1
|
Abbasi M, Amini M, Moustardas P, Gutsmiedl Q, Javidjam D, Suiwal S, Seitz B, Fries FN, Dashti A, Rautavaara Y, Stachon T, Szentmáry N, Lagali N. Effects of miR-204-5p modulation on PAX6 regulation and corneal inflammation. Sci Rep 2024; 14:26436. [PMID: 39488562 PMCID: PMC11531487 DOI: 10.1038/s41598-024-76654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
Congenital aniridia is a rare eye disease characterized by loss of PAX6 protein leading to aniridia-associated keratopathy that significantly reduces vision. The miR-204-5p is a possible regulator of PAX6 function and here we evaluate its effect in multiple in vitro and in vivo models. In vitro, miR-204-5p overexpression suppressed vascular factor ANGPT1 in human limbal stem cells (T-LSC) and Pax6-knockdown LSC (mut-LSC), and in primary human limbal epithelial cells (LEC) at the gene and protein levels and following LPS stimulation. However, miR-204-5p inhibited VEGFA expression only in mut-LSCs and LPS-stimulated LEC. Also, miR-204-5p increased PAX6 expression in mut-LSC and differentiated corneal epithelial cells, but not in LEC. Topical miR-204-5p after LPS-induced keratitis in mice failed to suppress Vegfa, Angpt1, Il-1β, and Tnf-α or rescue Pax6 levels in contrast to in vitro results, although it significantly reduced the inflammatory infiltrate in the cornea. In Pax6Sey/+ aniridia mice, miR-204-5p did not rescue PAX6 levels or suppress Vegfa, Angpt1, or inhibit the ERK1/2 pathway. While short-term miR-204-5p treatment effectively suppresses VEGFA and ANGPT1 and enhances PAX6 expression in multiple corneal epithelia, effects are variable across primary and immortalized cells. Effects of longer-term in vivo treatment, however, require further study.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Quirin Gutsmiedl
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Dina Javidjam
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Shweta Suiwal
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, 66424, Homburg/Saar, Germany
| | - Fabian N Fries
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
- Department of Ophthalmology, Saarland University Medical Center, 66424, Homburg/Saar, Germany
| | - Ava Dashti
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Yedizza Rautavaara
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, 66424, Homburg/Saar, Germany
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
2
|
Maurya R, Vikal A, Narang RK, Patel P, Kurmi BD. Recent advancements and applications of ophthalmic gene therapy strategies: A breakthrough in ocular therapeutics. Exp Eye Res 2024; 245:109983. [PMID: 38942133 DOI: 10.1016/j.exer.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Over the past twenty years, ocular gene therapy has primarily focused on addressing diseases linked to various genetic factors. The eye is an ideal candidate for gene therapy due to its unique characteristics, such as easy accessibility and the ability to target both corneal and retinal conditions, including retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), age-related macular degeneration (AMD), and Stargardt disease. Currently, literature documents 33 clinical trials in this field, with the most promising results emerging from trials focused on LCA. These successes have catalyzed further research into other ocular conditions such as glaucoma, AMD, RP, and choroideremia. The effectiveness of gene therapy relies on the efficient delivery of genetic material to specific cells, ensuring sustained and optimal gene expression over time. Viral vectors have been widely used for this purpose, although concerns about potential risks such as immune reactions and genetic mutations have led to the development of non-viral vector systems. Preliminary laboratory research and clinical investigations have shown a connection between vector dosage and the intensity of immune response and inflammation in the eye. The method of administration significantly influences these reactions, with subretinal delivery resulting in a milder humoral response compared to the intravitreal route. This review discusses various ophthalmic diseases, including both corneal and retinal conditions, and their underlying mechanisms, highlighting recent advances and applications in ocular gene therapies.
