This review summarizes the most recent and promising technologies and enhancements used in the large-scale purification process step of LV manufacturing and aims to provide a significant contribution towards the achievement of providing sufficient quantity and quality of LVs in scalable processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ruina Shi
- Immunochina Pharmaceutical Co., Ltd., Beijing, China
| | - Shenghua Jia
- Immunochina Pharmaceutical Co., Ltd., Beijing, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Analytical Instrumental Center, Peking University, Beijing, China
| |
Collapse
|
17
|
Shaburova EV, Lanshakov DA. Effective Transduction of Brain Neurons with Lentiviral Vectors Purified via Ion-Exchange Chromatography. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821080044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Comisel RM, Kara B, Fiesser FH, Farid SS. Gene therapy process change evaluation framework: Transient transfection and stable producer cell line comparison. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Moreira A, Faria T, Oliveira J, Kavara A, Schofield M, Sanderson T, Collins M, Gantier R, Alves P, Carrondo M, Peixoto C. Enhancing the purification of Lentiviral vectors for clinical applications. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Rout-Pitt N, Donnelley M, Parsons D. In vitro optimization of miniature bronchoscope lentiviral vector delivery for the small animal lung. Exp Lung Res 2021; 47:417-425. [PMID: 34632894 DOI: 10.1080/01902148.2021.1989523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Current gene therapy delivery protocols for small animal lungs typically utilize indirect dose delivery via the nasal airways, or bolus delivery directly into the trachea. Both methods can result in variable transduction throughout the lung, as well as between animals, and cannot be applied in a targeted manner. To minimize variability and improve lung coverage we previously developed and validated a method to visualize and dose gene vectors into pre-selected lobes of rat lungs using a mini-bronchoscope. Lentiviral (LV) vectors are known to be fragile and can be inactivated easily by temperature or the application of shear stresses. There are several ways that the bronchoscope could be configured to deliver the LV vector, and these could result in different amounts of functional LV vector being delivered to the lung. This study evaluated several methods of LV vector delivery through the bronchoscope, and how flow rates and LV vector stabilizing diluents impact LV vector delivery. NIH-3T3 cells were exposed to LV vector containing the green fluorescent protein (GFP) reporter gene using various bronchoscopic delivery techniques and the number of GFP-positive cells produced by each was quantified by flow cytometry. The results showed that directly drawing the LV vector into the bronchoscope tip resulted in 80-90% recovery of viable vector, and was also the simplest method of delivery. The fluid delivery rate and the use of stabilizing serum in the vector diluent had no effect on the viability of the LV vector delivered. These findings can be used to optimize LV vector dose delivery into individual lung lobes of small animal models.
Collapse
Affiliation(s)
- Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia
| |
Collapse
|
21
|
Lentiviral Vectors for T Cell Engineering: Clinical Applications, Bioprocessing and Future Perspectives. Viruses 2021; 13:v13081528. [PMID: 34452392 PMCID: PMC8402758 DOI: 10.3390/v13081528] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lentiviral vectors have played a critical role in the emergence of gene-modified cell therapies, specifically T cell therapies. Tisagenlecleucel (Kymriah), axicabtagene ciloleucel (Yescarta) and most recently brexucabtagene autoleucel (Tecartus) are examples of T cell therapies which are now commercially available for distribution after successfully obtaining EMA and FDA approval for the treatment of blood cancers. All three therapies rely on retroviral vectors to transduce the therapeutic chimeric antigen receptor (CAR) into T lymphocytes. Although these innovations represent promising new therapeutic avenues, major obstacles remain in making them readily available tools for medical care. This article reviews the biological principles as well as the bioprocessing of lentiviral (LV) vectors and adoptive T cell therapy. Clinical and engineering successes, shortcomings and future opportunities are also discussed. The development of Good Manufacturing Practice (GMP)-compliant instruments, technologies and protocols will play an essential role in the development of LV-engineered T cell therapies.