Collapse
Affiliation(s)
- Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India; ISF College of Pharmacy & Research, Rattian Road, Moga, 142048, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
3
|
Crombie EM, Korecki AJ, Cleverley K, Adair BA, Cunningham TJ, Lee WC, Lengyell TC, Maduro C, Mo V, Slade LM, Zouhair I, Fisher EMC, Simpson EM. Taf1 knockout is lethal in embryonic male mice and heterozygous females show weight and movement disorders. Dis Model Mech 2024; 17:dmm050741. [PMID: 38804708 PMCID: PMC11261634 DOI: 10.1242/dmm.050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The TATA box-binding protein-associated factor 1 (TAF1) is a ubiquitously expressed protein and the largest subunit of the basal transcription factor TFIID, which plays a key role in initiation of RNA polymerase II-dependent transcription. TAF1 missense variants in human males cause X-linked intellectual disability, a neurodevelopmental disorder, and TAF1 is dysregulated in X-linked dystonia-parkinsonism, a neurodegenerative disorder. However, this field has lacked a genetic mouse model of TAF1 disease to explore its mechanism in mammals and treatments. Here, we generated and validated a conditional cre-lox allele and the first ubiquitous Taf1 knockout mouse. We discovered that Taf1 deletion in male mice was embryonically lethal, which may explain why no null variants have been identified in humans. In the brains of Taf1 heterozygous female mice, no differences were found in gross structure, overall expression and protein localisation, suggesting extreme skewed X inactivation towards the non-mutant chromosome. Nevertheless, these female mice exhibited a significant increase in weight, weight with age, and reduced movement, suggesting that a small subset of neurons was negatively impacted by Taf1 loss. Finally, this new mouse model may be a future platform for the development of TAF1 disease therapeutics.
Collapse
Affiliation(s)
- Elisa M. Crombie
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Andrea J. Korecki
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Bethany A. Adair
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | | - Weaverly Colleen Lee
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Tess C. Lengyell
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Victor Mo
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Liam M. Slade
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Ines Zouhair
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
4
|
Fadul SM, Arshad A, Mehmood R. CRISPR-based epigenome editing: mechanisms and applications. Epigenomics 2023; 15:1137-1155. [PMID: 37990877 DOI: 10.2217/epi-2023-0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Epigenomic anomalies contribute significantly to the development of numerous human disorders. The development of epigenetic research tools is essential for understanding how epigenetic marks contribute to gene expression. A gene-editing technique known as CRISPR (clustered regularly interspaced short palindromic repeats) typically targets a particular DNA sequence using a guide RNA (gRNA). CRISPR/Cas9 technology has been remodeled for epigenome editing by generating a 'dead' Cas9 protein (dCas9) that lacks nuclease activity and juxtaposing it with an epigenetic effector domain. Based on fusion partners of dCas9, a specific epigenetic state can be achieved. CRISPR-based epigenome editing has widespread application in drug screening, cancer treatment and regenerative medicine. This paper discusses the tools developed for CRISPR-based epigenome editing and their applications.
Collapse
Affiliation(s)
- Shaima M Fadul
- Department of Life Sciences, College of Science & General Studies, Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Aleeza Arshad
- Medical Teaching Insitute, Ayub Teaching Hospital, Abbottabad, 22020, Pakistan
| | - Rashid Mehmood
- Department of Life Sciences, College of Science & General Studies, Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Gour A, Tibrewal S, Garg A, Vohra M, Ratna R, Sangwan VS. New horizons in aniridia management: Clinical insights and therapeutic advances. Taiwan J Ophthalmol 2023; 13:467-478. [PMID: 38249501 PMCID: PMC10798387 DOI: 10.4103/tjo.tjo-d-23-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 01/23/2024] Open
Abstract
Congenital aniridia is a rare genetic eye disorder characterized by the complete or partial absence of the iris from birth. Various theories and animal models have been proposed to understand and explain the pathogenesis of aniridia. In the majority of cases, aniridia is caused by a mutation in the PAX6 gene, which affects multiple structures within the eye. Treating these ocular complications is challenging and carries a high risk of side effects. However, emerging approaches for the treatment of aniridia-associated keratopathy, iris abnormalities, cataract abnormalities, and foveal hypoplasia show promise for improved outcomes. Genetic counseling plays a very important role to make informed choices. We also provide an overview of the newer diagnostic and therapeutic approaches such as next generation sequencing, gene therapy, in vivo silencing, and miRNA modulation.
Collapse
Affiliation(s)
- Abha Gour
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Eicher-Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Shailaja Tibrewal
- Department of Pediatric Ophthalmology and Strabismus, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Department of Ocular Genetics, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Aastha Garg
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Mehak Vohra
- Eicher-Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Ria Ratna
- Department of Ocular Genetics, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Virender Singh Sangwan
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Eicher-Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| |
Collapse
|
6
|
Mirjalili Mohanna SZ, Korecki AJ, Simpson EM. rAAV-PHP.B escapes the mouse eye and causes lethality whereas rAAV9 can transduce aniridic corneal limbal stem cells without lethality. Gene Ther 2023; 30:670-684. [PMID: 37072572 PMCID: PMC10506911 DOI: 10.1038/s41434-023-00400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023]
Abstract
Recently safety concerns have been raised in connection with high doses of recombinant adeno-associated viruses (rAAV). Therefore, we undertook a series of experiments to test viral capsid (rAAV9 and rAAV-PHP.B), dose, and route of administration (intrastromal, intravitreal, and intravenous) focused on aniridia, a congenital blindness that currently has no cure. The success of gene therapy for aniridia may depend on the presence of functional limbal stem cells (LSCs) in the damaged aniridic corneas and whether rAAV can transduce them. Both these concerns were unknown, and thus were also addressed by our studies. For the first time, we report ataxia and lethality after intravitreal or intrastromal rAAV-PHP.B virus injections. We demonstrated virus escape from the eye and transduction of non-ocular tissues by rAAV9 and rAAV-PHP.B capsids. We have also shown that intrastromal and intravitreal delivery of rAAV9 can transduce functional LSCs, as well as all four PAX6-expressing retinal cell types in aniridic eye, respectively. Overall, lack of adverse events and successful transduction of LSCs and retinal cells makes it clear that rAAV9 is the capsid of choice for future aniridia gene therapy. Our finding of rAAV lethality after intraocular injections will be impactful for other researchers developing rAAV-based gene therapies.
Collapse
Affiliation(s)
- Seyedeh Zeinab Mirjalili Mohanna
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
van Velthoven AJH, Utheim TP, Notara M, Bremond-Gignac D, Figueiredo FC, Skottman H, Aberdam D, Daniels JT, Ferrari G, Grupcheva C, Koppen C, Parekh M, Ritter T, Romano V, Ferrari S, Cursiefen C, Lagali N, LaPointe VLS, Dickman MM. Future directions in managing aniridia-associated keratopathy. Surv Ophthalmol 2023; 68:940-956. [PMID: 37146692 DOI: 10.1016/j.survophthal.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Congenital aniridia is a panocular disorder that is typically characterized by iris hypoplasia and aniridia-associated keratopathy (AAK). AAK results in the progressive loss of corneal transparency and thereby loss of vision. Currently, there is no approved therapy to delay or prevent its progression, and clinical management is challenging because of phenotypic variability and high risk of complications after interventions; however, new insights into the molecular pathogenesis of AAK may help improve its management. Here, we review the current understanding about the pathogenesis and management of AAK. We highlight the biological mechanisms involved in AAK development with the aim to develop future treatment options, including surgical, pharmacological, cell therapies, and gene therapies.
Collapse
Affiliation(s)
- Arianne J H van Velthoven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Dominique Bremond-Gignac
- Ophthalmology Department, University Hospital Necker-Enfants Malades, APHP, Paris Cité University, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | - Francisco C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, UK; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Daniel Aberdam
- Centre de Recherche des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | | | - Giulio Ferrari
- Cornea and Ocular Surface Unit, Eye Repair Lab, San Raffaele Hospital, Milan, Italy
| | - Christina Grupcheva
- Department of Ophthalmology and Visual Sciences, Medical University of Varna, Varna, Bulgaria
| | - Carina Koppen
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Mohit Parekh
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Thomas Ritter
- Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Brescia, Italy
| | | | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Vanessa L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Mor M Dickman
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
8
|