Collapse
|
22
|
Winderl J, Bürkle S, Hubbuch J. High throughput screening of fiber-based adsorbents for material and process development. J Chromatogr A 2021; 1653:462387. [PMID: 34375899 DOI: 10.1016/j.chroma.2021.462387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
There has been a growing interest in fibers and fiber-based adsorbents as alternative adsorbents for preparative chromatography. While the benefits of fiber-based adsorbents in terms of productivity have been highlighted in several recent studies, microscale tools that enable a fast characterization of these novel adsorbents, and an easy integration into process development workflows, are still lacking. In the present study an automated high-throughput screening (HTS) for fiber-based adsorbents was established on a robotic liquid handling station in 96 well filter plates. Two techniques - punching and weighing - were identified as techniques that enabled accurate and reproducible portioning of short-cut fiber-based adsorbents. The impact of several screening parameters such as phase ratio, shaking frequency, and incubation time were investigated and optimized for different types of fiber-based adsorbents. The data from the developed HTS correlated with data from packed fiber columns, and binding capacities from both scales matched closely. Subsequently, the developed HTS was utilized to optimize the hydrogel architecture of anion exchange (AEX) fiber-based adsorbent prototypes. A novel AEX fiber-based adsorbent was developed that compared favorably with existing resin and membrane adsorbents in terms of productivity and DNA binding capacity. In addition, the developed HTS was also successfully employed in order to identify step elution conditions for the purification of a monoclonal antibody from product- and process-related impurities with a cation exchange (CEX) fiber-based adsorbent. Trends from the HTS were found to be in good agreement with trends from lab scale column runs. The tool developed in this paper will enable a faster and more complete characterization of fiber-based adsorbents, easier tailoring of such adsorbents towards specific process applications, and an easier integration of such materials into processes. In comparison to previous lab scale experiments, material requirements are reduced by a factor of 3-40 and time requirements are reduced by a factor of 2-5.
Collapse
Affiliation(s)
- Johannes Winderl
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Stephan Bürkle
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
23
|
Labisch JJ, Wiese GP, Barnes K, Bollmann F, Pflanz K. Infectious titer determination of lentiviral vectors using a temporal immunological real-time imaging approach. PLoS One 2021; 16:e0254739. [PMID: 34265014 PMCID: PMC8281989 DOI: 10.1371/journal.pone.0254739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022] Open
Abstract
The analysis of the infectious titer of the lentiviral vector samples obtained during upstream and downstream processing is of major importance, however, also the most challenging method to be performed. Currently established methods like flow cytometry or qPCR lack the capability of enabling high throughput sample processing while they require a lot of manual handling. To address this limitation, we developed an immunological real-time imaging method to quantify the infectious titer of anti-CD19 CAR lentiviral vectors with a temporal readout using the Incucyte® S3 live-cell analysis system. The infective titers determined with the Incucyte® approach when compared with the flow cytometry-based assay had a lower standard deviation between replicates and a broader linear range. A major advantage of the method is the ability to obtain titer results in real-time, enabling an optimal readout time. The presented protocol significantly decreased labor and increased throughput. The ability of the assay to process high numbers of lentiviral samples in a high throughput manner was proven by performing a virus stability study, demonstrating the effects of temperature, salt, and shear stress on LV infectivity.
Collapse
Affiliation(s)
- Jennifer J. Labisch
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, Göttingen, Lower Saxony, Germany
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Lower Saxony, Germany
| | - G. Philip Wiese
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, Göttingen, Lower Saxony, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany
| | - Kalpana Barnes
- BioAnalytics Applications, Essen BioScience, Royston, Hertfordshire, United Kingdom
| | - Franziska Bollmann
- Segment Marketing Viral-based Therapeutics, Sartorius Stedim Biotech GmbH, Göttingen, Lower Saxony, Germany
| | - Karl Pflanz
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, Göttingen, Lower Saxony, Germany
| |
Collapse
|
24
|
Comisel RM, Kara B, Fiesser FH, Farid SS. Lentiviral vector bioprocess economics for cell and gene therapy commercialization. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Perry C, Rayat ACME. Lentiviral Vector Bioprocessing. Viruses 2021; 13:268. [PMID: 33572347 PMCID: PMC7916122 DOI: 10.3390/v13020268] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Lentiviral vectors (LVs) are potent tools for the delivery of genes of interest into mammalian cells and are now commonly utilised within the growing field of cell and gene therapy for the treatment of monogenic diseases and adoptive therapies such as chimeric antigen T-cell (CAR-T) therapy. This is a comprehensive review of the individual bioprocess operations employed in LV production. We highlight the role of envelope proteins in vector design as well as their impact on the bioprocessing of lentiviral vectors. An overview of the current state of these operations provides opportunities for bioprocess discovery and improvement with emphasis on the considerations for optimal and scalable processing of LV during development and clinical production. Upstream culture for LV generation is described with comparisons on the different transfection methods and various bioreactors for suspension and adherent producer cell cultivation. The purification of LV is examined, evaluating different sequences of downstream process operations for both small- and large-scale production requirements. For scalable operations, a key focus is the development in chromatographic purification in addition to an in-depth examination of the application of tangential flow filtration. A summary of vector quantification and characterisation assays is also presented. Finally, the assessment of the whole bioprocess for LV production is discussed to benefit from the broader understanding of potential interactions of the different process options. This review is aimed to assist in the achievement of high quality, high concentration lentiviral vectors from robust and scalable processes.