Adair BA, Korecki AJ, Djaksigulova D, Wagner PK, Chiu NY, Lam SL, Lengyell TC, Leavitt BR, Simpson EM. ABE8e Corrects Pax6-Aniridic Variant in Humanized Mouse ESCs and via LNPs in Ex Vivo Cortical Neurons. Ophthalmol Ther 2023; 12:2049-2068. [PMID: 37210469 PMCID: PMC10287867 DOI: 10.1007/s40123-023-00729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023] Open
Abstract
INTRODUCTION Aniridia is a rare congenital vision-loss disease caused by heterozygous variants in the PAX6 gene. There is no vision-saving therapy, but one exciting approach is to use CRISPR/Cas9 to permanently correct the causal genomic variants. Preclinical studies to develop such a therapy in animal models face the challenge of showing efficacy when binding human DNA. Thus, we hypothesized that a CRISPR gene therapy can be developed and optimized in humanized mouse embryonic stem cells (ESCs) that will be able to distinguish between an aniridia patient variant and nonvariant chromosome and lay the foundation for human therapy. METHODS To answer the challenge of binding human DNA, we proposed the "CRISPR Humanized Minimally Mouse Models" (CHuMMMs) strategy. Thus, we minimally humanized Pax6 exon 9, the location of the most common aniridia variant c.718C > T. We generated and characterized a nonvariant CHuMMMs mouse, and a CHuMMMs cell-based disease model, in which we tested five CRISPR enzymes for therapeutic efficacy. We then delivered the therapy via lipid nanoparticles (LNPs) to alter a second variant in ex vivo cortical primary neurons. RESULTS We successfully established a nonvariant CHuMMMs mouse and three novel CHuMMMs aniridia cell lines. We showed that humanization did not disrupt Pax6 function in vivo, as the mouse showed no ocular phenotype. We developed and optimized a CRISPR therapeutic strategy for aniridia in the in vitro system, and found that the base editor, ABE8e, had the highest correction of the patient variant at 76.8%. In the ex vivo system, the LNP-encapsulated ABE8e ribonucleoprotein (RNP) complex altered the second patient variant and rescued 24.8% Pax6 protein expression. CONCLUSION We demonstrated the usefulness of the CHuMMMs approach, and showed the first genomic editing by ABE8e encapsulated as an LNP-RNP. Furthermore, we laid the foundation for translation of the proposed CRISPR therapy to preclinical mouse studies and eventually patients with aniridia.
Collapse
Affiliation(s)
- Bethany A Adair
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Diana Djaksigulova
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | | | - Nina Y Chiu
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Siu Ling Lam
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Tess C Lengyell
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Incisive Genetics Inc., Vancouver, BC, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Department of Medical Genetics, The University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
9
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
10
|
Roshandel D, Semnani F, Rayati Damavandi A, Masoudi A, Baradaran-Rafii A, Watson SL, Morgan WH, McLenachan S. Genetic predisposition to ocular surface disorders and opportunities for gene-based therapies. Ocul Surf 2023; 29:150-165. [PMID: 37192706 DOI: 10.1016/j.jtos.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The ocular surface, comprised of the corneal and conjunctival epithelium, innervation system, immune components, and tear-film apparatus, plays a key role in ocular integrity as well as comfort and vision. Gene defects may result in congenital ocular or systemic disorders with prominent ocular surface involvement. Examples include epithelial corneal dystrophies, aniridia, ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome, xeroderma pigmentosum (XP), and hereditary sensory and autonomic neuropathy. In addition, genetic factors may interact with environmental risk factors in the development of several multifactorial ocular surface disorders (OSDs) such as autoimmune disorders, allergies, neoplasms, and dry eye disease. Advanced gene-based technologies have already been introduced in disease modelling and proof-of-concept gene therapies for monogenic OSDs. For instance, patient-derived induced pluripotent stem cells have been used for modelling aniridia-associated keratopathy (AAK), XP, and EEC syndrome. Moreover, CRISPR/Cas9 genome editing has been used for disease modelling and/or gene therapy for AAK and Meesmann's epithelial corneal dystrophy. A better understanding of the role of genetic factors in OSDs may be helpful in designing personalized disease models and treatment approaches. Gene-based approaches in monogenic OSDs and genetic predisposition to multifactorial OSDs such as immune-mediated disorders and neoplasms with known or possible genetic risk factors has been seldom reviewed. In this narrative review, we discuss the role of genetic factors in monogenic and multifactorial OSDs and potential opportunities for gene therapy.
Collapse
Affiliation(s)
- Danial Roshandel
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Farbod Semnani
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Masoudi
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alireza Baradaran-Rafii
- Department of Ophthalmology, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Stephanie L Watson
- The University of Sydney, Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - William H Morgan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
11
|
Ghani MW, Iqbal A, Ghani H, Bibi S, Wang Z, Pei R. Recent advances in nanocomposite-based delivery systems for targeted CRISPR/Cas delivery and therapeutic genetic manipulation. J Mater Chem B 2023. [PMID: 36779580 DOI: 10.1039/d2tb02610d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
CRISPR/Cas systems are novel gene editing tools with tremendous capacity and accuracy for gene editing and hold great potential for therapeutic genetic manipulation. However, the lack of safe and efficient delivery methods for CRISPR/Cas and its guide RNA hinders their wide adoption for therapeutic applications. To this end, there is an increasing demand for safe, efficient, precise, and non-pathogenic delivery approaches, both in vitro and in vivo. With the convergence of nanotechnology and biomedicine, functional nanocomposites have demonstrated unparalleled sophistication to overcome the limits of CRISPR/Cas delivery. The tunability of the physicochemical properties of nanocomposites makes it very easy to conjugate them with different functional substances. The combinatorial application of diverse functional materials in the form of nanocomposites has shown excellent properties for CRISPR/Cas delivery at the target site with therapeutic potential. The recent highlights of selective organ targeting and phase I clinical trials for gene manipulation by CRISPR/Cas after delivery through LNPs are at the brink of making it to routine clinical practice. Here we summarize the recent advances in delivering CRISPR/Cas systems through nanocomposites for targeted delivery and therapeutic genome editing.
Collapse
Affiliation(s)
- Muhammad Waseem Ghani
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| | - Ambreen Iqbal
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| | - Hammad Ghani
- Basic Health Unit Laleka, Primary and Secondary Healthcare Department, Bahawalngar, 62300, Punjab, Pakistan
| | - Sidra Bibi
- Department of Biology, The Islamia University of Bahawalpur, Bahawalnagar Campus 62300, Pakistan
| | - Zixun Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, P. R. China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Science, Suzhou 215123, P. R. China.
| |
Collapse
|
12
|
Abdolkarimi D, Cunha DL, Lahne1 M, Moosajee M. PAX6 disease models for aniridia. Indian J Ophthalmol 2022; 70:4119-4129. [PMID: 36453299 PMCID: PMC9940591 DOI: 10.4103/ijo.ijo_316_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Aniridia is a pan-ocular genetic developmental eye disorder characterized by complete or partial iris and foveal hypoplasia, for which there is no treatment currently. Progressive sight loss can arise from cataracts, glaucoma, and aniridia-related keratopathy, which can be managed conservatively or through surgical intervention. The vast majority of patients harbor heterozygous mutations involving the PAX6 gene, which is considered the master transcription factor of early eye development. Over the past decades, several disease models have been investigated to gain a better understanding of the molecular pathophysiology, including several mouse and zebrafish strains and, more recently, human-induced pluripotent stem cells (hiPSCs) derived from aniridia patients. The latter provides a more faithful cellular system to study early human eye development. This review outlines the main aniridia-related animal and cellular models used to study aniridia and highlights the key discoveries that are bringing us closer to a therapy for patients.
Collapse
Affiliation(s)
| | - Dulce Lima Cunha
- UCL Institute of Ophthalmology, London, UK
- Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
13
|
Mirjalili Mohanna SZ, Djaksigulova D, Hill AM, Wagner PK, Simpson EM, Leavitt BR. LNP-mediated delivery of CRISPR RNP for wide-spread in vivo genome editing in mouse cornea. J Control Release 2022; 350:401-413. [PMID: 36029893 DOI: 10.1016/j.jconrel.2022.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/02/2023]
Abstract
CRISPR/Cas9-based genome-editing therapies are poised to change the clinical outcome for many diseases with validated therapeutic targets awaiting an appropriate delivery system. Recent advances in lipid nanoparticle (LNP) technology make them an attractive platform for the delivery of various forms of CRISPR/Cas9, including the efficient and transient Cas9/gRNA ribonucleoprotein (RNP) complexes. In this study, we initially tested our novel LNP platform by delivering pre-complexed RNPs and template DNA to cultured mouse cortical neurons, and obtained successful ex vivo genome editing. We then directly injected LNP-packaged RNPs and DNA template into the mouse cornea to evaluate in vivo delivery. For the first time, we demonstrated wide-spread genome editing in the cornea using our LNP-RNPs. The ability of our LNPs to transfect the cornea highlights the potential of our novel delivery platform to be used in CRISPR/Cas9-based genome editing therapies of corneal diseases.