Collapse
Affiliation(s)
- Christopher Perry
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Andrea C. M. E. Rayat
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
| |
Collapse
|
26
|
|
27
|
3D-printed ordered bed structures for chromatographic purification of enveloped and non-enveloped viral particles. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Moreira AS, Cavaco DG, Faria TQ, Alves PM, Carrondo MJT, Peixoto C. Advances in Lentivirus Purification. Biotechnol J 2020; 16:e2000019. [PMID: 33089626 DOI: 10.1002/biot.202000019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022]
Abstract
Lentiviral vectors (LVs) have been increasingly used as a tool for gene and cell therapies since they can stably integrate the genome in dividing and nondividing cells. LV production and purification processes have evolved substantially over the last decades. However, the increasing demands for higher quantities with more restrictive purity requirements are stimulating the development of novel materials and strategies to supply the market with LV in a cost-effective manner. A detailed review of each downstream process unit operation is performed, limitations, strengths, and potential outcomes being covered. Currently, the majority of large-scale LV manufacturing processes are still based on adherent cell culture, although it is known that the industry is migrating fast to suspension cultures. Regarding the purification strategy, it consists of batch chromatography and membrane technology. Nevertheless, new solutions are being created to improve the current production schemes and expand its clinical use.
Collapse
Affiliation(s)
- Ana Sofia Moreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - David Guia Cavaco
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Tiago Q Faria
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| |
Collapse
|
29
|
Labisch JJ, Bollmann F, Wolff MW, Pflanz K. A new simplified clarification approach for lentiviral vectors using diatomaceous earth improves throughput and safe handling. J Biotechnol 2020; 326:11-20. [PMID: 33301854 DOI: 10.1016/j.jbiotec.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/22/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Lentiviral vectors have proven their great potential to serve as a DNA delivery tool for gene modified cell therapy and gene therapy applications. The downstream processing of these vectors is however still a great challenge, particularly because of the low stability of the virus. Harvesting and clarification are critical and until now insufficiently characterized steps for lentivirus processing. To address this bottleneck, we analyzed whether lentiviral vectors produced by transient transfection of HEK293 T/17 SF suspension cells can be efficiently clarified with a lab-scale method with the filter aid diatomaceous earth (DE) and bioburden reducing membrane filters achieving high lentivirus recoveries. Using a design of experiment approach we found that higher DE concentrations are advantageous for a higher turbidity reduction and shorter filtration times, but at the same time LV titer decreases with increasing DE concentration. A DE concentration of 9 g/L was identified with a DoE as a robust set-point. Clarification with DE was compared with for lab-scale traditionally employed centrifugation and subsequent bioburden reduction filtration of viral vectors. The use of DE allows to perform a harvest and clarification process, which does not only facilitate faster and safer virus handling, but enables a lower material consumption due to the extremely increased filter capacity, thus representing an efficient and robust lab-scale clarification process.
Collapse
Affiliation(s)
- Jennifer J Labisch
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstr. 5, 30167, Hannover, Germany; Research & Development, Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Goettingen, Germany.
| | - Franziska Bollmann
- Research & Development, Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Goettingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr. 14, 35390, Giessen, Germany
| | - Karl Pflanz
- Research & Development, Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Goettingen, Germany
| |
Collapse
|
30
|
Moleirinho MG, Silva RJS, Alves PM, Carrondo MJT, Peixoto C. Current challenges in biotherapeutic particles manufacturing. Expert Opin Biol Ther 2019; 20:451-465. [PMID: 31773998 DOI: 10.1080/14712598.2020.1693541] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The development of novel complex biotherapeutics led to new challenges in biopharmaceutical industry. The potential of these particles has been demonstrated by the approval of several products, in the different fields of gene therapy, oncolytic therapy, and tumor vaccines. However, their manufacturing still presents challenges related to the high dosages and purity required.Areas covered: The main challenges that biopharmaceutical industry faces today and the most recent developments in the manufacturing of different biotherapeutic particles are reported here. Several unit operations and downstream trains to purify virus, virus-like particles and extracellular vesicles are described. Innovations on the different purification steps are also highlighted with an eye on the implementation of continuous and integrated processes.Expert opinion: Manufacturing platforms that consist of a low number of unit operations, with higher-yielding processes and reduced costs will be highly appreciated by the industry. The pipeline of complex therapeutic particles is expanding and there is a clear need for advanced tools and manufacturing capacity. The use of single-use technologies, as well as continuous integrated operations, are gaining ground in the biopharmaceutical industry and should be supported by more accurate and faster analytical methods.
Collapse
Affiliation(s)
- Mafalda G Moleirinho
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Ricardo J S Silva
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Manuel J T Carrondo
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Cristina Peixoto
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| |
Collapse
|