Collapse
Affiliation(s)
- Seyedeh Zeinab Mirjalili Mohanna
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Diana Djaksigulova
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | | | | | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada.
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada; Incisive Genetics Inc., Vancouver, BC, Canada
| |
Collapse
|
14
|
He M, Rong R, Ji D, Xia X. From Bench to Bed: The Current Genome Editing Therapies for Glaucoma. Front Cell Dev Biol 2022; 10:879957. [PMID: 35652098 PMCID: PMC9149310 DOI: 10.3389/fcell.2022.879957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Glaucoma is a group of optic neuropathies featured by degeneration of retinal ganglion cells and loss of their axons in the optic nerve. The only currently approved therapies focus on lowering intraocular pressure with medication and surgery. Over the previous few decades, technological advances and research progress regarding pathogenesis has brought glaucomatous gene therapy to the forefront. In this review, we discuss the three current genome editing methods and potential disease mechanisms of glaucoma. We further summarize different genome editing strategies that are being developed to target a number of glaucoma-related genes and pathways from four aspects including strategies to lower intraocular pressure, neuroprotection, RGC and optic nerve neuro-regeneration, and other strategies. In summary, genome therapy is a promising therapy for treating patients with glaucoma and has great potential to be widely applied in clinical practice.
Collapse
Affiliation(s)
- Meihui He
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Aboobakar IF, Wiggs JL. The genetics of glaucoma: Disease associations, personalised risk assessment and therapeutic opportunities-A review. Clin Exp Ophthalmol 2022; 50:143-162. [PMID: 35037362 DOI: 10.1111/ceo.14035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022]
Abstract
Glaucoma refers to a heterogenous group of disorders characterised by progressive loss of retinal ganglion cells and associated visual field loss. Both early-onset and adult-onset forms of the disease have a strong genetic component. Here, we summarise the known genetic associations for various forms of glaucoma and the possible functional roles for these genes in disease pathogenesis. We also discuss efforts to translate genetic knowledge into clinical practice, including gene-based tests for disease diagnosis and risk-stratification as well as gene-based therapies.
Collapse
Affiliation(s)
- Inas F Aboobakar
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Taha EA, Lee J, Hotta A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. J Control Release 2022; 342:345-361. [PMID: 35026352 DOI: 10.1016/j.jconrel.2022.01.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
The discovery of clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technology opened the door to provide a versatile approach for treating multiple diseases. Promising results have been shown in numerous pre-clinical studies and clinical trials. However, a safe and effective method to deliver genome-editing components is still a key challenge for in vivo genome editing therapy. Adeno-associated virus (AAV) is one of the most commonly used vector systems to date, but immunogenicity against capsid, liver toxicity at high dose, and potential genotoxicity caused by off-target mutagenesis and genomic integration remain unsolved. Recently developed transient delivery systems, such as virus-like particle (VLP) and lipid nanoparticle (LNP), may solve some of the issues. This review summarizes existing in vivo delivery systems and possible solutions to overcome their limitations. Also, we highlight the ongoing clinical trials for in vivo genome editing therapy and recently developed genome editing tools for their potential applications.
Collapse
Affiliation(s)
- Eman A Taha
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Biochemistry, Ain Shams University Faculty of Science, Cairo 11566, Egypt
| | - Joseph Lee
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Center for iPS cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
17
|
The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. J Adv Res 2021; 40:135-152. [PMID: 36100322 PMCID: PMC9481961 DOI: 10.1016/j.jare.2021.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Due to its high accuracy and efficiency, CRISPR/Cas9 techniques may provide a great chance to treat some gene-related diseases. Researchers used the CRISPR/Cas9 technique to cure or alleviate cancers through different approaches, such as gene therapy and immune therapy. The treatment of ocular diseases by Cas9 has entered into clinical phases.
Background Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is derived from the bacterial innate immune system and engineered as a robust gene-editing tool. Due to the higher specificity and efficiency of CRISPR/Cas9, it has been widely applied to many genetic and non-genetic disease, including cancers, genetic hemolytic diseases, acquired immunodeficiency syndrome, cardiovascular diseases, ocular diseases, and neurodegenerative diseases, and some X-linked diseases. Furthermore, in terms of the therapeutic strategy of cancers, many researchers used the CRISPR/Cas9 technique to cure or alleviate cancers through different approaches, such as gene therapy and immune therapy. Aim of Review Here, we conclude the recent application and clinical trials of CRISPR/Cas9 in non-cancerous diseases and cancers and pointed out some of the problems to be solved. Key Scientific Concepts of Review CRISPR/Cas9, derived from the microbial innate immune system, is developed as a robust gene-editing tool and has been applied widely. Due to its high accuracy and efficiency, CRISPR/Cas9 techniques may provide a great chance to treat some gene-related diseases by disrupting, inserting, correcting, replacing, or blocking genes for clinical application with gene therapy.
Collapse
|
18
|
Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther 2021; 22:104-131. [PMID: 33902406 DOI: 10.2174/1566523221666210423084233] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.
Collapse
Affiliation(s)
- Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
19
|
Korecki AJ, Cueva-Vargas JL, Fornes O, Agostinone J, Farkas RA, Hickmott JW, Lam SL, Mathelier A, Zhou M, Wasserman WW, Di Polo A, Simpson EM. Human MiniPromoters for ocular-rAAV expression in ON bipolar, cone, corneal, endothelial, Müller glial, and PAX6 cells. Gene Ther 2021; 28:351-372. [PMID: 33531684 PMCID: PMC8222000 DOI: 10.1038/s41434-021-00227-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Small and cell-type restricted promoters are important tools for basic and preclinical research, and clinical delivery of gene therapies. In clinical gene therapy, ophthalmic trials have been leading the field, with over 50% of ocular clinical trials using promoters that restrict expression based on cell type. Here, 19 human DNA MiniPromoters were bioinformatically designed for rAAV, tested by neonatal intravenous delivery in mouse, and successful MiniPromoters went on to be tested by intravitreal, subretinal, intrastromal, and/or intravenous delivery in adult mouse. We present promoter development as an overview for each cell type, but only show results in detail for the recommended MiniPromoters: Ple265 and Ple341 (PCP2) ON bipolar, Ple349 (PDE6H) cone, Ple253 (PITX3) corneal stroma, Ple32 (CLDN5) endothelial cells of the blood-retina barrier, Ple316 (NR2E1) Müller glia, and Ple331 (PAX6) PAX6 positive. Overall, we present a resource of new, redesigned, and improved MiniPromoters for ocular gene therapy that range in size from 784 to 2484 bp, and from weaker, equal, or stronger in strength relative to the ubiquitous control promoter smCBA. All MiniPromoters will be useful for therapies involving small regulatory RNA and DNA, and proteins ranging from 517 to 1084 amino acids, representing 62.9-90.2% of human proteins.
Collapse
Affiliation(s)
- Andrea J. Korecki
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Jorge L. Cueva-Vargas
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Oriol Fornes
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Jessica Agostinone
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Rachelle A. Farkas
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Jack W. Hickmott
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Siu Ling Lam
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Anthony Mathelier
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Michelle Zhou
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Wyeth W. Wasserman
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Adriana Di Polo
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Elizabeth M. Simpson
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
20
|
Zhang B. CRISPR/Cas gene therapy. J Cell Physiol 2020; 236:2459-2481. [PMID: 32959897 DOI: 10.1002/jcp.30064] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated enzyme (Cas) is a naturally occurring genome editing tool adopted from the prokaryotic adaptive immune defense system. Currently, CRISPR/Cas9-based genome editing has been becoming one of the most promising tools for treating human genetic diseases, including cardiovascular diseases, neuro-disorders, and cancers. As the quick modification of the CRISPR/Cas9 system, including delivery system, CRISPR/Cas9-based gene therapy has been extensively studied in preclinic and clinic treatments. CRISPR/Cas genome editing is also a robust tool to create animal genetic models for studying and treating human genetic disorders, particularly diseases associated with point mutations. However, significant challenges also remain before CRISPR/Cas technology can be routinely employed in the clinic for treating different genetic diseases, which include toxicity and immune response of treated cells to CRISPR/Cas component, highly throughput delivery method, and potential off-target impact. The off-target effect is one of the major concerns for CRISPR/Cas9 gene therapy, more research should be focused on limiting this impact by designing high specific gRNAs and using high specificity of Cas enzymes. Modifying the CRISPR/Cas9 delivery method not only targets a specific tissue/cell but also potentially limits the off-target impact.
Collapse
Affiliation(s)
- Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|